06

Откольная прочность поликарбоната при температурах 20-185°C

© И.А. Черепанов,^{1,2,3} А.С. Савиных,^{1,2} Г.В. Гаркушин,^{1,2} С.В. Разоренов^{1,2}

¹ Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, 142432 Черноголовка, Московская обл., Россия

² Объединенный институт высоких температур РАН,

125412 Москва, Россия

³ Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

e-mail: i.cherepanov95@yandex.ru

Поступило в Редакцию 24 января 2023 г. В окончательной редакции 6 марта 2023 г. Принято к публикации 10 марта 2023 г.

Представлены результаты измерений откольной прочности поликарбоната при максимальном напряжении сжатия 0.6 GPa и в диапазоне начальных температур $20-185^{\circ}$ C. Выявлено значительное снижение откольной прочности при достижении поликарбонатом температуры стеклования. Определены скорости деформирования в пластической волне сжатия в зависимости от максимального напряжения при однократном и ступенчатом ударном сжатии. Построены зависимости скорости ударной волны U_S от массовой скорости u_p в диапазоне максимальных напряжений ударного сжатия до 0.8 GPa при различных температурах.

Ключевые слова: поликарбонат, ударные волны, деформация, температура, откольная прочность, ударная адиабата.

DOI: 10.21883/JTF.2023.05.55461.10-23

Введение

Одним из самых прочных полимерных материалов является поликарбонат, который в качестве конструкционного материала широко используется в авиационной и космической технике, машиностроении и многих других отраслях промышленности. Сочетание таких свойств как низкая плотность, прозрачность, а также высокая механическая прочность делают его уникальным. В связи с возможностью использования изделий и конструкций из поликарбоната при эксплуатации, в том числе и при импульсных нагрузках, стоит вопрос об изучении свойств полимеров и построении адекватных моделей их поведения при высоких скоростях деформирования в широком диапазоне температур [1–5].

Определение ударной адиабаты поликарбоната проведены в широком диапазоне давлений [6–8]. Помимо этого, в работе [6] было изучено влияние интенсивности ударного сжатия на его сопротивляемость растягивающим напряжениям, и было найдено, что с увеличением скорости удара до 1 km/s откольная прочность поликарбоната сначала остается неизменной и равной 0.195 GPa, однако при пиковом напряжении 1.6–1.9 GPa происходит размягчение материала и снижение прочности до 0.153 GPa. Сопротивление поликарбоната растяжению также изучалось в работе [9] при воздействии на образец лазерного импульса, когда скорость деформирования составляла 10^7 s^{-1} . На основании экспериментальных данных была построена гидродинамическая модель, пренебрегающая вязкоупругими эффектами, а также оценено максимальное значение откольной прочности, составившее для этих условий нагружения 1.3 GPa.

Особое внимание, из-за недостаточности экспериментальных данных, стоит уделить влиянию температуры на прочностные характеристики поликарбоната при температуре, близкой к температуре стеклования полимера, а также самого процесса перехода из кристаллического состояния в стеклообразное. Такое исследование было проведено для полиметилметакрилата [10] — построены ударные адиабаты, и исследовано его сопротивление сжимающим и растягивающим напряжениям при различных температурах. Показано, что при превышении температуры стеклования материал сохраняет небольшую сопротивляемость только растягивающим напряжениям. Авторы объясняют этот эффект увеличивающейся с температурой роли объемной вязкости в сравнении со сдвиговой в сопротивлении разрушению.

Целью настоящей работы является исследование влияния температуры на ударную сжимаемость и прочностные характеристики поликарбоната в диапазоне температур от 20 до 185°C, включающего в себя его переход в стеклообразное состояние.

1. Материал и постановка экспериментов

Эксперименты проведены с образцами поликарбоната марки BORREX толщиной 1.8 ± 0.1 mm и 3.3 ± 0.1 mm, диаметром 50 mm, вырезанными из одного листа соответствующей толщины. Начальная температура образцов варьировалась в диапазоне от 20 до 185° C. Стекло-

Рис. 1. Схема экспериментов по ударному нагружению образцов поликарбоната при комнатной и повышенной температурах: a — измерение откольной прочности, b — построения зависимостей $U_S - u_p$, c — ступенчатое нагружение.

вание поликарбоната, определенное методом дифференциальной сканирующей калориметрии [11], происходит в диапазоне температур 142–152°С. Измеренная плотность поликарбоната методом гидростатического взвешивания составила $\rho_0 = 1.194 \text{ g/cm}^3$, измеренная продольная скорость звука равна $c_l = 2.242 \text{ km/s}$.

Ударно-волновое нагружение исследованных образцов проводилось с использованием пневматической ствольной установки диаметром 50 mm. Измерение откольной прочности проводилось при нагружении исследуемых образцов толщиной 1.8 mm алюминиевым ударником толщиной 0.7 mm, разогнанным до скорости 360 ± 10 m/s. Схема постановки экспериментов по определению откольной прочности поликарбоната показана на рис. 1, а. Для предотвращения прогиба ударника в процессе разгона последний наклеивался на подложку из полиметилметакрилата (ПММА) толщиной 5 mm, расположенную на пустотелом дюралюминиевом цилиндре. При нагружении поликарбоната алюминиевым ударником, имеющим более высокий динамический импеданс, происходит торможение ударника с формированием ступенчатой волны разгрузки в образце. Ступенчатая разгрузка препятствует формированию откольного разрушения. Для предотвращения формирования ступенчатой разгрузки образец размещался на медном экране толщиной 3.5 mm. При соударении алюминиевого ударника с медным экраном, имеющим более высокий динамический импеданс, происходит отскок ударника от экрана, а в экран распространяется волна разгрузки. Наличие подложки из ПММА приводит к неполной, но достаточной для отскока разгрузке ударника, и формированию волны разрежения в экране, распространяющейся затем в образец поликарбоната, с амплитудой, достаточной для формирования откольного разрушения. Выбор материала экрана обусловлен высоким динамическим импедансом в сравнении с материалом ударника и низким динамическим пределом упругости. Максимальное напряжение сжатия в поликарбонате при такой постановке экспериментов составляло 0.56 GPa. Перед экспериментом приемная камера и ствол пневматической установки вакуумировались.

Для построения зависимости скорости ударной волны U_S от массовой скорости u_p (ударной адиабаты поликар-

боната) была выполнена вторая серия экспериментов по нагружению образцов толщиной 3.3 mm алюминиевым ударником толщиной 4 mm, как показано на рис. 1, *b*. Скорости ударников составляли 130 ± 10 , 280 ± 10 и 316 ± 10 m/s, что соответствует максимальным напряжениям сжатия 0.23, 0.59 и 0.74 GPa при комнатной температуре. Диапазон реализуемых давлений в этой серии экспериментов включает в себя давления, при которых проводились измерения откольной прочности.

С целью уточнения измеренных зависимостей $U_{S} - u_{n}$ в работе была проведена третья серия экспериментов по ступенчатому ударному сжатию образцов. Ступенчатое ударное сжатие образцов толщиной 3.3 mm реализовывалось с помощью ударника, составленного из алюминиевой пластины толщиной 7 mm и со стороны образца прокладки из ПММА толщиной 1.2±0.1 mm. Составной ударник и схема нагружения показаны на рис. 1, с. В результате соударения ударника с образцом в плексигласовой прокладке между образцом и алюминиевой пластиной происходили многократные переотражения ударной волны. Толщина прокладки выбиралась, с одной стороны, такой, чтобы разность времени выхода между первой и второй волнами сжатия была достаточной для установления постоянства скорости свободной поверхности после выхода первой волны на поверхность образца, с другой стороны, такой, чтобы результат отражения первой волны сжатия от свободной поверхности не мог приводить к существенным искажениям второй волны. Скорость составного ударника в этих экспериментах составляла 338 ± 10 m/s.

Во всех экспериментах в процессе нагружения регистрировалась скорость свободной поверхности образцов как функция от времени $u_{fs}(t)$ с использованием лазерного допплеровского измерителя скорости VISAR [12] с разрешением $\sim 1 \, \text{ns.}$ В качестве отражателя зондирующего лазерного излучения использовалась алюминиевая фольга толщиной 7 µm. Медный экран и отражающая фольга приклеивались к образцу при помощи высокотемпературной эпоксидной смолы ПЭО 90-К, верхняя граница рабочего диапазона которой составляет 200°С. Нагрев образцов осуществлялся с помощью керамического нагревателя с нихромовой спиралью, который размещался у тыльной поверхности образца, как это показано на рис. 1. Контроль температуры осуществлялся двумя хромель-алюмелевыми термопарами. Одна термопара вклеивалась в образец на удалении $\sim 6-7\,\mathrm{mm}$ от места регистрации скорости свободной поверхности, вторая — с торца образца или с торца медного экрана в экспериментах по измерению откольной прочности. Разница между показаниями термопар не превышала 7-8°С. Использование двух термопар позволяло однозначно контролировать начало процесса стеклования в поликарбонате: при достижении температуры стеклования скорость нагрева уменьшается. Средняя скорость нагрева образцов составляла $\sim 0.1^{\circ}$ /s.

Скорость ударной волны измерялась как разность между временем выхода ударной волны на свободную

поверхность и моментом удара, зарегистрированным при помощи электроконтактных датчиков. Для повышения точности измерений и возможности фиксации перекоса ударника использовались четыре датчика, расположенных на расстоянии 19 mm от центра образца. Датчики также вклеивались с использованием высокотемпературной эпоксидной смолы и зашлифовывались в одной плоскости с тыльной поверхностью образца.

2. Результаты измерений

2.1. Анализ волновых профилей

На рис. 2 представлены профили скорости свободной поверхности образцов поликарбоната толщиной 1.8 mm, полученные в диапазоне начальных температур от 20 до 185°С. На профилях регистрируется выход на поверхность пластической волны сжатия. Каких-либо признаков упругопластического перехода на фронте волны сжатия зарегистрировано не было. После отражения ударной волны от свободной поверхности в виде волны разрежения и взаимодействия последней с падающей волной разрежения, приходящей от тыльной стороны ударника, внутри образца создаются растягивающие напряжения, приводящие к его откольному разрушению. Далее регистрируется выход на поверхность откольного импульса в виде второго подъема скорости, связанного с его выходом на свободную поверхность образца.

Максимальная скорость свободной поверхности в эксперименте при комнатной температуре (рис. 2) составила ~ 330 m/s. Расчетная максимальная скорость свободной поверхности с использованием известной ударной адиабаты поликарбоната [7,8] без учета затухания ударной волны при ее распространении по образцу

Рис. 2. Профили скорости свободной поверхности образцов поликарбоната толщиной 1.8 mm при ударе алюминиевой пластиной толщиной 0.7 mm со скоростью 360 ± 10 m/s в диапазоне температур от 20 до 185° С. Заштрихованная область температур соответствует диапазону стеклования поликарбоната.

должна быть $\sim 390-400$ m/s. С ростом температуры до температуры начала стеклования (141°С) фиксируется увеличение скорости свободной поверхности до 350 m/s. Этот эффект связан с тем, что с ростом температуры происходит уменьшение скорости ударной волны и скорости распространения фронтальной части разгрузки затухание полного импульса сжатия с ростом температуры образца замедляется, и скорость поверхности несколько возрастает. В диапазоне температур от 141 до 185°С, т.е. в области стеклования и выше, максимальная скорость свободной поверхности значительно падает и регистрируется на уровне 302-312 m/s. Уменьшение максимальной скорости свободной поверхности, возможно, связано с увеличением скорости волны разгрузки. При температурах образцов выше температуры начала стеклования на волновых профилях появляются нерегулярные осцилляции, и ухудшается их воспроизводимость. Это свидетельствует о процессах, связанных с перестроением внутренней структуры в поликарбонате и, возможно, с ростом пор в размягченном материале. При граничной начальной температуре образцов 140°С (температуре начала процесса стеклования) наблюдается значительный разброс максимальной скорости свободной поверхности. Это связанно с тем, что процесс стеклования в отличие от плавления или кристаллизации происходит непрерывно и является релаксационным процессом. "Разморозка" сегментальной подвижности в образце происходит неравномерно, поэтому значения максимальной скорости поверхности, регистрируемые в этом диапазоне, отличаются даже при одной температуpe [13].

2.2. Откольная прочность поликарбоната

Декремент скорости — разница между максимальным значением скорости свободной поверхности и минимальным в волне разгрузки Δu_{fs} , (рис. 2), пропорционален откольной прочности материала [14]. На рис. 3 показана зависимость Δu_{fs} от начальной температуры образца. Видно, что до достижения образцами температуры стеклования декремент скорости практически не изменяется, а с началом процесса стеклования резко падает. При температурах выше температуры окончания стеклования наблюдается незначительное увеличение Δu_{fs} . Можно отметить, что при комнатной температуре (рис. 2) интенсивность ударного сжатия (0.42 и 0.56 GPa) не влияет на величину декремента скорости в волне разгрузки.

По измеренному декременту скорости Δu_{fs} рассчитывалась в линейном (акустическом) приближении величина растягивающих максимальных напряжений или откольная прочность с использованием соотношения $\sigma_{sp} = 1/2\rho_0 c_b (\Delta u_{fs} + \delta)$ [15], где ρ_0 — начальная плотность, c_b — объемная скорость звука, δ — поправка на искажение профиля скорости вследствие различия скорости упругого фронта откольного импульса и скорости пластической части падающей волны разгрузки перед

Рис. 3. Зависимость величины Δ_{ufs} поликарбоната от температуры; штрихом показаны температуры начала и окончания стеклования.

Рис. 4. Зависимость откольной прочности поликарбоната от начальной температуры.

ним. В связи с отсутствием проявления упругих свойств поликарбоната при ударном сжатии величина поправки δ при расчете откольной прочности принималась равной нулю. Для расчета изменения плотности с ростом температуры использовались данные [16].

На рис. 4 представлены полученные значения откольной прочности поликарбоната в диапазоне температур 20–185°С. Для расчета откольной прочности при 160 и 185°С использовалось расчетное значение объемной скорости звука, полученное из эксперимента по ступенчатому нагружению при 170°С, процедура ее получения представлена ниже. Из рисунка видно, что увеличение температуры образцов до температуры стеклования приводит к плавному снижению величины откольной прочности. Начало стеклования и дальнейший нагрев приводит к относительно резкому падению всех параметров (плотности, декремента скорости Δu_{fs} , объемной скорости звука), и, как следствие, снижению величины откольной прочности поликарбоната. Это можно объяснить природой процесса стеклования, так как с полученной энергией повышается подвижность цепочек полимера — происходит его "размягчение", и при этом снижается его прочность. Оцененная по спаду скорости поверхности образца в волне разгрузки скорость деформирования [17] перед откольным разрушением практически не зависит от начальной температуры образца и находится в диапазоне $(0.7-1.2) \cdot 10^5 \, \mathrm{s}^{-1}$. В работе [6] при близких скоростях деформирования получено значение откольной прочности поликарбоната 0.195 GPa, что значительно выше величины, измеренной в настоящей работе, однако исследованные там образцы имеют другие характеристики (плотность, продольная скорость звука), что может быть связано с технологией изготовления.

2.3. Определение ударной сжимаемости поликарбоната при повышенных температурах

Значение объемной скорости звука c_b принималось равной c_0 в зависимости скорости ударной волны U_s от массовой скорости u_p , $U_s = c_0 + bu_p$, где коэффициент b определяется наклоном линейной зависимости. Для определения значений объемной скорости звука при комнатной и повышенных температурах была проведена вторая серия экспериментов, в которой измерялась ударная сжимаемость поликарбоната в виде зависимости скорости ударной волны от массовой скорости при комнатной и повышенной температурах. Массовая скорости скорости ударной волны от массовой скорости при комнатной и повышенной температурах. Массовая скорость u_p определялась как $u_p = u_{max}/2$, где u_{max} — максимальное значение скорости свободной поверхности (рис. 5). Скорость ударной волны рассчитывалась по формуле $U_s = h_s/t_0$, где h_s — толщина образца, а t_0 — разность между временем выхода ударной волны на свободную

Рис. 5. Профили скорости свободной поверхности образцов поликарбоната толщиной 3.3 mm при ударе алюминиевой пластиной толщиной 4 mm со скоростями 130–316 m/s при температурах 20–170°С.

Рис. 6. Результаты измерений ударной адиабаты поликарбоната в диапазоне температур $20-170^{\circ}$ С. Линейная зависимость при 170° С получена в результате расчетов. Штрих — данные работы [7], точки — данные работы [8].

поверхность и отметкой времени, зарегистрированной при помощи электроконтактных датчиков, срабатывание которых происходит в момент удара алюминиевой пластины о тыльную поверхность образца. Так как в экспериментах использовались две пары датчиков, время t_0 определялось как среднее арифметическое.

На рис. 5 представлены профили скорости свободной поверхности, полученные при нагружении образцов поликарбоната толщиной 3.3 mm алюминиевым ударником толщиной 4 mm, разогнанным до скоростей 130 ± 10 , 280 ± 10 и 316 ± 10 m/s. Измерение профилей скорости свободной поверхности проводилось в диапазоне начальных температуро образцов $20-170^{\circ}$ С. С увеличением температуры наблюдается уменьшение времени нарастания во фронте ударной волны, что свидетельствует о снижении вязкости исследуемого материала. С ростом начальной температуры образца регистрируется увеличение скорости свободной поверхности при одной скорости удара, что свидетельствует о снижении динамического импеданса поликарбоната при повышении температуры.

На рис. 6 суммированы полученные зависимости U_{S-u_p} для поликарбоната при начальных температурах 20, 100 и 138°С. Видно, что при комнатной температуре полученная ударная адиабата хорошо согласуется с данными, приведенными в работах [7,8]. С ростом температуры полученные зависимости U_{S-u_p} лежат ниже, чем адиабаты при более низкой температуре. Влияния начальной температуры образцов на коэффициент *b* выявлено не было.

Полученное значение сb из ударной адиабаты поликарбоната при комнатной температуре ($c_b = 1.955$ km/s) ниже, чем измеренная продольная скорость звука ($c_l = 2.242$ km/s). При массовой скорости 0.140 km/s (рис. 6) скорость ударной волны равна c_l , т.е. расщепление ударной волны с выделением упругого предвестника выше этой скорости невозможно. При массовой скорости 0.09 km/s (рис. 5) расщепление ударной волны с выделением упругого предвестника, распространяющегося с продольной скоростью звука, зарегистрировано не было. По всей видимости, предел текучести поликарбоната при ударном нагружении очень мал. Упругий предвестник в экспериментах по ударному нагружению поликарбоната при близких массовых скоростях не был зарегистрирован и в работе [6]. В эксперименте с поликарбонатом при 170°С и скорости удара 130 m/s регистрируется особенность волнового фронта волны сжатия в виде формирования двухволновой конфигурации (вставка на рис. 5), возможно связанная с выделением упругого предвестника, что, в свою очередь, может быть обусловлено переходом поликарбоната в высокоэластичное состояние при этих условиях [13]. Подобная особенность наблюдалась в экспериментах с ПММА при начальных температурах, превышающих температуру стеклования [10].

Эксперименты по определению ударной сжимаемости с начальной температурой образцов 170°С и выше содержали большую погрешность измерения скорости ударной волны, что, возможно, связано с изменением положения электроконтактных датчиков при размягчении образца. По этой причине была проведена дополнительная серия экспериментов по ступенчатому сжатию образцов поликарбоната, в которых предполагалось оценить время выхода второй волны на свободную поверхность. На рис. 7 показаны профили скорости свободной поверхности образцов поликарбоната, нагружаемых разогнанным до скорости $338 \pm 10 \text{ m/s}$ составным ударником из ПММА и алюминия (рис. 1, c). Эксперименты были проведены при комнатной и повышенных до 100, 137 и 170°С температурах. Рост начальной температуры так же, как и в экспериментах по измерению ударной сжимаемости, приводил к увеличению скорости

Рис. 7. Профили скорости свободной поверхности образцов поликарбоната при ударе составным ударником со скоростью 338 ± 10 m/s при температурах $20-170^{\circ}$ C.

свободной поверхности. Изменение времени выхода на поверхность образца второй волны оказалось более существенным — время выхода второй волны сжатия относительно первой при 20°С составило 500 ns, а при 170°С — 360 ns. Проведенный анализ распространения первой и второй волн сжатия показал, что использование в расчете полученных зависимостей U_{S-u_n} при 20, 100 и 137°C хорошо согласуются с результатами измерений профилей скорости свободной поверхности. При построении t-x диаграмм ударно-волновых взаимодействий с хорошей точностью были определены времена выхода на свободную поверхность вторых пластических волн сжатия. Измеренная ударная адиабата при 170°С не позволила определить точное время выхода второй волны сжатия на свободную поверхность. Поэтому для построения ударной адиабаты при 170°С была решена обратная задача. С использованием данных, полученных в эксперименте по ступенчатому сжатию, была рассчитана зависимость U_{S-u_p} , как $U_s = 1.49 + 2.1u_p$. Более поздний выход второй волны сжатия в эксперименте при 100°С в сравнении с экспериментом при 20°С связан с незначительной разницей в толщине ударника и образца.

По измеренным профилям скорости свободной поверхности, представленным на рис. 5 и 7, определялись максимальные скорости сжатия в первой и во второй пластических ударных волнах и максимальные напряжения сжатия при выходе ударных волн на свободную поверхность. Скорость сжатия определялась как $\dot{\varepsilon}_x = \dot{u}_{fs}/2U_s$, где \dot{u}_{fs} — максимальное ускорение поверхности в пластической ударной волне, U_S — скорость пластической ударной волны. Максимальное напряжение сжатия определялось как $\sigma_x = \rho_0 U_s u_p$. На рис. 8 представлены зависимости скорости деформирования от максимального напряжения сжатия, полученные в экспериментах по определению массовой скорости и в экспериментах по ступенчатому нагружению образцов при выходе первой волны. Как видно на рисунке, с ростом максимального напряжения сжатия в ударной

Рис. 8. Зависимости скорости деформации в пластической волне от максимального напряжения сжатия.

Рис. 9. Скорости сжатия в зависимости от приращения напряжения сжатия в пластической ударной волне. Стрелки соединяют параметры первой и второй пластических волн одного опыта.

волне в исследованном диапазоне начальных температур скорость сжатия изменяется подобным образом и может быть описана степенной зависимостью $\dot{\varepsilon}_x = A(\sigma_{peak}/\sigma_0)^{\beta}$ ($\sigma_0 = 1$ GPa). С ростом температуры в диапазоне максимальных напряжений сжатия до 1 GPa значения степенного коэффициента β уменьшаются с 1.45 при 20°C до 1.24 при 137°C. В исследованном диапазоне напряжений сжатия скорость деформирования при 137°C в два раза выше, чем при 20°C, что свидетельствует об уменьшении вязкости материала при приближении к температуре начала стеклования. С ростом максимального напряжения сжатия эта разница незначительно уменьшается.

На рис. 9 сравниваются результаты измерения скорости деформирования в первой и во второй пластических ударных волнах при различных температурах. Сравнение сделано в зависимости от приращения напряжения сжатия в пластической ударной волне. Целые точки показывают значения скорости деформирования для первой пластической волны, значения для пустых точек брались, как разность между напряжениями сжатия за второй и за первой пластическими ударными волнами. Точки, описывающие вторые пластические волны, располагаются ниже зависимостей для первых волн. С ростом температуры также растет скорость деформации во второй пластической волне.

Заключение

Проведены эксперименты по регистрации полных волновых профилей с помощью лазерного интерферометра VISAR образцов поликарбоната при ударном сжатии до 0.8 GPa в диапазоне температур 20–185°C. Из анализа волновых профилей определены значения откольной прочности поликарбоната в зависимости от температуры при максимальном напряжении сжатия 0.6 GPa.

Найдено, что переход поликарбоната из стеклообразного в высокоэластичное состояние влияет на снижение сопротивления растягивающим напряжениям сильнее, чем обычный рост температуры. Для расчета откольной прочности поликарбоната при повышенной температуре, температуре начала стеклования и в высокоэластичном состоянии проведены измерения массовой скорости и скорости ударной волны. По полученным экспериментальным данным построены ударные адиабаты поликарбоната в диапазоне максимальных напряжений ударного сжатия до 0.8 GPa. Показано, что с ростом начальной температуры значение объемной скорости звука первого члена линейной зависимости $U_S c_0 + bu_p$ падает, а коэффициент b меняется незначительно. Признаков упругопластического поведения поликарбоната при ударном сжатии зарегистрировано не было. Определены скорости деформирования в пластической волне в зависимости от максимального напряжения при однократном и ступенчатом ударном сжатии. Максимальные скорости деформирования при сжатии реализуются при повышенных температурах.

Финансирование

Работа выполнена с использованием оборудования Московского регионального взрывного центра коллективного пользования РАН по теме Государственного задания № АААА-А19-119071190040-5, подготовка образцов проводилась в рамках Государственного задания № 075-00460-21-00.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Nasraoui, P. Forquin, L. Siad, A. Rusinek. Mater. Design, 37, 500 (2012). DOI:10.1016/j.matdes.2011.11.032
- T.J. Holmquist, J. Bradley, A. Dwivedi, D. Casem. Europ. Phys. J. Special Topics, 225, 343 (2016). DOI: 10.1140/epjst/e2016-02636-5
- [3] H. Wenjun, G. Hui, C. Yongmei, X. Ruoze, J. Hua, H. Peng. Europ. Polymer J., 85, 313 (2016).
 - DOI: 10.1016/j.eurpolymj.2016.10.036
- [4] N.K. Bourne. J. Dynamic Behavior Mater., 2 (1), 33 (2016).
 DOI: 10.1007/s40870-016-0055-5
- [5] M. Fernandez, M.E. Munõz, A. Santamaria. Macromolecular Chem. Phys., 209, 1730 (2008).
 DOI: 10.1002/macp.200700630
- S.J. Ye, H.W. Chai, X. Xianghui, Y. Cai, X.H. Yao, S.N. Luo.
 J. Appl. Phys., **126** (8), 085105 (2019).
 DOI:10.1063/1.5108965
- [7] R.F. Trunin, L.F. Gudarenko, M.V. Zhernokletov, G.V. Simakov. Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances (RFNC, Sarov, 2001)
- [8] S.P. Marsh. LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980)

- [9] T. De Rességuier, M. Deleignies. Shock Waves, 7 (6), 319 (1997). DOI:10.1007/s001930050086.
- [10] E.B. Zaretsky, G.I. Kanel. J. Appl. Phys., 126, 085902 (2019).
 DOI: 10.1063/1.5116075
- [11] M. Brown, P. Gallagher. Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications (Elsevier, 2011)
- [12] L.M. Barker, R.E. Hollenbach. J. Appl. Phys., 43 (11), 4669 (1972). DOI:10.1063/1.1660986
- [13] И.И. Тугов, Г.И. Кострыкина. *Физика и химия полимеров* (Химия, М., 1989)
- [14] G.I. Kanel. Int. J. Fract., **163** (1–2), 173 (2010). DOI:10.1007/s10704-009-9438-0
- [15] Г.И. Канель. ПМТФ, 42 (2), 194 (2001).
- [16] W. Xinyu, L. Hongxia, G. Junfeng, L. Zheng,
 R. Shilun, S. Changyu, W. Minjie. Polymers, 9 (3), 85 (2017). DOI: 10.3390/polym9030085
- [17] Г.И. Канель, С.В. Разоренов, А.В. Уткин, В.Е. Фортов. Ударно-волновые явления в конденсированных средах (Янус-К, Москва, 1996)