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1. The interest to investigate the possibility of existence of

three-dimensional (3D) single-crystals of GeC and SnC and

their properties arose in the beginning of the century [1–3].
With the emergence of graphene and subsequent search for

new multilayer (2D)-materials, studies were published on

two-dimensional (2D) carbides of germanium and tin [4–7].
In [8] we have considered elastic properties of carbides of

group IV elements using Harrison’s bond orbital model for

this purpose [9–11]. The comparison between the results ob-

tained in [8] and numerical calculations of other authors and

available experimental data has shown applicability of the

model to describe the elasticity of 3D- and 2D-compounds

of SiC, GeC, and SnC.

In this study we shall consider the whole range of A4B4

binary compounds. In this range only the silicone carbide is

sufficiently well studied [12]. As for other 3D-compounds of

A4B4 type, they only exist in the form of alloys and epitaxial

structures so far [13–16]. Here we shall consider dielectric

and optic characteristics of three-dimensional and graphene-

like A4B4 compounds, again using Harrison’s bond orbital

model. Some evaluations of these characteristics for cubic

single-crystals of SiC, GeC, and SnC are reported in [17].
2. Let us start with the description of dielectric properties

of 3D-compounds with a sphalerite structure. Let us deter-

mine linear χ(1) and quadratic χ(2) dielectric susceptibilities

from the expansion of crystal polarization P on the basis of

the electric field strength E:

P i =
∑

j

χ
(1)
i j E j +

∑

jk

χ
(2)
i jkE j Ek + . . . [18, 19].

Then, within the bond orbital model it can be

shown [20,21]1, that contributions of the electron subsystem

to these characteristics are:

χel
1 =

ne(eγd)2α3
c

12V2

, χel
14 =

√
3ne(eγd)3α4

cαp

48V 2
2

, (1)

1 In [21], in the last term on the right part of formula (12) the 2α2
c must

be replaced with the 2α2
p.

while ionic (lattice) contributions are as follows:

χ ion
1 =

ne(eγd)2α2
p(1 + 2α2

c )

24αcV2

,

χ ion
14 =

√
3ne(eγd)3α2

cαp(1− 2α2
p)

48V 2
2

. (2)

The following expressions are obtained for sum values of

linear and quadratic susceptibilities:

χ1 = χel
1 (1 + ϑ), ϑ =

α2
p(1 + 2α2

c )

2α4
c

,

χ14 =

√
3ne(eγd)3α4

cα
3
p

48V 2
2

. (3)

Here V2 = 3.22(~2/md2) — covalent energy of σ -bond of

sp3-orbitals of A and B atoms, where ~ — reduced Planck

constant, m — mass of free electron, d = a
√
3/4 — dis-

tance between the nearest neighbors in the sphalerite struc-

ture with lattice constant a and, as opposed to [20,21], we

assume V2 > 0; αc = V2/

√

V 2
2 + V 2

3 and αp =
√

1− α2
c —

covalency and polarity of the bond, V3 = |εA
h − εB

h |/2 — po-

lar energy of the bond, where ε
A(B)
h = (ε

A(B)
s + 3ε

A(B)
p )/4 —

energy of sp3-orbitals and ε
A(B)
s(p) — energy of s(p)-state

of A(B) atom; ne = 32/a3 — density of electrons, e —
elementary charge, γ — scaling factor that takes into

account corrections for the local field and is used as an

adjustable parameter [9,20,21]. For high-frequency ε∞ and

static dielectric permittivity, we have the following:

ε∞ = 1 + 4πχei
1 , ε0 = 1 + 4πχ1. (4)

Let us now turn to the determination of problem parame-

ters by assuming a = 4.36, 4.59, and 5.11 Å respectively

for cubic compounds of SiC, GeC, and SnC [3]. Since
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Table 1. Initial parameters for cubic crystals of A4B4: distance

between the nearest neighbors d, covalent V2 and polar V3 energies,

covalency αc and polarity αP of the A−B bond. The top row of

values is the calculation as per Mann tables [11], the lower row is

the calculation as per Herman–Skillman tables [9]

Parameter SiC GeC SnC SiGe SiSn GeSn

d, Å 1.89 1.99 2.21 2.42 2.60 2.80

V2 , eV 6.87 6.20 5.02 4.19 3.63 3.13

V3 , eV
1.88 1.93 2.41 0.05 0.53 0.48

1.42 1.37 1.77 0.04 0.35 0.39

αc
0.96 0.95 0.90 1.0 0.99 0.99

0.98 0.98 0.94 1.0 1.0 0.99

αP
0.26 0.30 0.44 0.01 0.14 0.15

0.20 0.22 0.33 0.01 0.10 0.12

values of a foe other compounds are unknown, let us

determine them on the basis of atomic radii ra , but taking

into account that a(AB) < ra(A) + ra(B). By taking ra

from [22] and evaluating the mean ratio for carbides as

a(XC)/
(

ra(X) + ra (C)
)

≈ 0.94 (X = Si, Ge, Sn), we get

values of d for SiGe, SiSn, and GeSn listed in Table 1.

To calculate polar energy V3, we shall use tables of atomic

terms ε
A(B)
s(p) of Mann [11] and Herman–Skillman [9]. From

the consideration of parameter values determined in this

way (see Table 1) it follows, that first, in the SiC→GeSn

series the interatomic bond length d increases. Second, all

the compounds of A4B4 type can be split between group I,

that includes carbides XC, and group II, that includes SiGe,

SiSn, and GeSn. In both groups, when moving from

the first compound to the last compound the polarity of

bond αp increases, although compounds of group II can

be considered almost homopolar. And finally the scaling

factor γ can be evaluated on the basis of experimental

data [23] for 3C-SiC: ε∞ = 6.52 and ε0 = 9.72. By

choosing ε∞ for fitting, we get the value of γ = 1.44, which

will be used for all other 3C-A4B4 compounds.

For the further analysis, it is convenient to re-write expres-

sions for χel
1 and χ14 in the following form: χel

1 ≈ 0.26(dα3
c )

and χ14 ≈ 2.01(d4α2
cα

3
p) · 10−8 CGSE (or χ14 ≈

≈0.67(d4α2
cα

3
p) ·10−12 m/V in SI measurement units),

where d is measured in Å. The calculation results are given

in Table 2. Values of χel
1 , χ1 and ε∞ for carbides have

a little difference, because a decrease in covalency αc in

the series of SiC→ SnC is compensated by an increase

in d . The increase in ε0 in the same series is related to the

increase in the multiplier ϑ . It should be noted that the

obtained values of ε0 are presumably conservative. At least,

this is the case for 3C-SiC.

The low level of quadratic susceptibilities χel
14 and χ14 of

A4B4 compounds as compared to semiconductors A3B5 and

A2B6 (see, for example, Table 5.1 in [9]) is explained by

the low polarity of bonds αp. The growth of χel
14 and χ14

in groups I and II (when moving from the first to the last

compound) is related to increase in both αp and d . Among

the considered compounds, the highest values of χel
14 and

χ14 correspond to 3C-SnC. This is easy to explain, because

the maximum value of χel
14 takes place at α∗

c =
√
4/5 and

α∗

p =
√
1/5, which is almost coincides with characteristics

of the Sn−C bond. Maximum of the sum (low-frequency)
susceptibility χ14 is realized at ᾱ∗

c =
√
2/5 and ᾱ∗

p =
√
3/5.

It should be stressed that when the formulae includes

high exponents of αc and αp, the results of calculations

based on Mann and Herman–Skillman tables have notice-

able differences. It must be noted that this study ignores

the metallicity of interatomic bonds [9,10], consideration

of which, generally speaking, can considerably affect the

calculation results [20,21].
3. Now let us turn to the consideration of optical

properties of cubic crystals. The linear electrooptical

coefficient r41, which describes the change in the refraction

indexn =
√
ε∞ of noncentrosymmetric crystals in a low-

frequency electric field is determined according to [18–21]
as

r41 = −4πχ14/n4. (5)

The calculation results presented in Table 3 show that the

behavior of change in coefficients rel
41 = −4πχel

14/n4 and r41
in the A4B4 series is defined by quadratic susceptibilities

χel
14 and χ14. It’s worth noting that values of |rel

41| and |r41|
of cubic crystals A4B4 are extremely low as compared with

other materials (see, for example, Table 77.2 in [19]).
Photoelastic constants pi j for cubic 3D-compounds, that

define the impact of mechanical stresses on the light

Table 2. Values of linear susceptibilities χel
1 , χ1, high-

frequency ε∞ and static ε0 dielectric permittivities, multiplier ϑ

and quadratic dielectric susceptibilities χel
14, χ14, for A4B4 cubic

crystals. The top row of values is the calculation as per Mann

tables [11], the lower row is the calculation as per Herman–
Skillman tables [9]

Parameter SiC GeC SnC SiGe SiSn GeSn

χel
1

0.43 0.44 0.42 0.63 0.66 0.71

0.46 0.49 0.48 0.63 0.68 0.71

χ1
0.48 0.51 0.58 0.63 0.68 0.73

0.49 0.53 0.57 0.63 0.69 0.73

ε∞
6.46 6.57 6.28 8.55 9.24 9.48

6.81 7.11 7.00 8.55 9.49 9.48

ϑ
0.11 0.15 0.39 0 0.03 0.03

0.06 0.08 0.19 0 0.015 0.02

ε0
7.00 7.39 8.29 8.55 9.54 10.23

7.13 7.63 8.18 8.55 9.67 10.12

χel
14, 10

−12 m/V
1.86 2.54 4.59 0 3.00 5.95

1.60 2.12 4.08 0 2.33 4.76

χ14, 10
−12 m/V

0.14 0.25 1.10 0 0.06 0.14

0.07 0.10 0.50 0 0.02 0.07
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propagation in a crystalline medium [20,21], have the

following form:

p11 = ξ

(

1 +
8λ

8 + λ

)

, p12 = ξ

(

1− 4λ

8 + λ

)

,

p44 =
99ξλ

(8 + λ)(8 + 3λ)
, (6)

where ξ = −2η(ε∞ − 1)/3ε2
∞
, η = 2(1− 3α2

p),
λ = 0.85 [24]. The values of pi j resulted from the

calculation (Table 3) are close to diamond photoelastic

constants p11 = −0.31, p12 = −0.09, and p44 = −0.12

(see Table 77.1 in [19]). The insignificant decrease in the

values of |pi j | in the SiC→ SnC and SiGe→GeSn series is

due to the increasing bond polarity.

4. Now let us turn to the dependencies of dielectric

permittivities ε∞ and ε0 of cubic crystals on the pressure P .
In [25] it is shown that

∂ε∞

∂P
= −η

ε∞ − 1

3B
,
∂ε0

∂P
= (ε∞ − 1)

∂ϑ

∂P
+ (1 + ϑ)

∂ε∞

∂P
,

∂ϑ

∂P
= −

2α2
p

α2
c B

(

1 +
2α2

p

3α2
c

)

, (7)

where B is the compression bulk modulus. In the Harrison’s

bond orbital model B = 2α3
cV2/

√
3d3 [9]. The calculation

results are given in Table 3. It should be emphasized that

the values of |∂ε∞/∂P| and |∂ε0/∂P| given in Table 3 are

the maximum estimates, since the calculation variant used

in [8] (exclusive of short-range repulsion) underestimates

the value of compression bulk modulus. Indeed, for

3C-SiC according to the data of [26] (see Table 4.6), we
have B = 246GPa, which is ∼ 1.5 times greater than our

result. Therefore, we have added to Table 3 the results

of calculation of dimensionless derivatives (∂ε∞/∂P)B and

(∂ε0/∂P)B , which allow for determining the values of

∂ε∞/∂P and ∂ε0/∂P on the basis of known (from exper-

iment or ab initio calculations) values of the compression

bulk modulus.

5. Let us turn to the description of properties of

2D-compounds A4B4. For the electron χ̄el
1 and lattice χ̄ ion

1

contributions to the linear dielectric susceptibility χ̄1 of

graphene-like structures (in-plane contributions) the follow-

ing expressions were obtained in [29]:

χ̄el
1 =

(eγ̄)2ᾱ3
c√

3V̄2h̄
, χ̄ ion

1 =
2(eγ̄)2ᾱ2

p(1 + 2ᾱ2
c )√

3k̄0d̄2h̄
, (8)

where force constant of the central-force interaction of the

closest neighbors is:

k̄0 =
4ᾱcV̄2(2ᾱ

2
c − 1)

d̄2
(9)

and again we have ignored the metallicity of bonds.

In these formulae the overscribed bar of symbol indicates

that we deal with a 2D-structure, h̄ —
”
thickness“ of

Table 3. Values of linear electrooptical coefficients

r el
14, r41 , elasto-optical constants pi j , parameters (∂ε∞/∂P)B and

(∂ε0/∂P)B , compression bulk moduli B , and derivatives of

dielectric susceptibilities with respect to pressure ∂ε∞/∂P and

∂ε0/∂P for cubic crystals A4B4. The top row of values is the

calculation as per Mann tables [11], the lower row is the calculation

as per Herman–Skillman tables [9]

Parameter SiC GeC SnC SiGe SiSn GeSn

−r el
14, 10

−12 m/V
0.55 0.74 1.46 0 0.50 0.87

0.40 0.53 1.05 0 0.33 0.68

−r41, 10
−12 m/V

0.04 0.07 0.35 0 0.01 0.02

0.02 0.02 0.13 0 0 0.01

−p11
0.25 0.22 0.14 0.24 0.21 0.21

0.26 0.24 0.19 0.24 0.21 0.21

−p12
0.08 0.07 0.04 0.08 0.07 0.07

0.08 0.08 0.06 0.08 0.07 0.07

−p44
0.13 0.11 0.07 0.12 0.11 0.11

0.13 0.12 0.10 0.12 0.11 0.11

−(∂ε∞/∂P)B
2.89 2.71 1.36 5.03 5.16 5.25

3.41 3.48 2.70 5.03 5.49 5.40

−(∂ε0/∂P)B
4.03 4.29 4.56 5.03 5.64 5.83

4.41 4.37 4.83 5.03 5.74 5.76

B , GPa
166 124 64 132 96 72

177 137 72 132 99 72

−∂ε∞/∂P, 10−2 GPa−1 1.74 2.19 2.13 3.81 5.38 7.29

1.93 2.55 3.75 3.81 5.55 7.50

−∂ε0/∂P, 10−2 GPa−1 2.43 3.46 7.13 3.81 5.88 10.1

2.49 3.19 6.71 3.81 5.61 10.4

monolayer2. In the calculations of [29] we assumed h̄ = d̄
and γ̄ = 1. In recent years it has become nearly common

to assume h̄ equal to the interplanar spacing in graphite

which is 3.35 Å [23]. Let us assume, for simplicity, that

h̄/γ̄2 = d̄. By assuming for 2D SiC : d̄ = 1.79 Å [29], we
get γ̄ = 1.37, which is very close to the value of γ = 1.44

for 3C-SiC. For the sp2-hybridization the covalent energy

is equal to V̄2 = 3.26(~2/md̄2) [10], while the polar energy

is V̄3 = |ε̄X
h − ε̄C

h |/2, where ε̄
X(C)
h = (ε

X(C)
s + 2ε

X(C)
p )/3. Nu-

merical values of interatomic distances d̄ [9], energies V̄2, V̄3,

force constant k̄0, covalencies ᾱc and polarities of bonds ᾱp

are given in Table 4, while values of characteristics (8), (9),
ε̄∞ = 1 + 4πχ̄el

1 and ε̄0 = 1 + 4π(χ̄el
1 + χ̄ ion

1 are given in

Table 5. From Table 5 it follows that for mean values of

2 Parameter h̄ is introduced to have the same dimensionalities of

physically identical characteristics for 3D- and 2D-structures, which is

convenient first of all for the purpose of comparison. To the author’s

knowledge, the
”
thickness“ has been introduced for the first time in the

consideration of graphene elasticity, from where the turned-to-common

statement appeared that its Young modulus is ∼ 1 TPa (without the

introduction of h̄ the dimension of elasticity moduli of 2D-structures is

N/m).
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dielectric permittivities of carbides we have ε̄∞ ∼ 8 and

ε̄0 ∼ 9, for compounds of group II ε̄∞ ∼ ε̄0 ∼ 11−12.

Since there is no any information on dielectric charac-

teristics of 2D-compounds of A4B4 type, we provide here

the data for other materials. Thus, for example, according

to various authors (see [30,31]), values for graphene are in

the range of 2−15. For hexagonal 2D-boron nitride (h-BN)
we have ε̄∞ = 4.96, 4.97 and ε̄0 = 6.82, 6.86, while for

3D samples ε∞ = 4.98 and ε0 = 6.93 [32]. The data for

chalcogenides of transition metal is in [32]: for example,

for 2D WS2 we have ε̄∞ = 123.6 and ε̄0 = 13.7, for 3D

WS2 — ε∞ = 14.5 and ε0 = 124.6; for 2D WSe2 we have

ε̄∞ = 15.1 and ε̄0 = 15.3, for 3D WSe2 — ε∞ = 15.7

and ε0 = 16.0. From the data presented in [32], it follows
that first, in terms of the order of magnitude our estimates

of dielectric characteristics of 3D and monolayer A4B4

compounds are quite reasonable. Second, according to the

data of [32], values of high-frequency and static dielectric

permittivities have little differences both in the case of 2D

and the case of 3D. We have obtained the same result as

well (see Tables 2 and 5). Third, according to the data

of [32], we have ε∞ > ε̄∞ and ε0 > ε̄0, while according

to our estimates the inequality should be the opposite.

In this context it should be noted, that methods we used to

determine the lattice contributions in cases of 3D [20] and
2D [29] were slightly different from each other. However,

since χ ion
1 ≪ χel

1 and χ̄ ion
1 ≪ χ̄el

1 , then without experimental

information, in our opinion it is premature to unify the

calculation procedures.

Now let us turn to photoelastic constants of graphene-like

compounds, expressions for which were derived for the first

time in [33] and have the following form:

p̄11 = − 1

1 + σ̄

ε̄∞ − 1

2ε̄2
∞

, p̄12 = σ̄ p̄11, (10)

where σ̄ being Poisson’s ratio. By borrowing values of

σ̄ from [4] and substituting into (10) the values of ε̄∞
calculated by us, we get the results shown in Table 5.

For mean values of p̄i j of carbides we have p̄11 ∼ −0.04

and p̄12 ∼ −0.015, for compounds of group II p̄11 ∼ −0.03

and p̄12 ∼ −0.01. Unfortunately, we failed to find in

literature any experimental data or results of numerical

calculations of photoelastic constants for 2D-structures.

Since |p̄i j | ∼ 10−2 (the same result is obtained in [33,34]),
we have |p̄i j | < |pi j |. However, it should be noted

here that there is a difference between the procedures

of photoelastic constants calculations for 3D [20,21] and

2D [33,34] structures.

6. So, in this work we have found that all A4B4

compounds (both 3D and 2D) can be split into carbide

group I and group II, that includes SiGe, SiSn, and GeSn.

Carbides are heteropolar compounds because they have a

noticeable polarity of bonds, compounds of group II are

almost homopolar.

Here and in [8], where elasticity of group IV carbides was

considered, we did not detect any qualitative differences in

Table 4. Initial parameters for graphene-like compounds A4B4 :

distance between the closest neighbors d̄, covalent V̄2 and

polar V̄3 energies, force constant of the central-force interaction

k̄0, covalency ᾱc of the A−B bond. The top row of values is the

calculation as per Mann tables [11], the lower row is the calculation

as per Herman–Skillman tables [9]

Parameter SiC GeC SnC SiGe SiSn GeSn

d̄, Å 1.77 1.86 2.05 2.31 2.52 2.57

V̄2, eV 7.93 7.18 5.91 4.66 3.91 3.76

V̄3, eV
1.93 1.95 2.24 0.025 0.57 0.55

1.48 1.39 1.85 0.07 0.365 0.45

ᾱc
0.97 0.97 0.93 1.0 0.99 0.99

0.99 0.99 0.95 1.0 1.0 0.99

k̄0, eV/Å2 8.66 7.10 3.92 3.49 2.36 2.19

9.62 7.89 4.30 3.49 3.46 2.19

Table 5. Values of electron χ̄el
1 and lattice χ ion

1 contributions to

linear susceptibilities χ1, high-frequency ε∞ and static ε0 dielectric

permittivities, Poisson’s ratios [4] and photoelastic constants p̄i j

for graphene-like compounds A4B4. The top row of values is the

calculation as per Mann tables [11], the lower row is the calculation

as per Herman–Skillman tables [9]

Parameter SiC GeC SnC SiGe SiSn GeSn

χ̄el
1

0.54 0.57 0.55 0.77 0.82 0.83

0.57 0.60 0.59 0.77 0.84 0.83

ε̄∞
7.78 8.16 7.94 10.7 11.3 11.5

8.16 8.54 8.39 10.7 11.6 11.5

χ̄ ion
0

0.06 0.06 0.18 0 0.03 0.03

0.02 0.02 0.12 0 0 0.03

ε̄0
8.52 8.94 10.2 10.7 11.6 11.8

8.39 8.78 9.93 10.7 11.6 11.8

σ̄ 0.29 0.33 0.41 0.32 0.37 0.38

− p̄11 · 10
2 4.34 4.04 3.90 3.21 2.94 2.88

4.17 3.89 3.72 3.21 2.88 2.88

− p̄12 · 10
2 1.26 1.33 1.60 1.03 1.10 1.09

1.21 1.28 1.53 1.03 1.06 1.09

properties of 3D- and 2D-compounds. According to some

data (see, for example [4,35,36]), the character of bandgap

(direct, indirect) for 3D- and 2D-structures of the same

compound can be different. This fact, along with dielectric

and optical properties of 2D-compounds is of a real

interest for the optoelectronics (see, for example, reviews

in [37–39]). Also, the application of 2D-GeC in lithium

batteries [40,41] and 3D-carbides to create superlattices of

GeC/SiC, SnC/SiC, SnC/GeC [42] and GeC/GaN [43] should

be noted.
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[5] T.-Y. Lü, X.-X. Liao, H.-Q. Wang, J.-C. Zheng. J. Mater. Chem.

22, 10062 (2012).
[6] Z. Xu, Y. Li, C. Li, Z. Liu. Appl. Surf. Sci. 367, 19 (2016).
[7] R. Muthaiah, J. Garg. arXiv: 2107.04596.

[8] S.Yu. Davydov. FTT, 64, 619 (2022) (in Russian).
[9] W. Harrison, Elektronnaya struktura i svoistva tverdykh tel.

Mir, M. (1983), V. 1. 382 p. (in Russian).
[10] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
[11] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
[12] A.A. Lebedev, P.A. Ivanov, M.E. Levinstein, E.N. Mokhov,

S.S. Nagalyuk, A.N. Anisimov, P.G. Baranov, UFN 189, 803

(2019) (in Russian).
[13] S. Mukherjee, N. Kodali, D. Isheim, S. Wirths, J.M. Hartmann,

D. Buca, D.N. Seidman, O. Moutanabbir. Phys. Rev. B 95,

161402 (2017).
[14] W. Dou, B. Alharthi, P.C. Grant, J.M. Grant, A. Mosleh,

H. Tran, W. Du, M. Mortazavi, B. Li, H. Naseem, S.-Q. Yu.

Opt. Mater. Express 8, 3220 (2018).
[15] M. Manikandan, A. Amudhavalli, R. Rajeswarapalanichamy,

K. Iyakutti. Philos. Mag. 99, 7, 905 (2019).
DOI: 10.1080/14786435.2018.1563310.

[16] Q.M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien,

A. Chelnokov, J.M. Hartmann, V. Reboud, V. Calvo. Appl.

Phys. Lett. 113, 051104 (2018).
[17] S.Yu. Davydov, A.A. Lebedev, FTT, 64, 70 (2022) (in

Russian).
[18] J. Nye. Fizicheskie svoistva kristyallov, Mir, M. (1967), 386 p.

(in Russian).
[19] Yu.I. Sirotin, M.P. Shaskolskaya, Osnovy kristallofiziki, Nauka,

M. (1975), 680 p. (in Russian).
[20] S.Yu. Davydov, E.I. Leonov, FTT, 30, 1326 (1988) (in

Russian).
[21] S.Yu. Davydov, S.K. Tikhonov, FTT, 37, 3044 (1995) (in

Russian).
[22] Fizicheskiye velichiny. Spravochnik. eds I.S. Grigoriyev,

Ye.Z. Meylikhov, Energoatomizdat, M. (1991), 1232 p. (in
Russian).

[23] V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutyak, V.G. Litov-

chenko, Opticheskie svoistva poluprovodnikov. Spravochnik.

Nauk. dumka, Kiev (1987), 608 p. (in Russian).
[24] S.Yu. Davydov, S.K. Tikhonov, FTP 31, 823 (1997) (in

Russian).
[25] S.Yu. Davydov, S.K. Tikhonov. FTP 32, 1057 (1998) (in

Russian).
[26] S.P. Nikanorov, B.K. Kardashov, Uprugost’ i dislokatsionnaya

neuprugost’ kristallov, Nauka, M. (1985), 250 p. (in Russian).
[27] C. Kittel, Vvedenie v fiziku tverdogo tela, Nauka, M. (1978)

(in Russian).

[28] S.Yu. Davydov. FTP 54, 1177 (2020) (in Russian).
[29] S.Yu. Davydov, FTP 47, 1065 (2013) (in Russian).
[30] E.J.G. Santos, E. Kaxiras. Nano Lett. 13, 898 (2013).
[31] R. Bessler, U. Duerig, E. Koren. Nanoscale Adv. 1, 1702

(2019).
[32] A. Laturia, M.L. Van de Put, W.G. Vandenberghe. npj 2D

Mater. Appl. 2, 6 (2018). DOI: 10.1038/s41699-018-0050-x.
[33] R.A. Brazhe, A.I. Kochaev, R.M. Meftakhutdinov, FTT, 59,

334 (2017) (in Russian).
[34] S.Yu. Davydov, Pis’ma v ZhTF 43, 5, 53 (2017) (in Russian).
[35] S.Yu. Davydov, FTT 58, 779 (2016) (in Russian).
[36] S.Yu. Davydov. FTP 54, 446 (2020) (in Russian).
[37] Z. Li, B. Xu, D. Liang, A. Pan. Research (Wash. D.C.) 2020,

54564258 (2020). DOI: 10.34133/2020/5464258.
[38] S. Yan, X. Zhu, J. Dong, Y. Ding, S. Xiao. Nanophotonics 9,

1877 (2020).
[39] T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang. Adv. Sci. 7, 11,

2000058 (2020). DOI: 10.1002/advs.202000058.
[40] Y. Ji, H. Dong, T. Hou, Y. Li. J. Mater. Chem. A, 6, 2212

(2018). DOI: 10.1039/C7TA10118J.
[41] N. Khossossi, A. Banerjee, I. Essaoudi, A. Ainane, P. Jena,

R. Ahuja. J. Power Sources 485, 229318 (2021).
[42] Yu.M. Basalayev, E.N. Malysheva, FTP 51, 647 (2017) (in

Russian).
[43] P. Lou, J.Y. Lee. ACS Appl. Mater. Interfaces 12, 14289

(2020).

Translated by Ego Translating

Physics of the Solid State, 2023, Vol. 65, No. 2


