02

Изучение колебательных спектров и термического поведения фторидоцирконата натрия Na₅Zr₂F₁₃

© Н.А. Диденко, Е.И. Войт

ФГБУН Институт химии Дальневосточного отделения РАН, 690022 Владивосток, Россия

e-mail: evoit@ich.dvo.ru

Поступила в редакцию 27.12.2022 г. В окончательной редакции 27.02.2023 г. Принята к публикации 28.02.2023 г.

> Методами дифференциального термического и термогравиметрического анализа (ДТА-ТГА), рентгенофазового анализа (РФА), колебательной спектроскопии исследованы строение и термическая устойчивость соединения Na₅Zr₂F₁₃ на воздухе в интервале температур 20–800°С. Подтверждено наличие фазового перехода в высокотемпературную модификацию α -Na₅Zr₂F₁₃ с динамически разупорядоченной структурой. Получены, систематизированы и обобщены данные инфракрасной спектроскопии (ИК), спектроскопии комбинационного рассеяния (КР) соединения β -Na₅Zr₂F₁₃ и продуктов его разложения при нагревании. На основе результатов квантово-химических расчетов проведено отнесение полос в колебательных спектрах Na₅Zr₂F₁₃.

> Ключевые слова: комплексные фториды циркония, фторидоцирконаты натрия, термогравиметрия, колебательная спектроскопия.

DOI: 10.21883/OS.2023.03.55385.4492-22

Введение

Среди комплексных фторидов циркония с катионами щелочных металлов и аммония менее изучены фторидоцирконаты натрия. В двойной системе NaF-ZrF₄ установлено образование фторидоцирконатов натрия (ФЦН): Na₃ZrF₇, Na₅Zr₂F₁₃, Na₂ZrF₆, Na₃Zr₂F₁₁, Na₇Zr₆F₃₁, Na₃Zr₄F₁₉, образующихся соответственно при мольных отношениях компонентов 3:1, 2.5:1, 2:1, 1.5:1, 1.15:1, 0.75:1 [1]. Из водных растворов системы ZrF₄–NaF–H₂O получены твердые фазы ФЦН: NaZrF₅·H₂O, Na₂ZrF₆, Na₅Zr₂F₁₃, Na₃ZrF₇, образование которых также происходит последовательно при увеличении содержания NaF в растворе [2].

К настоящему времени структурно охарактеризованы ФЦН состава Na₃ZrF₇ (координационное число (KY) Zr = 7) [3], $Na_5Zr_2F_{13}$ (KY Zr = 7) [4,5], γ -Na₂ZrF₆ (КЧ Zr = 7) (высокотемпературная фаза) [6], Na₇Zr₆F₃₁ $(Na_6Zr_6F_{30}\cdot NaF)$ (KЧ Zr = 8) [7]. Рентгеноструктурные исследования соединения $Na_7Zr_6F_{31}$ (F/Zr = 5.16) показали, что в структуре формируется трехмерная конструкция, отвечающая стехиометрии $6(NaZrF_5) = Na_6Zr_6F_{30}$ с дополнительными ионами Na⁺ и F⁻ (по одному на ячейку), т.е. соединение можно рассматривать как смешанную Na-соль. Понижение соотношения F/Zr от 7 до 5 во ФЦН приводит к последовательному переходу от островных к димерным и каркасным структурам. Необходимо отметить, что среди ФЦН отсутствуют соединения, в структуре которых Zr-полиэдры соединены своими вершинами и/или ребрами в непрерывную цепь из анионов.

Фторидоцирконаты состава $M_5Zr_2F_{13}$ (F/Zr = 6.5) образуются с катионами Na⁺ и K⁺ (высокотемпературная фаза) [8]. Основу их анионной подрешетки составляют димеры [Zr₂F₁₃]⁵⁻. В структурах других соединений с избыточными ионами фтора (F/Zr(Hf) > 6.5), таких как Ag₃Hf₂F₁₄ (Ag₃Hf₂F₁₃·F) [9] и ThZrF₈ (Th₂Zr₂F₁₃·F₃) [10], определены димерные комплексные анионы подобного состава [Hf₂F₁₃]⁵⁻ и [Zr₂F₁₃]⁵⁻.

Соединение $Na_5Zr_2F_{13}$ образуется из расплава двойной системы NaF-ZrF₄ по перитектической реакции ($T = 640^{\circ}$ C). Как отмечено выше, эта соль является равновесной фазой и по отношению к водным растворам системы NaF-ZrF₄-H₂O [2]. Также при синтезе смешаннолигандных фторидофосфатоцирконатов из водных растворов смесей ZrO(NO₃)₂-H₃PO₄-NaF(HF)-H₂O при определенных условиях одной из сокристаллизующихся фаз является Na₅Zr₂F₁₃ [11].

Известные в настоящее время данные ИК спектроскопии для соединения $Na_5Zr_2F_{13}$, а также описание термограммы не дают полного представления о его строении и термическом поведении [12].

В настоящей работе с целью уточнения, дополнения, систематизации и обобщения данных о строении, термической стабильности $Na_5Zr_2F_{13}$ проведено его комплексное исследование методами колебательной (ИК, КР) спектроскопии и термического анализа.

Экспериментальная часть

Соединение $Na_5Zr_2F_{13}$ образуется при добавлении водного раствора Na_2CO_3 (5.2 g, 0.05 M) в 30 ml H_2O

Рис. 1. Рентгенограммы соединения β -Na₅Zr₂F₁₃ (I) и продуктов его нагревания до температур 530 (2), 650 (3) и 800°С (4).

к раствору ZrO₂ (6.2 g; 0.05 M) в 30 ml 40% HF. Образовавшийся сразу же при смешивании компонентов осадок отфильтрован, на фильтре промыт ацетоном и высушен при комнатной температуре. Рентгенограмма полученного продукта идентична рентгенограмме фазы β -Na₅Zr₂F₁₃ (карта 00-049-0107 (Q)) (рис. 1, кривая 1). Хотя исходное отношение компонентов Na⁺/Zr⁴⁺ при синтезе составляет 2:1, однако при этих условиях кристаллизуется фаза Na₅Zr₂F₁₃, растворимость которой ниже, чем у Na₂ZrF₆ [13]. Полученная Na-соль устойчива и не изменяется в процессе перекристаллизации из воды.

Термическое исследование образцов проведено на дериватографе Q-1000 МОМ в атмосфере воздуха при скорости нагревания 5 deg/min. Навеска образцов составляла 200 mg. В качестве эталона использован прокаленный Al₂O₃. Рентгенодифракционные данные для синтезированных соединений были получены на дифрактометре "STOE STADI P" (CuK_{*α*1}-излучение, $\lambda = 1.5406$ Å, Ge-монохроматор). Для получения информации о составе продуктов использовали банк порошковых данных PDF-2.

Инфракрасные (ИК) спектры получены в области 4000-400 сm⁻¹ при комнатной температуре с использованием прибора IR-Affinity на окне KRS-5 для образцов, приготовленных в виде суспензии в вазелиновом масле. Спектры комбинационного рассеяния (КР) исследуемых соединений зарегистрированы с использованием раман-микроскопа WiTec alpha500 (длина волны лазера 532 nm). Спектры обсуждены в области 700-150 сm⁻¹, соответствующей колебаниям фторидоцирконатных анионов.

Для отнесения полос в спектрах $Na_5Zr_2F_{13}$ были проведены квантово-химические расчеты с использованием пакета программ GAMESS [14]. Расчеты выполнены в рамках теории функционала локальной плотности в сочетании с обменно-корреляционным потенциалом B3lyp. Для атомов Zr(IV) и Na использован базисный набор LANL2DZ с остовным потенциалом и набор базисных функций 6311g(dp) для атомов F. Выбор модельных кластеров проведен с учетом известных структурных данных. Расчет равновесной геометрии и частот нормальных колебаний выполнен в гармоническом приближении. Результаты получены с использованием оборудования ЦКП "Дальневосточный вычислительный ресурс" ИАПУ ДВО РАН (https://cc.dvo.ru).

Результаты и их обсуждение

Рентгеноструктурный анализ

Первоначально кристаллическая структура Na₅Zr₂F₁₃ определена фотометодом с высоким фактором недостоверности (12.6%) [4], которая позже [5] уточнена дифрактометрическим методом на монокристалле. Соединение β -Na₅Zr₂F₁₃ кристаллизуется в моноклинной сингонии (пространственная группа *C*2/*m*, *a* = 11.5600 Å, *b* = 5.4759 Å, *c* = 8.3989 Å, α = 97.361°, *Z* = 2).

Кристаллическая решетка β-Na₅Zr₂F₁₃ образована изолированными комплексными анионами [Zr₂F₁₃]⁵⁻ и катионами Na⁺. Димеры $[Zr_2F_{13}]^{5-}$ построены из полиэдров ZrF₇, объединенных общей мостиковой (F_m) вершиной. Среднее расстояние Zr-F в анионе $[Zr_2F_{13}]^{4}$ равно 2.042 Å, а длина связи $Zr-F_m$ составляет 2.104 Å. При объединении Zr-полиздров по общей вершине расстояние Zr...Zr зависит от угла ZrFZr — чем ближе этот угол к 180°, тем больше расстояние между Zr. В димерном анионе $Na_5Zr_2F_{13}$ расстояние Zr. . . Zr составляет 4.208 Å. В структуре комплексные анионы $[Zr_2F_{13}]^{5-1}$ окружены катионами Na⁺, имеющими разные КЧ. Соединяясь, NaF-многогранники образуют каналы, в которых находятся димерые анионы [Zr₂F₁₃]⁵⁻. Кристаллическая решетка стабилизируется за счет сильных ионных связей Na-F. Нf-аналог [15] изоструктурен Na₅Zr₂F₁₃. Среднее расстояние Hf-F в димерном анионе $[Hf_2F_{13}]^{5-}$ равно 2.054 Å.

Колебательная спектроскопия и термический анализ

Методы колебательной (ИК, КР) спектроскопии позволяют получить дополнительную информацию о строении исследуемого соединения, обнаружить наличие фазовых переходов (ФП) и идентифицировать продукты разложения [16,17]. Известно, что в ИК спектрах ниже 600 сm⁻¹ расположены полосы характеристических колебаний комплексных фторидоцирконатных анионов [18]. Экспериментальные ИК, КР-спектры исходного соединения β -Na₅Zr₂F₁₃ и продуктов его нагревания представлены на рис. 2.

Как показывают квантово-химические расчеты, изолированный высокозарядный ион $[Zr_2F_{13}]^{5-}$ неустойчив — энергетически наиболее выгоден его распад

Рис. 2. ИК (*a*) и КР-спектры (*b*) β-Na₅Zr₂F₁₃ (*1*) и продуктов его нагревания до температур 530 (*2*), 650 (*3*), 800°С (*4*).

Puc. 3. Фрагмент структуры соединения β-Na₅Zr₂F₁₃ в плоскости (010) (a) и равновесная геометрия кластера [Na₁₂Zr₂F₁₃]⁷⁺ (b).

на отдельные ионы $[{\rm Zr}F_7]^{3-}$ и $[{\rm Zr}F_6]^{2-}$. Учет катионного окружения приводит к стабилизации аниона. Для отнесения полос в экспериментальных спектрах был проведен поиск равновесной геометрии кластера $[{\rm Na}_{12}{\rm Zr}_2{\rm F}_{13}]^{7+}$ (рис. 3, *a*). Оптимизация геометрии димера $[{\rm Zr}_2{\rm F}_{13}]^{5-}$ проведена с замороженными в кри-

сталлографических позициях катионами Na⁺ (расстояния Na...Na составляют 3.60, 3.72, 5.48 Å) [5]. В равновесной геометрии рассчитаны частоты нормальных колебаний аниона $[Zr_2F_{13}]^{5-}$ и проведено отнесение полос в экспериментальных ИК, КР-спектрах $Na_5Zr_2F_{13}$ (таблица).

β -Na ₅ Zr ₂ F ₁₃		α -Na ₅ Zr ₂ F ₁₃ (520°C)		Расчет $[Zr_2F_{13}]^{5-}$			Отнесение
ИК	КР	ИК	КР	ν	D_{2h}	I _{ИК/КР}	
566 сл		567 ш сл		570	B3u	1.5/0.0	$v_s \operatorname{ZrF}(\operatorname{eq}+\operatorname{ax}+\operatorname{F}_m)$
	555 c		564 ш с	556	Ag	0.0/22.7	$v_s ZrF(eq+ax)$
			530 ср	531	B1u	22.0/0.0	v_{as} ZrF _k (eq+ax)
	5210 сл		520 о сл	512	B2g	0.0/1.1	
486 ш с	514 о сл	485 ш с	506 о сл	478	B2u	19.0/0.0	v_{as} ZrF _k (eq)
				446	B1g	0.0/0.3	
				513	B3u	24.0/0.0	v_{as} ZrF(ax-F _m)
	478 сл		477 сл	479	Ag	0.0/3.5	$v_{as} ZrF(ax)$
				434	B3g	0.0/0.4	$\nu_s \operatorname{ZrF}_k(eq)$
				421	Au	0.0/0.0	
442 пл		435 пл		424	B3u	1.9/0.0	$\nu_s ZrF(ax+F_m-eq)$
416 сл		415 сл		427	B1u	3.6/0.0	$v_{as} \operatorname{ZrF}_k(\mathbf{ax})$
				412	B2g	0.0/0.0	
				372	B2u	3.2/0.0	δ_{ω} ZrF _k (ax+eq)
				368	B1g	0.0/1.8	
	357 ср		359 ср	359	Ag	0.0/2.3	$\gamma ZrF_k(eq) + \delta_{sc} ZrF_k(ax)$
	1		1	326	B3u	2.1/0.0	
				342	B1u	2.8/0.0	δ_{ω} ZrF _k (ax+eq)
	331 ср		334 сл	339	B2g	0.0/0.5	
	1		316 сл	317	B3g	0.0/0.9	δ_{tw} ZrF _k (ax+eq)
				316	Au	0.0/0.0	
				307	B1u	0.3/0.0	δ_{ω} ZrF(eq+F _m)
	281 сл		290-240 ш ср	230	B2g	0.0/0.9	- (1)
	259 ср		^	295	Ag	0.0/0.8	$\gamma \operatorname{ZrF}_k(\operatorname{eq}) + \delta_{sc} \operatorname{ZrF}_k(\operatorname{ax})$
				273	B3u	5.0/0.0	
				294	B2u	1.1/0.0	δ_{ω} ZrF(eq+F _m)
				215	B1g	0.0/0.4	
				211	B3g	0.0/0.0	$\delta_{tw} \operatorname{ZrF}_k(\operatorname{eq-ax})$
				199	Au	0.0/0.0	
				212	Ag	0.0/0.5	$\delta_{sc} \operatorname{ZrF}_k(\operatorname{eq})$
				195	B3u	0.0/0.0	
				191	B2u	0.0/0.0	$\rho \text{ZrF}_k(\text{eq}+\text{ax})$
				175	B1g	0.0/0.1	
	175 ш ср		175 сл	186	Ag	0.0/0.7	$\nu(\mathrm{ZrF}_n-\mathrm{F}_m-\mathrm{ZrF}_n)$
	ľ			147	B1u	1.3/0.0	$\delta(\operatorname{ZrF}_n - \operatorname{F}_m - \operatorname{ZrF}_n)$
				136	B2u	0.1/0.0	

Экспериментальное положение полос (в сm⁻¹) в спектрах β -, α -Na₅Zr₂F₁₃, рассчитанные частоты (в сm⁻¹) колебаний аниона [Zr₂F₁₃]⁵⁻ и отнесение

Примечание. Относительные интенсивности: о — очень, с — сильный, ср — средний, сл — слабый, пл — плечо, ш — широкий. Отнесение: v — валентные колебания, δ — деформационные, γ — зонтичные, δ_{sc} — ножничные, δ_{ω} — веерные, δ_{tw} — твист, ρ — маятниковые. ax, еq — аксиальные и экваториальные позиции атомов фтора.

При равномерном окружении катионами локальная симметрия аниона $[Zr_2F_{13}]^{5-}$ близка к D_{2h} . Мостиковый атом фтора (F_m) находится в центре симметрии, связывая два идентичных полиэдра ZrF_6 (тригональные призмы симметрии C_{2v}) (рис. 3, b). Таким образом, в колебательном спектре димера $[Zr_2F_{13}]^{5-}$ (D_{2h}) должны проявиться по пятнадцать (5A1 + 3A2 + 3B1 + 4B2) полос от группировок ZrF_6 (C_{2v}). В расчетах димера $[Zr_2F_{13}]^{5-}$ (D_{2h}) каждому колебанию соответствуют две моды — их симметричная и асимметричная комбинации, и дополнительно активны три колебания мостиковой связи $Zr-F_m-Zr$ (валентное и два деформационных симметрии B3u, B2u, B1u). В соответствии с представлени-

ем

$$\Gamma_{D2h} = 5(Ag + B3u) + 3(Au + B3g) + 3(B1g + B2u) + 4(B2g + B1u) + (B3u + B1u + B2u)$$

все асимметричные моды активны в ИК, а симметричные — в КР-спектрах.

Результаты расчетов показывают (таблица), что к характеристическим колебаниям с преимущественным вкладом мостиковой связи Zr-F_m-Zr можно отнести валентную моду ~ 513 cm⁻¹ (v_{as} , B3u) и две деформационных ~ 307, 294 cm⁻¹ (δ , B1u, B2u), они активны в ИК-спектре. Кроме того, атом F_m вовлекается в асимметричные валентные колебания (570, 424 cm⁻¹) и

в изгибные колебания (290–230 cm⁻¹), что проявится и в КР-спектрах.

КР-спектре β -Na₅Zr₂F₁₃ B экспериментальном (рис. 2, *b*, кривая *1*) полосу при 556 сm⁻¹ (с полушириной FWHM $\sim 15 \, \text{cm}^{-1}$) можно отнести к полносимметричному валентному колебанию ($\nu_s ZrF, Ag$). Линии при 357 и 336 ст⁻¹ соответствуют деформационным колебаниям (симметрии B1g, B2g), происходящим вдоль направления оси димера с участием всех концевых связей, а полосы при 281 и 259 сm⁻¹ (симметрии B1g, *B2g*) — колебаниям с участием как концевых, так и мостиковой связей (рис. 3, b). Полоса при 175 сm⁻¹ была отнесена преимущественно к решеточному колебанию, соответствующему симметричному движению полиэдров друг к другу $v_s ZrF_6 \rightarrow F_m \leftarrow ZrF_6$ (Ag), так как, согласно расчетным данным, оно наиболее интенсивно в КР-спектре (таблица).

В ИК спектре соединения β -Na₅Zr₂F₁₃ в области валентных колебаний наблюдается одна уширенная полоса (FWHM ~ 80 cm⁻¹) с максимумом при 486 cm⁻¹, которую можно отнести к асимметричным растяжениям связей v_{as} ZrF_k. Согласно расчетным данным вклад в полосу вносят три моды (*B*1*u*, *B*2*u*, *B*3*u*), расщепление обусловлено снятием вырождения с v_{as} ZrF вследствие неравномерности окружения аниона катионами по разным направлениям (рис. 3, *b*).

Продукт нагревания до 530° С. При нагревании соединения β -Na₅Zr₂F₁₃ на воздухе (с относительной влажностью 20–30%) на кривой ДТА отмечается небольшой эндотермический эффект при 520° С, соответствующий, согласно [1], полиморфному превращению β -формы в высокотемпературную α -форму (рис. 4). По данным РФА полученный продукт представляет собой преимущественно α -Na₅Zr₂F₁₃ (карта 00-019-1195) (рис. 1, кривая 2). Необходимо отметить, что у авторов [19,20] не было единого мнения при интерпретации одних и тех же рентгенометрических данных: первоначально сделано их отнесение к соединению β_1 -Na₂Zr₆ в присутствии Na₃ZrF₇, а позже — к фазе α -Na₅Zr₂F₁₃.

При нагреве соединения β -Na₅Zr₂F₁₃ до 530°C отмечается убыль массы (около 1%), связанная с началом процесса пирогидролиза образца влагой воздуха. Вхождение кислорода в решетку соединения возможно в виде изоморфной примеси при частичном замещении фтора и/или образования частиц самостоятельной оксидной фазы ZrO₂.

Общий вид КР-спектра продукта нагревания до 530°С в целом похож на спектр исходного соединения (рис. 2). Этот факт подтверждает сохранение димерного состава аниона $[Zr_2F_{13}]^{5-}$ в структуре образовавшегося α -Na₅Zr₂F₁₃. Однако видно, что происходит уширение полосы полносимметричных колебаний $v_s ZrF$ (FWHM ~ 26 cm⁻¹) и смещение ее максимума до 564 cm⁻¹. Учитывая возрастание подвижности катионов Na⁺ и ионов F⁻ в структуре Na₅Zr₂F₁₃ при нагревании [21], изменение формы и положения полосы $v_s ZrF$ можно объяснить ослаблением катион-анионных

взаимодействий, приводящих к общему упрочнению связей Zr-F в анионе. Появление дополнительной валентной полосы при 530 cm⁻¹ и размывание деформационной полосы в диапазоне 290–240 cm⁻¹ связано с возросшей подвижностью в анионной подрешетке, в первую очередь мостикового атома фтора в димере. В этом случае можно условно считать, что в образовании димера принимают участие две разные по составу группировки ZrF₇ и ZrF₆, и спектральные изменения — наличие двух максимумов $v_s ZrF$ (564, 530 cm⁻¹) и уширение полосы δZrF (290–240 cm⁻¹) — закономерны.

В ИК спектре образца (530°С) заметного сдвига максимума v_{as} ZrF (484 cm⁻¹) относительно ее положения в исходном спектре не происходит. Наблюдается увеличение полуширины полосы v_{as} ZrF (FWHM ~ 120 cm⁻¹) и появление асимметрии в высокочастотной области (рис. 2, а, кривая 2), что согласуется с данными расчетов — возрастает вклад валентного колебания мостиковой связи Zr-F_m-Zr (расчетное значение $513 \,\mathrm{cm}^{-1}$). Также шире и интенсивнее становится полоса при $567 \,\mathrm{cm}^{-1}$, которую можно отнести к асимметричной комбинации v_s ZrF (расчетное значение 570 сm⁻¹), вследствие снижения локальной симметрии димера при возросшей подвижности F_m. Можно предположить, что все описанные спектральные изменения связаны с возросшей степенью разупорядоченности в анионной подрешетке вследствие возникшей неэквивалентности катионов Na⁺ в структуре α-модификации.

Таким образом, общий вид ИК, КР-спектров соответствует образованию высокотемпературной фазы α -Na₅Zr₂F₁₃, в структуре которой сохраняется димерный анион $[Zr_2F_{13}]^{5-}$ с несимметричным (разупорядоченным) положением мостикового атома фтора.

Продукт нагревания до $650^{\circ}C$. При нагревании образца выше 530° С на кривой ДТА наблюдается широкий слабоинтенсивный эндоэффект с постепенной убылью массы, которая при 650° С составляет 3.8% (рис. 4). Перечисленные изменения связаны с более глубоким процессом пирогидролиза образовавшегося соединения влагой воздуха. По данным РФА (рис. 1, кривая 3) в результате пирогидролиза образуются тетрагональная фаза Na₃ZrF₇ (карта 01-074-0808(C)) и моноклинная ZrO₂ (карта 00-013-0307(D)), что согласуется с выводами авторов [22]. Разложение Na₅Zr₂F₁₃ с образованием смеси фаз, одной из которых является Na₃ZrF₇ (другие не были идентифицированы), отмечено в [5].

Таким образом, термическое разложение $Na_5 Zr_2 F_{13}$ при нагревании до $650^\circ C$ на воздухе описывается общей реакцией

$$2Na_5Zr_2F_{13}+2H_2O\rightarrow 3Na_3ZrF_7+ZrO_2+NaF+4HF\uparrow.$$

Расчетная убыль массы составляет 4.04%. В рентгенограмме образца ($T = 650^{\circ}$ С) самый интенсивный рефлекс фазы NaF (куб.) с межплоскостным расстоянием d = 2.32 Å накладывается на один из рефлексов соединения Na₃ZrF₇.

Рис. 4. Термоаналитические кривые соединения Na₅Zr₂F₁₃.

В КР-спектре продукта нагревания до 650°С наблюдается набор полос с максимумами при 637, 617, 504, 476, 381, 348, 334, 306, 224, 191, 179 сm⁻¹ (рис. 2, *b*, кривая *3*), которые хорошо идентифицированы и относятся к моноклинной модификации ZrO₂ [23]. Кроме того, в КР-спектре полоса при 559 сm⁻¹ имеет большую интенсивность, и на фоне характеристических полос ZrO₂ присутствуют дополнительные полосы (узкая ~ 360 сm⁻¹ и размытая широкая ~ 290–240 сm⁻¹), их можно отнести к колебаниям аниона [ZrF₇]³⁻. Согласно данным [24], для монофазы Na₃ZrF₇ характерны КР-пики при 556, 351 и 250 сm⁻¹.

Инфракрасный спектр нагретого до 650°С образца также соответствует двухфазной смеси. На фоне уширенной полосы с максимумом при 470 сm⁻¹ наблюдается ряд дополнительных максимумов ~ 585, 557, 495 и 415 сm⁻¹. Вероятно, слабая полоса при 557 сm⁻¹ и интенсивная при 470 сm⁻¹ относятся к колебаниям v_s ZrF и v_{as} ZrF иона [ZrF₇]³⁻, а остальные — к колебаниям ZrO₂ моноклинной модификации.

При сравнении КР-спектров образцов, нагретых до 530 и 650°С, можно отметить, что уже в продукте нагревания до 530°С присутствует примесь ZrO_2 (рис. 2, *b*, кривые 2, 3).

Продукт нагревания до 800°С. При температурах выше 650°С образовавшееся промежуточное соединение Na₃ZrF₇ разлагается, взаимодействуя с парами воды по реакции

$$Na_3ZrF_7 + 2H_2O \rightarrow ZrO_2 + 3NaF + 4HF \uparrow$$

Согласно данным РФА, продукт нагревания соединения $Na_5Zr_2F_{13}$ до 800°С на воздухе в муфельной печи представляет собой преимущественно смесь ZrO_2 и NaF при небольшом содержании Na_3ZrF_7 (рис. 1, кривая 4). Убыль массы составляет 15.1%. При полном гидролитическом разложении $Na_5Zr_2F_{13}$ на ZrO_2 и NaF расчетный выход летучих продуктов составляет 16.18%. В KP-спектре образца (T = 800°С) заметно уменьшение интенсивности характеристических полос Na_3ZrF_7 и остаются хорошо разрешенные полосы моноклинной модификации ZrO₂ (рис. 2, *b*, кривая 4).

Заключение

Таким образом, по данным ДТА соединение Na₅Zr₂F₁₃ в области температур 500–530°С претерпевает ФП, в результате которого, согласно колебательным спектрам, образуется метастабильная α -фаза Na₅Zr₂F₁₃ с динамически разупорядоченной структурой. При нагревании Na₅Zr₂F₁₃ до 650°С на воздухе протекает частичный пирогидролиз с образованием промежуточной более термостабильной фторидной фазы Na₃ZrF₇ и ZrO₂. Отметим, что сходное термическое поведение характерно для K₂ZrF₆ [22]. Во влажном воздухе гексафторидоцирконат калия при 700°С разлагается с образованием смеси K₃ZrF₇ и ZrO₂. Этот факт дает основание считать, что высокотемпературные фазы-предшественники с катионами K⁺ и Na⁺ имеют одинаковый состав, а их термолиз и пирогидролиз протекает по похожим схемам.

Ранее по данным ЯМР ¹⁹F Na₅Zr₂F₁₃ было установлено, что появление движений в подрешетке фтора (реориентация димеров и частично диффузия фтора) начинается при температурах 277–297°С [21]. В связи с этим можно допустить, что в анионной подрешетке α -Na₅Zr₂F₁₃ при высоких температурах существует динамическое равновесие: ZrF₆...(F-ZrF₆) \leftrightarrow (ZrF₆-F)...ZrF₆ (рис. 3, *b*). Исходя из этого структуру α -Na₅Zr₂F₁₃ можно рассматривать как переходном состоянии в анионном комплексе [Zr₂F₁₃]⁵⁻ вследствие динамических процессов сглаживается структурная неэквивалентность атомов F.

В результате термической диссоциации α -фазы, степень которой возрастает по мере повышения температуры, происходит постепенное разложение с разрывом вершинной мостиковой связи Zr-F_m-Zr и образованием составляющих фторидоцирконатов Na₃ZrF₇ и Na₂ZrF₆. В свою очередь соединение Na₂ZrF₆ при температуре 544°C [1] по перитектической реакции распадается на смесь Na₃ZrF₇ и расплав (NaF, ZrF₄), а пирогидролиз последнего дает смесь ZrO₂ и NaF. Предложенный механизм косвенно подтверждается тем, что скорость пирогидролиза заметно возрастает при температуре выше 540°C, когда происходит разложение Na₂ZrF₆ в объеме образца.

Сопряженные по температуре возможные стадии процесса термолиза и пирогидролиза описываются следующими реакциями:

$$\begin{split} & 2Na_5Zr_2F_{13}\rightarrow 2Na_3ZrF_7+Na_4Zr_2F_{12},\\ & Na_4Zr_2F_{12}\rightarrow Na_3ZrF_7+(NaF,ZrF_4)_{\text{распл}},\\ & (NaF,ZrF_4)_{\text{распл}}+2H_2O\rightarrow ZrO_2+NaF+4HF\uparrow, \end{split}$$

или общим суммарным уравнением

$$2Na_5Zr_2F_{13} + 2H_2O \rightarrow 3Na_3ZrF_7 + ZrO_2 + NaF + 4HF\uparrow$$

Согласно общему уравнению, только при эквимолярном [10] А. [10

щества соответствует экспериментальной убыли массы, полученной при нагреве $Na_5Zr_2F_{13}$ до $650^\circ C$.

Выводы

Установлено, что по данным ДТА при 520° С в соединении Na₅Zr₂F₁₃ происходит ФП из β - в α -модификацию.

Показано, что постепенный термолиз высокотемпературной фазы α -Na₅Zr₂F₁₃ в интервале температур 530-650°C осложняется процессом гидролитического разложения, а выше 650°C связан с пирогидролизом образующегося промежуточного соединения Na₃ZrF₇. Протекание указанных реакций в неосушенной атмосфере описывается последовательностью превращений

$$\alpha \text{-Na}_5 Zr_2F_{13} \rightarrow \text{Na}_3 ZrF_7 + ZrO_2 + \text{Na}F \rightarrow ZrO_2 + \text{Na}F.$$

В настоящей работе впервые получены колебательные спектры двух модификаций: β -, α -Na₅Zr₂F₁₃. С привлечением квантово-химических расчетов проведено отнесение полос в экспериментальных спектрах. Прослежены и обсуждены изменения в колебательных спектрах продуктов разложения Na₅Zr₂F₁₃.

Финансирование работы

Работа выполнена в рамках государственного задания № 0265-2022-0001 Института химии ДВО РАН при частичной финансовой поддержке РФФИ (грант № 20-03-00279).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- C.J. Barton, W.R. Grimes, H. Insley, R.E. Moore, R.E. Thoma. J. Phys. Chem., 62, 665 (1958). DOI: 10.1021/J150564A008
- [2] И.В. Тананаев, Л.С. Гузеева. Журн. неорг. химии, 11 (5), 1096 (1966).
- [3] L.A. Harris. Acta Cryst., 12, 172 (1959).DOI: 10.1107/S0365110X59000470
- [4] R.M. Herak, S.S. Malcič, L.M. Manojlovič. Acta Cryst., 18, 520 (1965). DOI: 10.1107/S0365110X6500110X
- [5] S.Y. Mao, Y.J. Kang, J.X. Mi, M.R. Li, Z.B. Wei, X.Y. Wu, J.T. Zhao. Chinese J. Struct. Chem., 25 (2), 173 (2006).
- [6] G. Brunton. Acta Cryst., B 25, 2164 (1969).
 DOI: 10.1107/S0567740869005322
- J.H. Burns, R.D. Ellison, H.A. Levy. Acta Cryst., B 24, 230 (1968). DOI:10.1107/S0567740868002013
- [8] А.В. Новоселова, Ю.М. Коренев, Ю.П. Симанов. ДАН СССР, **139** (4), 892 (1961) [A.V. Novoselova, Y.M. Korenev, Y.P. Simanov, Dokl. Akad. Nauk SSSR, **139** (4), 892 (1961). http://mi.mathnet.ru/dan25352].
- [9] B.G. Muller. Z. Anorg. Allg. Chem., **553** (10), 196 (1987). DOI: 10.1002/zaac.19875531023ь

- [10] A. Taoudi, A. Mikou, J.P. Laval. Eur. J. Solid State Inorg. Chem., 33 (8), 687 (1996). DOI: 10.1002/chin.199701013
- [11] М.М. Годнева. Химия подгруппы титана. Фториды, фосфаты, фторофосфаты из водных сред (Апатиты, 2015), 222 с.
- [12] М.М. Годнева, Д.Л. Мотов. *Химия подгуппы титана* (Химия, М., 2006), 302 с.
- [13] И.Г. Рысс. Химия фтора и его неорганических соединений (Госхимиздат, М., 1956), 718 с.
- [14] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem., 14, 1347 (1993). DOI: 10.1002/jcc.540141112
- [15] Ch.C. Underwood, C.D. McMillen, H. Chen, J.N. Anker, J.W. Kolis. Inorg. Chem., 52 (1), 237 (2013).
 DOI: 10.1021/ic301760a
- [16] Е.И. Войт, Н.А. Диденко, К.А. Гайворонская. Опт. и спектр., 124 (3), 333 (2018).
 DOI: 10.21883/OS.2018.03.45654.263-17 [Е.І. Voit, N.A. Didenko, К.А. Gaivoronskaya. Opt. Spectrosc., 124 (3), 328 (2018). DOI: 10.1134/S0030400X18030207].
- B. Hruška, Z. Netriová, Z. Vasková, M. Boča, M. Chromćí ková, M. Liška. J. Alloys Compd., 791, 45 (2019).
 DOI: 10.1016/j.jallcom.2019.03.200
- [18] Р.Л. Давидович, Т.А. Кайдалова, Т.Ф. Левчишина, В.И. Сергиенко. Атлас инфракрасных спектров поглощения и рентгенометрических данных комплексных фторидов металлов IV-V групп (Наука, М., 1972), 252 с.
- [19] H. Insley, T.N. McVey, R.E. Thoma, G.D. White. Optical properties and X-ray diffraction data for some inorganic fluoride and chloride compounds Report ORNL-2192 (Oak Ridge National Laboratory, Tennessee, 1956).
- [20] R.E. Thoma, H. Insley, H.A. Friedman, G.M. Hebert. J. Chem. Eng. Data., 10 (3), 219 (1965). DOI: 10.1021/je60026a004
- [21] В.Я. Кавун, В.И. Сергиенко. Диффузионная подвижность и ионный транспорт в кристаллических и аморфных фторидах элементов IV группы и сурьмы (III) (Дальнаука, Владивосток, 2004), 298 с.
- [22] D.L. Deadmore, J.S. Machin, A.W. Allen. J. Amer. Ceram. Soc., 45 (3), 120 (1962).
 DOI: 10.1111/j.1151-2916.1962.tb11098.x
- [23] C. Colbea, D. Avram, B. Cojocaru, R. Negrea, C. Ghica, V.G. Kessler, G.A. Seisenbaeva, V. Parvulescu, C. Tiseanu. Nanomaterials, 8, 988 (2018). DOI: 10.3390/nano8120988
- [24] L.M. Toth, A.S. Quist, G.E. Boyd. J. Phys. Chem., 77 (11), 1384 (1973). DOI: 10.1021/J100630A014