01

Изотопные эффекты в спектрах комплексов с водородными связями. Расчет колебательных спектров поглощения димеров (D₂CO)₂ и D₂CO··· DF и тримеров D₂CO··· (DF)₂ и (D₂CO)₂···DF

© В.П. Булычев, М.В. Бутурлимова, К.Г. Тохадзе

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия e-mail: v.bulychev@spbu.ru

Поступила в редакцию 27.01.2023 г. В окончательной редакции 11.03.2023 г.

Принята к публикации 11.03.2023 г.

Рассчитаны частоты и интенсивности колебательных полос спектров поглощения водородно-связанных димеров $(D_2CO)_2$ и $D_2CO\cdots DF$, двух тримеров $D_2CO\cdots (DF)_2$ и четырех тримеров $(D_2CO)_2\cdots DF$ по методу MP2/aug-cc-pVTZ с учетом ошибки наложения атомных функций мономеров. Колебательная теория возмущений второго порядка использована при расчете спектральных параметров в ангармоническом приближении. Влияние водородных связей на спектральные параметры определено из сравнения результатов расчетов мономеров, димеров и тримеров в одном приближении. Полученные данные сравниваются с результатами выполненных ранее расчетов димеров $(H_2CO)_2$ и $H_2CO\cdots HF$ и тримеров $H_2CO\cdots (HF)_2$ и $(H_2CO)_2\cdots HF$. Показано, что один тример вида $D_2CO\cdots (DF)_2$ и два тримера $(D_2CO)_2\cdots DF$ обладают достаточной прочностью и интенсивными полосами поглощения, что делает возможным их обнаружение спектроскопическими методами.

Ключевые слова: водородная связь, расчеты спектров молекулярных комплексов, ангармонические взаимодействия, изотопные эффекты.

DOI: 10.21883/OS.2023.03.55380.4572-22

Введение

Молекулярные комплексы, образованные довольно простыми молекулами формальдегида и фтористого водорода могут рассматриваться как модельные системы при исследовании комплексов с водородной связью, содержащих соединения с карбонильной группой и молекулы галоидов водорода. Тем не менее, структура и спектры комплексов, образованных этими молекулами все еще слабо изучены как экспериментально, так и теоретически. Структура димеров H₂CO··· HF в молекулярном пучке была определена из вращательых спектров этих комплексов, полученных методом спектроскопии электрического резонанса [1]. Инфракрасные спектры комплексов H₂CO··· HF в аргоновых матрицах были частично изучены экспериментально в [2,3], где были определены частоты валентных колебаний Н-F и C=O и либрационных колебаний НF в димере. Более полно инфракрасный спектр димеров H2CO··· HF в азотной матрице при температуре T = 8 K был изучен в [4]. В этой работе структура и спектр изолированного комплекса H2CO··· HF были также определены на основе расчета электронной структуры методом МР2/6-311++G(3df,3pd). Ангармонические значения частот и интенсивностей полос поглощения комплекса рассчитывались с использованием колебательной теории возмущений второго порядка [5,6] и вариационного метода. Теоретические значения спектральных параметров были

использованы при интерпретации экспериментальных спектров.

Насколько нам известно, структура и спектр поглощения более сложных комплексов, образованных молекулами формальдегида и фтористого водорода, исследовались только в трех работах [7-9]. В [7] частоты колебаний комплексов $H_2CO \cdots (HF)_n$ (n = 1-4)были вычислены в гармоническом приближении, и исследовалась природа высокочастотного сдвига частот валентных колебаний С-Н при образовании комплексов. В [8] структура и инфракрасный спектр тримера, образованного молекулой НF с плоским гомодимером (H₂CO)₂, были рассчитаны в приближении МР2/6-311++G(3df,3pd). Ангармонические значения частот и интенсивностей наиболее важных с точки зрения экспериментальных наблюдений полос поглощения были определены вариационным методом. Метод MP2/aug-ccpVTZ с учетом ошибки наложения базисных наборов мономеров был использован в [9] для определения ядерных конфигураций стабильных тримеров H₂CO··· (HF)₂ и (H₂CO)₂····HF. Геометрическая структура, дипольные моменты, распределение электронных зарядов и энергии связи были рассчитаны для двух тримеров H₂CO··· (HF)₂ и четырех тримеров (H₂CO)₂ ··· HF. Частоты и интенсивности колебательных полос поглощения тримеров и составляющих их мономеров и димеров были определены с использованием теории возмущений второго порядка [5,6]. Было показано, что один тример типа H_2CO ··· $(HF)_2$ и два тримера $(H_2CO)_2$ ··· HF могут быть исследованы экспериментально, так как они обладают значительной энергией связи от -55 до $-71 \text{ kJ} \cdot \text{mol}^{-1}$ и полосы поглощения их валентных колебаний H-F имеют высокую интенсивность от 696 до 988 km · mol⁻¹.

Сравнительное изучение различных изотопологов молекул и комплексов способствует более полному пониманию внутренней динамики этих систем [10]. Изотопное замещение может приводить к изменению взаимодействия различных степеней свободы, форм и амплитуд колебаний ядер. Это, в свою очередь, изменяет влияние ангармонических эффектов на частоты и интенсивности спектральных переходов. Ярким примером такого влияния изотопного замещения является перераспределение интенсивности между полосами поглощения, связанными с различными колебательными координатами, что было показано, например, в [11,12] при замещении легкого водорода в ионном комплексе $[F(HF)_2]^-$ на дейтерий и тритий. В [13] было предсказано резкое уменьшение интенсивности обертонов деформационных колебаний [F(HF)₂]⁻ при замещении H/D. В [14] было показано, что дублетная структура, наблюдаемая у наиболее интенсивной полосы О-Н в комплексе H₃N···· HONO и объясняемая резонансом между первым возбужденным состоянием валентного колебания Н-О и дважды возбужденным состоянием деформационного колебания HON, не будет наблюдаться в спектре H₃N···· DONO из-за отсутствия аналогичного резонанса. Наиболее выпукло влияние изотопного замещения на структурные и спектральные параметры молекулярных систем было продемонстрировано в расчетах, в которых протон замещался К-мезоном или тритоном, т.е. рассматривалось шестикратное изменение массы ядер [15,16].

Целью данной работы является расчет частот и интенсивностей колебательных полос поглощения дейтерированных молекул формальдегида D₂CO, двух гомодимеров $(D_2CO)_2$, гетеродимера $D_2CO \cdots DF$, а также тримеров $D_2CO \cdots (DF)_2$ и $(D_2CO)_2 \cdots DF$ с использованием равновесных ядерных конфигураций комплексов, рассчитанных нами в предыдущей работе [9]. Спектроскопические параметры определяются в гармоническом приближении и с использованием колебательной теории возмущений второго порядка [5,6]. Анализ рассчитанных в одном приближении спектральных параметров тримеров и входящих в тримеры мономеров и димеров позволяет определить тенденции в изменении этих параметров при образовании комплексов. Влияние H/Dзамещения на спектральные и структурные параметры рассмотренных комплексов проанализировано при сравнении полученных результатов с результатами расчетов аналогичных комплексов, содержащих легкие атомы водорода [9].

Рис. 1. Структуры гомодимеров $(D_2CO)_2$ и гетеродимера $D_2CO\cdots DF$ и соответствующие им точечные группы симметрии.

Метод расчета

В настоящей работе, так же как и в [9], квантовохимические расчеты димеров (D₂CO)₂ и D₂CO···DF и тримеров $D_2CO \cdots (DF)_2$ и $(D_2CO)_2 \cdots DF$ были выполнены по методу MP2/aug-cc-pVTZ с поправкой на ошибку наложения базисных наборов мономеров с использованием пакета программ Gaussian 16 [17]. Выбранный квантово-химический метод обеспечивал выполнимость расчетов достаточно сложных комплексов при хорошей точности получаемых результатов. Равновесные конфигурации мономеров и комплексов, энергии связи комплексов и дипольные моменты этих систем, рассчитанные в рамках адиабатического приближения, не зависят от изотопного состава соединений. Подробная информация о численных значениях геометрических параметров изучаемых соединений приведена в [9]. Равновесные конфигурации димеров $(D_2CO)_2$ и $D_2CO \cdots DF$ изображены на рис. 1. Равновесные конфигурации тримеров $D_2CO \cdots (DF)_2$ и $(D_2CO)_2 \cdots DF$ представлены на рис. 2 и 3. Равновесная конфигурация плоского гомодимера (D₂CO)₂ обладает симметрией точечной группы C_{2h}, а операции симметрии тримера II (рис. 2) описываются группой C_{2v}. В тримере III (рис. 3) молекула DF присоединяется к плоскому гомодимеру (D₂CO)₂, конфигурация которого при этом только слегка возмущается. В тримере IV молекула DF входит внутрь плоского гомодимера, разрывая одну из его водородных связей. При образовании тримера V (рис. 3) молекула DF подходит к неплоскому гомодимеру в его плоскости симметрии. В тримере VI молекула DF образует водородную связь О··· DF с тем мономером D₂CO, который перпендикулярен плоскости симметрии гомодимера. При этом симметрия С_s неплоского гомодимера возмущается значительно. Известно [18], что неплоский

Рис. 2. Структуры тримеров состава (DF)₂ · · · D₂CO и соответствующие им точечные группы симметрии.

Рис. 3. Структуры тримеров состава $DF \cdots (D_2CO)_2$ и соответствующие им точечные группы симметрии.

гомодимер (D₂CO)₂ является системой более прочной, чем плоский гомодимер, и поэтому именно он наблюдается экспериментально [19]. Из рассматриваемых тримеров наиболее прочными являются тримеры I, II, IV и VI. Расчеты в приближении MP2/aug-cc-pVTZ [9] дают следующие значения энергии связи (в kJ · mol⁻¹) комплексов относительно изолированных мономеров: -13.97 (плоский гомодимер (H₂CO)₂), -17.70 (неплоский гомодимер (H₂CO)₂), -70.75 (тример I), -57.11 (тример II), -48.58 (тример III), -54.77 (тример IV), -49.58 (тример V) и -56.65 (тример VI). Учитывая, что энергии связи плоского и неплоского гомодимеров равны -13.97 и -17.70 kJ · mol⁻¹ [9], получаем следующие значения для энергии связи молекулы фтористого водорода с димерами формальдегида при образовании тримеров III-VI: -34.61 (III), -40.80 (IV), -31.88 (V) и $-38.95 \text{ kJ} \cdot \text{mol}^{-1}$ (VI). Отсюда, в частности следует, что водородная связь О· · · DF в тримере V слабее, чем в тримере III, а в тримере VI слабее, чем в тримере IV.

Ангармонические расчеты частот и интенсивностей фундаментальных и обертонных спектральных переходов в изучаемых мономерах и комплексах были выполнены с использованием колебательной теории возмущений второго порядка [5,6].

Результаты расчетов спектральных параметров

Расчеты частот и интенсивностей колебательных полос поглощения мономеров DF и D₂CO и димеров (D₂CO)₂ и D₂CO··· DF

Значения частоты и интенсивности фундаментальной полосы колебания изолированного DF, полученные в гармоническом и ангармоническом (в скобках) приближениях, равны 2988.88 (2899.37) сm⁻¹ и 63.4 (62.5) km · mol⁻¹. Теоретическое ангармоническое значение частоты 2899.37 сm⁻¹ находится в хорошем согласии с экспериментальным значением 2906.67 сm⁻¹ [20].

Далее для типов колебаний будут использованы следующие обозначения: wag — качание группы атомов с выходом из плоскости молекулы, rock — качание группы атомов в плоскости молекулы, sci — ножничное деформационное колебание, bend — деформационное колебание, libr — либрационное колебание, rot — вращательное колебание, sym str и asy str симметричные и асимметричные валентные колебания, оор — деформационное колебание с выходом атомов из плоскости, in — деформационное колебание атомов внутри плоскости, ooph — колебание двух групп атомов в противофазе и iph — колебание двух групп атомов в фазе. В таблицах колебательные полосы поглощения нумеруются в порядке возрастания их гармонических частот. Для колебательных мод плоского гомодимера (D₂CO)₂ указываются неприводимые представления группы симметрии C_{2h}, неприводимые представления А' и А" группы симметрии С_s используются, чтобы различить некоторые деформационные колебания неплоского гомодимера.

Гармонические и ангармонические значения частот *v* (в ст $^{-1}$) и интенсивностей S (в km \cdot mol $^{-1}$) изолированной молекулы D_2CO имеют значения $v_{wag} = 959$ и 947, $S_{\text{wag}} = 1.1$ и 1.2, $\nu_{\text{rock}} = 998$ и 986, $S_{\text{rock}} = 10.04$ и 10.03, $v_{sci} = 1126$ и 1107, $S_{sci} = 1.5$ и 1.4, v(C=O) = 1705и 1678, S(C=O) = 55 и 52, $\nu(CD_2)_{sym str} = 2162$ и 2087, $S(CD_2)_{sym str} = 66$ и 61, $\nu(CD_2)_{asy str} = 2276$ и 2193, $S(CD_2)_{asy str} = 62$ и 67. Полученные в данном расчете ангармонические значения частот колебаний D₂CO выше экспериментальных значений [21–23] на 3–31 ст⁻¹. Исключением является валентное колебание карбонильной группы, теоретическое значение частоты которого ниже экспериментальной величины на 24 сm⁻¹. В [24] было показано, что такое занижение частоты колебания объясняется недостаточной точностью приближения MP2/augсс-рVTZ для описания двойных связей.

В табл. 1 приведены значения частот v и интенсивностей *S* фундаментальных полос двух гомодимеров (D₂CO)₂, рассчитанные в гармоническом и ангармоническом приближениях. Как и в (H₂CO)₂, наиболее интенсивными полосами поглощения плоского (D₂CO)₂ являются В_и-полосы v_{14} , v_{15} и v_{17} . Но если интенсивности по-

 $S_{\rm ангарм}$

17

< 1

7

27

13

< 1

< 1

1

9

9

4

2

28

71

26

71

52

45

v_{ангарм} 61

85

107

102

144

142

942

953

986

989

1106

1110

1672

1676

2097

2099

2208

2211

полос поглощения плоского и неплоского гомодимеров (D ₂ CO) ₂								
Плоский (D ₂ CO) ₂					Неплоский (D ₂ CO) ₂			
Мода	$\nu_{\rm rapm}$	$S_{\rm гарм}$	$v_{a m Hrapm}$	$S_{ m aнгарм}$	Мода	$v_{\rm rapm}$	$S_{\text{гарм}}$	
v_1 (bend, A_u)	53	15	19	1	v_1 (bend, A'')	77	24	
ν_2 (bend, A_g)	62	0	47	0	ν_2 (O··· DF str iph)	110	< 1	
v_3 (bend, A_u)	64	15	36	14	v_3 (D ₂ CO rot ooph)	134	< 1	
v_4 (bend, B_g)	66	0	56	0	v_4 (O···DF str ooph)	137	42	
$v_5 (\mathbf{O} \cdots \mathbf{DF} \operatorname{str}, \mathbf{A}_g)$	109	0	87	0	v_5 (bend, A')	180	6	
v_6 (O···DF str, B_u)	120	44	99	38	v_6 (D ₂ CO rot iph)	202	< 1	
v_7 (CD ₂ wag, B _g)	969	0	953	0	ν_7 (wag, A')	951	< 1	
v_8 (CD ₂ wag, A _u)	969	2	950	1	$\nu_8 \text{ (wag, A'')}$	967	1	
v_9 (CD ₂ rock, B _u)	1004	17	986	13	ν_9 (rock, A'')	999	9	

0

0

7

0

88

74

0

75

0

 v_{10} (rock, A')

 v_{12} (oop sci)

v₁₃ (C=O)

 v_{14} (C=O)

 v_{11} (CD₂ ip sci)

 v_{15} (CD₂ sym str)

 v_{16} (CD₂ sym str)

 v_{17} (CD₂ asy str)

 v_{18} (CD₂ asy str)

985

1106

1108

1666

1670

2097

2096

2215.9

2215.7

Таблица 1. Гармонические и ангармонические значения частот ν (cm⁻¹) и интенсивностей *S* (km · mol⁻¹) фундаментальных полос поглощения плоского и неплоского гомодимеров (D₂CO)₂

лос v_{14} и v_{15} слегка уменьшаются при дейтерировании, то интенсивность полосы v_{17} повышается в 2.2 раза.

1003

1122

1125

1690

1697

2170.3

2170.0

2300

2301

 $\nu_{10} (\text{CD}_2 \text{ rock, } A_g)$ $\nu_{11} (\text{CD}_2 \text{ sci, } A_g)$

 v_{12} (CD₂ sci, B_u)

 v_{13} (C=O, A_g)

 v_{14} (C=O, B_u)

 v_{15} (CD₂ str, B_u)

 v_{16} (CD₂ str, A_g)

 v_{17} (CD₂ str, B_u)

 $\nu_{18}~(CD_2\,\text{str,}\,A_{\it g})$

0

0

9

0

92

133

0

73

0

При колебании v₁₃ неплоского (D₂CO)₂ две связи С=О колеблются в фазе. При этом амплитуда колебания группы С=О мономера, лежащего в плоскости симметрии димера, намного больше амплитуды колебания другой группы C=O. При колебании v₁₄ две группы C=O колеблются в противофазе, и в основном меняется длина связи С=О мономера, перпендикулярного плоскости симметрии. Валентные колебания С-D-связей v₁₅ и v₁₈ неплоского (D₂CO)₂ принадлежат мономеру, лежащему в плоскости симметрии, а моды v₁₆ и v₁₇ локализованы в перпендикулярном мономере. В модах v₁₅ и v₁₆ с симметричным колебанием двух связей С-D одной группы CD₂ наблюдается слабое смешивание колебаний С-D разных мономеров. В модах v_{17} и v_{18} с антисимметричным колебанием двух связей С-D одной группы CD₂ взаимодействие колебаний C-D разных мономеров полностью отсутствует. Отношения v_H/v_D частот фундаментальных полос (H₂CO)₂, рассчитанных в [9], к частотам фундаментальных полос (D₂CO)₂ (табл. 1) имеют практически одинаковые значения для плоского и неплоского гомодимеров и лежат в интервале 1.24-1.27 для мод $v_7 - v_{10}$ и в интервале 1.31-1.37 для мод v_{11} , v_{12} , v₁₅-v₁₈. Известно [25], что относительные изменения частот фундаментальных полос $v_{\rm H}/v_{\rm D}$ при дейтерировании соединений характеризуют вклад смещений атомов водорода в нормальные колебания и степень ангармоничности колебаний. Эти данные часто используются для идентификации деталей экспериментальных спектров. Для колебательных полос С=О отношения частот легкого и тяжелого димеров формальдегида близки к 1.03. Отличие значений параметра $v_{\rm H}/v_{\rm D}$ от единицы объясняется изменением при дейтерировании формы нормальных колебаний v_{13} и v_{14} , которые помимо изменения длин связей С=О содержат примесь изменения углов DCD. Полосы поглощения $v_{13}-v_{18}$ неплоского гомодимера (D₂CO)₂ обладают довольно высокой интенсивностью. При дейтерировании этого гомодимера значительно меняются формы некоторых колебаний, и интенсивности полос v_{13} и v_{16} увеличиваются на 65 и 18%, в то время как интенсивности полос v_{14} и v_{15} уменьшаются на 25 и 45%.

1003

1123

1127

1697

1701

2174

2178

2295

2297

10

5

2

15

86

35

70

51

43

Теоретические значения частот колебаний (в сm⁻¹) неплоского гомодимера (D₂CO)₂ (табл. 1) согласуются с данными, полученными в эксперименте [19] с использованием низкотемпературной азотной матрицы при T = 11 К: 943.7 (wag), 987.3 (rock), 1095.6 (sci), 1689.9 и 1686.4 (C=O), 2080.0 и 2077.3 (CD₂ sym str). Теоретическое значение расщепления частоты колебания C=O в (D₂CO)₂ 4.02 cm⁻¹ почти совпадает с экспериментальным значением 3.5 cm⁻¹ и предсказанный расчетом высокочастотный сдвиг на 12 cm⁻¹ наиболее интенсивной полосы ν_{16} (CD₂ sym str) гомодимера относительно полосы мономера близок к экспериментальному значению сдвиг 8 cm⁻¹.

В табл. 2 приведены гармонические и ангармонические значения частот ν и интенсивностей *S* фундаментальных полос поглощения гетеродимера $D_2CO\cdots DF$, а также относительные изменения частот гетеродимера при дейтерировании. При H/D-замещении значительно меняется приведенная масса и форма колебания

Таблица 2. Гармонические и ангармонические значения ча-
стот ν (cm ⁻¹) и интенсивностей S (km \cdot mol ⁻¹) фундамен-
тальных полос гетеродимера D2CO···DF и отношения частот
$H_2CO \cdots HF$ к частотам $D_2CO \cdots DF$

Мода	$v_{\rm rapm}$	$S_{\text{гарм}}$	$v_{ m ahrapm}$	$S_{\rm ангарм}$	$\nu_{\rm H}/\nu_{\rm D}$
$v_1 \ (C=O\cdots F bend)$	74	13	64	9	1.141
$v_2 \ (D_2CO \ oop \ rot)$	157	1.4	140	1.2	1.348
$v_3 (O \cdots DF str)$	234	26	204	23	1.022
v_4 (DF oop libr)	519	59	467	60	1.338
v_5 (DF ip libr)	548	77	482	70	1.329
$\nu_6 (CD_2 wag)$	968	1	954	1	1.247
$v_7 (CD_2 rock)$	1008	13	993	11	1.262
$\nu_8 (CD_2 sci)$	1125	3	1110	5	1.362
v9 (C=O)	1692	66	1667	63	1.028
$v_{10} (CD_2 sym str)$	2195	53	2119	50	1.351
v_{11} (CD ₂ asy str)	2327	31	2240	35	1.295
v_{12} (D–F str)	2700	459	2630	383	1.362

v9(C=O), что понижает частоту соответствующего спектрального перехода на 2.7% (46 cm⁻¹). Как показывают значения $v_{\rm H}/v_{\rm D}$, приведенные в табл. 2, изменения приведенных масс, форм колебаний и моментов инерции фрагментов комплекса при дейтерировании вызывают более значительное понижение частот других фундаментальных переходов гетеродимера. Можно отметить, что ангармонические значения частот либрационных колебаний DF (v4 и v5) и валентного колебания D-F в D₂CO··· DF близки к экспериментальным значениям этих частот (454, 462 и 2630 $\rm cm^{-1}),$ найденным для комплекса H₂CO··· DF в аргоновой матрице при 12 К [3]. Как и в случае H₂CO··· HF, наиболее интенсивными полосами поглощения D₂CO··· DF, которые могут быть зарегистрированы в эксперименте, являются полосы $v_4, v_5, v_9 - v_{12}$. Интересно, что отношения интенсивностей полос поглощения v4, v5 и v12 H2CO···HF к интенсивностям аналогичных полос D₂CO···DF почти одинаковы, а именно, 1.80, 1.93 и 1.83. Интенсивность полосы v9 (С=О) практически не меняется при дейтерировании. В [9] для интенсивностей полос v₁₀ и v₁₁ H₂CO··· HF были получены ангармонические значения 26 и $41 \,\mathrm{km} \cdot \mathrm{mol}^{-1}$. Из табл. 2 видно, что в $D_2CO \cdots DF$. в отличие от $H_2CO \cdots HF$, наиболее интенсивной полосой поглощения валентных колебаний CD₂ должна быть полоса v₁₀. При образовании комплекса D₂CO··· DF полосы симметричного и асимметричного колебаний CD₂ увеличивают свои частоты относительно частот мономера D_2CO на 32 и 47 сm⁻¹ соответственно, а частота валентного колебания D-F понижается на $269 \, \text{cm}^{-1}$ относительно частот изолированного DF. Частота полосы v_{12} (D-F str) лежит достаточно далеко от частот других интенсивных полос поглощения $D_2CO \cdots DF$ и $H_2CO \cdots HF$, что может облегчить обнаружение гетеродимера D₂CO· · · DF в спектроскопическом эксперименте.

Расчеты частот и интенсивностей колебательных полос поглощения тримеров $D_2CO \cdots DF \cdots DF$ (I) и FD $\cdots O(CD_2) \cdots DF$ (II)

Частоты И интенсивности фундаментальных полос поглощения тримеров $D_2 CO \cdots DF \cdots DF$ (I) $FD \cdots O(CD_2) \cdots DF$ (II), рассчитанные в гармоническом и ангармоническом приближениях, приведены в табл. 3. В тримере I есть две прочные водородные связи О··· DF и F··· DF и еще слабая связь F···DC [7,9]. Из работы [9] следует, что водородный мостик $O \cdots DF$ с энергией связи $-56.74 \text{ kJ} \cdot \text{mol}^{-1}$ и расстоянием $R(O \cdots D) = 1.6148$ Å прочнее мостика с энергией связи $-37.57 \text{ kJ} \cdot \text{mol}^{-1}$ $F \cdots DF$ и расстоянием $R(F \cdots D) = 1.6939$ Å. В согласии с этими данными валентное колебание водородной связи О··· DF тримера I имеет более высокую частоту (258 cm⁻¹), чем валентное колебание водородной связи $F \cdots DF$ (192 cm⁻¹). Валентное колебание v_{17} (D-Fiph str) связано в основном с мостиком $O \cdots DF$, но имеет примесь колебания D-F мостика F···DF, происходящего в той же фазе. В колебании v₁₈ (D-Fooph str) преимущественно участвует фрагмент DF мостика F··· DF. Колебание v_{17} имеет значительный сдвиг частоты относительно частоты мономера DF $(520 \, \text{cm}^{-1})$ и частоты гетеродимера $D_2 \text{CO} \cdots \text{DF}$ $(251 \, \text{cm}^{-1})$. Интенсивная полоса поглощения v_{17} (D-Fiph str) удалена по частоте от других интенсивных полос этого тримера и гетеродимера D₂CO···DF, что должно облегчить экспериментальное обнаружение тримера I. Полоса поглощения ν_{18} (D-Fooph str) тримера I близка по частоте к полосе v_{12} (D-F str) димера D₂CO···DF. Как и валентные колебания D-F, либрационные колебания разных фрагментов DF взаимодействуют друг с другом. Тем не менее, колебания v7 и v8 происходят преимущественно в мостике $F \cdots DF$, а колебания v_9 и v_{10} в мостике $O \cdots DF$. При переходе от $D_2 CO \cdots DF$ к тримеру I усиливается связь $O \cdots DF$. Перераспределение электронной плотности приводит к ослаблению связи С=О и усилению связей С-D. Голубые сдвиги частот симметричного и асимметричного колебаний группы CD₂ относительно частот мономера D₂CO увеличиваются по сравнению с D₂CO···DF на 15 и 26 ст⁻¹. Под влиянием слабой связи F··· DC увеличивается неэквивалентность двух связей С-D формальдегида, что приводит к резкому различию в интенсивностях переходов v15 и v16, хотя симметричная и асимметричная формы двух валентных колебаний группы CD₂ в значительной мере сохраняются. Сравнение данных табл. 3 с результатами расчета тримера H₂CO··· HF··· HF [9] показывает, что при дейтерировании этого тримера спектральные параметры переходов $v_7 - v_{13}$ и $v_{15} - v_{18}$ меняются наиболее значительно. Интенсивности полос поглощения v7-v10,

$D_2 CO \cdots DF \cdots DF \ (I)$			$FD \cdots O(CD_2) \cdots DF$ (II)			
Мода	Гармонические	Ангармонические	Мода	Гармонические	Ангармонические	
Moga ν_1 (oop bend) ν_2 (FFO bend) ν_3 (D ₂ CO rock) ν_4 (D ₂ CO oop rot) ν_5 (F···DF str) ν_6 (O···DF str) ν_7 (DF oop libr) ν_8 (DF ip libr) ν_9 (DF oop libr) ν_{10} (DF ip libr) ν_{11} (DF awag)	Тармонические 53 (8) 82 (4) 134 (11) 180 (< 1)	Ангармонические 42 (8) 72 (7) 120 (6) 166 (< 1) 192 (17) 258 (38) 410 (40) 432 (98) 570 (74) 656 (59) 964 (1)	Мода v_1 (FOF bend, A ₁) v_2 (bend, B ₂) v_3 (D ₂ CO rock, B ₁) v_4 (O··· DF str, A1) v_5 (bend, A ₂) v_6 (O··· DF str, B ₁) v_7 (DF libr, A ₂) v_8 (DF libr, B ₂) v_9 (DF libr, B ₁) v_{10} (DF libr, A ₁) v_{11} (CD ₂ wag, B ₂)	Тармонические $44 (15)$ $58 (1)$ $86 (18)$ $147 (< 1)$ $199 (0)$ $244 (51)$ $445 (0)$ $464 (121)$ $479 (9)$ $508 (62)$ $976 (1)$	Ангармонические 33 (13) 53 (1) 66 (12) 130 (1) 168 (0) 198 (35) 389 (0) 408 (118) 415 (3) 438 (134) 960 (1)	
$\nu_{11} (CD_2 wag) \nu_{12} (CD_2 rock) \nu_{13} (CD_2 sci) \nu_{14} (C=O str) \nu_{15} (CD_2 sym str) \nu_{16} (CD_2 asy str) \nu_{17} (D-F iph str) \nu_{18} (D-F ooph str)$	$\begin{array}{c} 980 (1) \\ 1017 (12) \\ 1131 (4) \\ 1680 (75) \\ 2210 (70) \\ 2352 (9) \\ 2461 (671) \\ 2751 (313) \end{array}$	964 (1) 1002 (9) 1109 (3) 1655 (70) 2134 (58) 2266 (12) 2379 (507) 2675 (223)	$ \begin{array}{c} \nu_{11} \ (\text{CD}_2 \ \text{wag}, \ \text{B}_2) \\ \nu_{12} \ (\text{CD}_2 \ \text{rock}, \ \text{B}_1) \\ \nu_{13} \ (\text{CD}_2 \ \text{sci}, \ \text{A}_1) \\ \nu_{14} \ (\text{C=O str}, \ \text{A}_1) \\ \nu_{15} \ (\text{CD}_2 \ \text{str}, \ \text{A}_1) \\ \nu_{16} \ (\text{CD}_2 \ \text{str}, \ \text{B}_1) \\ \nu_{17} \ (\text{D-F str}, \ \text{B}_1) \\ \nu_{18} \ (\text{D-F str}, \ \text{A}_1) \end{array} $	976 (1) 1016 (15) 1124 (6) 1679 (62) 2217 (35) 2360 (14) 2768 (665) 2788 (51)	$\begin{array}{c} 960 (1) \\ 1000 (17) \\ 1108 (6) \\ 1655 (65) \\ 2138 (33) \\ 2270 (18) \\ 2695 (546) \\ 2710 (51) \end{array}$	

Таблица 3. Гармонические и ангармонические значения частот (в сm⁻¹) и интенсивностей (в скобках, в km · mol⁻¹) фундаментальных полос поглощения тримеров $D_2CO \cdots DF \cdots DF$ (I) и FD · · · O(CD₂) · · · DF (II)

v17 и v18 понижаются приблизительно в два раза. Отношения частот деформационных колебаний v_{11} (CD₂ wag) и v_{12} (CD₂ rock) H₂CO···HF···HF к частотам тех же колебаний D2CO···DF···DF равны 1.25 и 1.26, а аналогичное понижение частот колебаний v₇-v₁₀, v₁₃ и v₁₅-v₁₈ тримера I при дейтерировании характеризуется коэффициентами v_H/v_D, лежащими в интервале 1.35-1.37. Для колебательной полосы C=О отношение частот легкого и тяжелого тримеров I равно 1.028. Для обсуждаемых ниже тримеров II-VI расчеты предсказывают практически такие же значения v_H/v_D: отличие от значений, полученных для тримера I, не превышает 0.01 для ν (CD₂ wag), ν (CD₂ rock) и v (C=O) и 0.03 для полос либрационных колебаний ν (DF libr), ножничных колебаний ν (CD₂ sci) И валентных колебаний ν (CD₂ str) и ν (D-F str).

В тримере II есть две эквивалентные водородные связи $O \cdots DF$. Судя по длинам связей D-F(0.9569 и 0.9381 Å в тримере I и 0.9349 Å в тримере II) и $O \cdots DF$ (1.6148 Å в тримере I и 1.7959 Å в тримере II), водородные связи в тримере II слабее, чем в тримере I. В согласии с этим фактом частоты межмолекулярных колебаний v_1-v_{10} тримера II существенно меньше, чем частоты соответствующих колебаний тримера I. В [9] было показано, что кооперативное воздействие двух сравнительно слабых водородных связей тримера II сильнее ослабляет (и удлиняет) связь C=O и упрочняет (и укорачивает) связи C-H, чем две более прочные водородные связи тримера I. Этот эффект сохраняется при дейтерировании и проявляется, в частности, в том, что частоты валентных колебаний C-D в тримере II имеют более высокие значения, чем в тримере I (табл. 3). Различие между частотами v₁₇ и v₁₈ валентных колебаний D–F в тримере II составляет всего лишь 15 cm⁻¹ и эти частоты близки к частоте колебания D-F мостика F··· DF тримера I. Наиболее интенсивными полосами поглощения тримера II являются полосы v₈, v₁₀ и v₁₇. Интересно, что суммарная интенсивность четырех полос поглощения, связанных с возбуждением либрационных колебаний DF, имеет близкие значения в тримерах I и II. При дейтерировании тримера II частоты и интенсивности фундаментальных полос поглощения изменяются закономерным образом. Интенсивности наиболее сильных в поглощении полос v_8 , v_{10} , v_{17} и v_{18} тримера FD···O(CD₂)···DF приблизительно в два раза меньше, чем интенсивности этих полос в спектре $FH \cdots O(CH_2) \cdots HF$.

Расчеты частот и интенсивностей колебательных полос поглощения плоских тримеров $(D_2CO)_2 \cdots DF$ (III) и $D_2CO \cdots DF \cdots D_2CO$ (IV)

Частоты и интенсивности фундаментальных полос поглощения тримеров $(D_2CO)_2\cdots DF$ (III) и $D_2CO\cdots DF\cdots D_2CO$ (IV), рассчитанные в гармоническом и ангармоническом приближениях, приведены в табл. 4. Ангармонические значения параметров низкочастотных полос, связанных с межмолекулярными колебаниями, не приводятся из-за низкой точности их расчетов по теории возмущений второго порядка. Этот недостаток расчетов по теории возмущений второго

$D_2CO_2\cdots DF$ (III)			$D_2CO\cdots DF\cdots D_2CO~(IV)$		
Мода	Гармонические	Ангармонические	Мода	Гармонические	Ангармонические
v_1 (oop bend)	24 (2)	_	v_1 (oop bend)	37 (< 1)	_
v_2 (in bend)	33 (4)	_	v_2 (D ₂ CO rock)	55 (2)	_
ν_3 (twist)	56 (15)	-	v_3 (oop bend)	59 (19)	_
v_4 (D ₂ CO oop rot)	61 (8)	-	v_4 (C=O···F bend)	69 (3)	-
$v_5 (C=O \cdots F bend)$	71 (1)	-	v_5 (CD ₂ tors)	83 (4)	_
$v_6 \ (O \cdots DC \ str)$	101(12)	152 (43)	$\nu_6 \ (O \cdots DC \ str)$	120 (3)	163 (20)
$\nu_7 \left(\mathbf{O} \cdots \mathbf{D} \mathbf{C} \mathbf{s} \mathbf{t} \mathbf{r} \right)$	136 (24)	101 (3)	$\nu_7 \ (F \cdots DC \ str)$	127 (38)	131 (12)
$v_8 \ (D_2 CO \ oop \ rot)$	172 (1)	156 (1)	$v_8 \ (D_2 CO \ oop \ rot)$	177 (3)	163 (< 1)
$v_9 (O \cdots DF str)$	245 (33)	216 (27)	$v_9 (O \cdots DF str)$	253 (26)	232 (18)
v_{10} (DF oop libr)	536 (57)	485 (56)	v_{10} (DF oop libr)	572 (55)	527 (55)
v_{11} (DF ip libr)	566 (63)	508 (41)	v_{11} (DF ip libr)	590 (65)	530 (62)
v_{12} (CD ₂ wag)	967 (1)	954 (1)	v_{12} (CD ₂ wag)	974 (1)	1012 (1)
v_{13} (CD ₂ wag)	979 (1)	964 (1)	v_{13} (CD ₂ wag)	983 (1)	967 (1)
v_{14} (CD ₂ rock)	1001 (9)	986 (7)	v_{14} (CD ₂ rock)	1006 (7)	991 (7)
v_{15} (CD ₂ rock)	1012 (10)	999 (9)	v_{15} (CD ₂ rock)	1016 (19)	999 (12)
v_{16} (CD ₂ iph sci)	1119 (3)	1103 (7)	v_{16} (CD ₂ ooph sci)	1129 (4)	1113 (3)
v_{17} (CD ₂ ooph sci)	1124 (10)	1107 (4)	v_{17} (CD ₂ iph sci)	1134 (3)	1108 (< 1)
v_{18} (C=O iph str)	1683 (43)	1658 (36)	v_{18} (C=O iph str)	1678 (50)	1656 (50)
v_{19} (C=O ooph str)	1698 (66)	1675 (65)	v_{19} (C=O ooph str)	1692 (78)	1669 (72)
v_{20} (CD ₂ sym str)	2174 (58)	2097 (50)	v_{20} (CD ₂ sym str)	2179 (77)	2104 (61)
v_{21} (CD ₂ sym str)	2202 (48)	2122 (35)	v_{21} (CD ₂ sym str)	2198 (64)	2123 (53)
v_{22} (CD ₂ asy str)	2299 (47)	2213 (49)	v_{22} (CD ₂ asy str)	2317 (22)	2232 (21)
v_{23} (CD ₂ asy str)	2346 (14)	2258 (17)	v_{23} (CD ₂ asy str)	2342 (8)	2259 (10)
v_{24} (D-F str)	2677 (540)	2604 (438)	v_{24} (D-F str)	2610 (560)	2536 (442)

Таблица 4. Гармонические и ангармонические значения частот (в cm⁻¹) и интенсивностей (в скобках, в km · mol⁻¹) фундаментальных полос поглощения плоских тримеров (D_2CO)₂ · · · DF (III) и D_2CO · · · DF · · · D_2CO (IV)

порядка обсуждался, например, в [26]. Энергия связи тримера III имеет наименьшее значение из рассматриваемых шести тримеров. В согласии с этим фактом, изменения частот колебаний при образовании тримера III из плоского гомодимера (D₂CO)₂ и мономера DF, как правило, незначительны (табл. 1 и 4). Но появление связи О··· DF в тримере III сильно изменяет формы внутренних колебаний гомодимера. Межмолекулярные колебания мономеров в (D₂CO)₂ возмущаются значительно по форме и частоте. Валентные и деформационные колебания фрагментов D₂CO, кроме колебаний *v*₁₆-*v*₁₉, становятся независимыми и затрагивают атомы только одного фрагмента. Колебания этой группы ν_{13} , v15, v21 и v23, локализованные на фрагменте, участвующем в связи О··· DF, имеют более высокую частоту, чем колебания другого фрагмента v12, v14, v20 и v22. В случае колебаний $v_{16} - v_{19}$ наблюдается противоположная закономерность. Частоты валентного колебания водородной связи О··· DF, либрационных колебаний DF мостика О··· DF и деформационных колебаний v₁₂-v₁₅ тримера III заметно ниже, чем частоты аналогичных колебаний более прочного тримера І. Интересно, что частоты валентных колебаний групп CD2 тримера III имеют более сильный голубой сдвиг относительно частот мономера D₂CO, чем частоты колебаний в гетеродимере $D_2CO \cdots DF$. Частота валентного колебания v_{24} тримера III ниже частоты колебания мономера на 295 сm⁻¹. Эта полоса поглощения тримера III близка по частоте к полосе v_{12} (D-F str) димера D₂CO··· DF. Интенсивности полос v_{10} , v_{11} и v_{24} (D₂CO)₂··· DF (III) приблизительно в два раза ниже, чем интенсивности этих полос в спектре (H₂CO)₂··· HF (III). Интенсивности остальных достаточно сильных полос поглощения тримера III практически не изменяются при дейтерировании.

При образовании тримера IV из плоского гомодимера и молекулы DF сохраняется одна водородная связь О··· DC гомодимера и образуются две новые связи: прочная связь О··· DF и слабая связь F··· DC с $R(F \cdots D) = 2.3309$ Å (рис. 3). В [9] было показано, что в тримере IV связь О··· DC более прочная и короткая, чем в тримере III и плоском гомодимере. Частоты всех колебаний тримера IV, кроме валентных колебаний связей C=O и D-F, имеют более высокие значения, чем частоты соответствующих колебаний тримера III. Понижение частот валентных колебаний C=O и D-F объясняется ослаблением и удлинением связей С=О и D-F относительно тримера III. Уменьшение частоты колебания D-F в тримере IV относительно частоты колебания мономера, которое относится к важнейшим параметрам комплексов с водородной связью, составляет $363 \,\mathrm{cm}^{-1}$. Однотипные внутренние колебания разных мономеров D₂CO тримера IV практически не взаимодействуют друг с другом, за исключением слабого взаимодействия колебаний карбонильных групп. В парах колебаний одного типа, например, v_{12} и v_{13} , атомы мономера D₂CO, образующего связь O··· DF, участвуют в колебании с более высокой частотой. Упрочение связи O··· DC и появление дополнительной межмолекулярной связи F··· DC приводит к тому, что частоты колебаний v_{20} и v_{22} в тримере IV заметно выше, чем в тримере III. Заслуживает внимания заметное различие между интенсивностями полос поглощения валентных колебаний C=O и CD₂ в тримерах III и IV. Интенсивности полос валентного и либрационных колебаний DF предсказуемо понижаются приблизительно в два раза при дейтерировании тримера IV, а интенсивности полос валентных колебаний C=O и CD₂ меняются нерегулярным образом.

Расчеты частот и интенсивностей колебательных полос поглощения неплоских тримеров $(D_2CO)_2 \cdots DF(V)$ и $D_2CO \cdots DF \cdots D_2CO(VI)$

Частоты и интенсивности фундаментальных $(D_2CO)_2 \cdots DF(V)$ поглощения полос тримеров $D_2CO \cdots DF \cdots D_2CO$ (VI), рассчитанные и гармоническом и ангармоническом приближениях, приведены в табл. 5. Из-за более низкой симметрии неплоского гомодимера формы внутренних колебаний этого гомодимера возмущаются при образовании тримеров V и VI в меньшей степени, чем формы колебаний плоского гомодимера при образовании тримеров III и IV. Изменения частот внутренних колебаний неплоского гомодимера при образовании тримеров незначительны, за исключением частот валентных колебаний С-D фрагмента, входящего в мостик О··· DF. Так как в тримерах III и V молекула DF расположена вне гомодимера, а в тримерах IV — внутри гомодимера, то целесообразно иVI сравнивать параметры тримера V с параметрами тримера III, а параметры тримера VI с параметрами тримера IV. В тримере V валентные и деформационные колебания одного мономера D₂CO практически не взаимодействуют с аналогичными колебаниями другого мономера D₂CO. Колебания v₁₃, v₁₅, v₁₆, v₁₈, v₂₁ и v₂₃ совершаются в мономере, участвующем в связи О· · · DF. В согласии с тем фактом, что в тримере V водородная связь О··· DF слабее, чем в тримере III, частоты либрационных колебаний DF (v₁₀ и v₁₁) тримера V ниже, а частоты валентных колебаний C=O и D-F (v_{18} и v_{24}) выше, чем частоты соответствующих колебаний тримера III. Для тримера V теория возмущений второго порядка предсказывает меньшие, чем для тримера III, различия между интенсивностями полос поглощения одного типа, например, между v₁₀ и v₁₁. В случае тримера V интенсивности полос поглощения либрационных и валентных колебаний D-F меняются значительно при H/D-замещении, как

и в тримере III, а интенсивности полос валентных колебаний C-D практически не меняются.

В тримере VI есть дополнительное взаимодействие между атомом F и группой DC, о чем свидетельствует довольно короткое расстояние $R(F \cdots DC)$ (2.7510 Å). Это взаимодействие менее сильное, чем в тримерах I и IV. но, тем не менее, оно сказывается на формах и частотах межмолекулярных колебаний. В тримере VI валентные и деформационные колебания одного мономера D₂CO, за исключением валентных колебаний карбонильных групп, практически не взаимодействуют с аналогичными колебаниями другого мономера D₂CO. В отличие от тримеров III-V в тримере VI атомы DF и мономера D₂CO, участвующего в связи О··· DF, не лежат, строго говоря, в одной плоскости, так как двугранный угол $DCOF = 166.5^{\circ}$. Tem не менее, колебания v_{10} и v_{11} можно приближенно обозначать как либрации DF с выходом из плоскости D₂CO и внутри этой плоскости. Колебания v12, v15, v16, v18, v21 и v23 совершаются во фрагменте $D_2CO \cdots DF$. При этом колебание v_{18} (C=O iph str) имеет небольшую примесь колебания в той же фазе группы C=О другой молекулы D₂CO. Сравнение результатов расчетов тримеров IV, V и VI показывает, что частоты либрационных колебаний v₁₀ и v₁₁ тримера VI почти совпадают с частотами колебаний тримера IV, но значительно превышают частоты аналогичных колебаний тримера V. Этот результат достаточно предсказуем. Менее очевидной является близость значений частот остальных деформационных колебаний мономеров D₂CO в тримерах V и VI и заметное различие между частотами колебаний ν (CD₂ wag) тримеров IV и VI. Наиболее важная с точки зрения спектроскопического наблюдения полоса v₂₄ (D-F str) имеет очень близкие значений частот и интенсивностей для тримеров IV и VI. Дейтерирование тримера VI вызывает практически такое же относительное понижение частот полос поглощения, как и в случае тримера IV. При этом интенсивности полос v₁₀ и v₁₁ понижаются соответственно в 1.3 и 2.2 раза, интенсивности полос v_{18} и v_{19} понижаются в два раза, а интенсивность полосы v₂₄ понижается в 1.75 раза.

Расчеты по теории возмущений второго порядка предсказывают для рассмотренных выше комплексов D₂CO и DF ряд обертонных полос поглощения, лежащих в инфракрасной области и обладающих достаточно высокой интенсивностью. Эти полосы связаны с либрационными колебаниями фрагментов DF в гетеродимере D2CO···DF и тримерах I и III-VI. Ангармонические значения частот *v* (в сm⁻¹) и интенсивностей S (в km · mol⁻¹) этих обертонов следующие: v = 876 и S = 21 (2 v_4 (DF oop libr) $D_2CO \cdots DF$), $\nu = 1098$ и S = 21 (2 ν_9 (DF oop libr) тример I), v = 1270 и S = 14 (2 v_{10} (DF ip libr) тример I), v = 917 и S = 24 (2 v_{10} (DF oop libr) тример III), v = 992и S = 35 (2 ν_{11} (DF ip libr) тример IV), $\nu = 892$ и S = 23 $(2\nu_{10} \text{ (DF oop libr) тример V)}, \nu = 985 \text{ и } S = 28 (2\nu_{11} \text{ })$ (DF ip libr) тример VI).

$(D_2CO)_2\cdots DF(V)$			$D_2CO\cdots DF\cdots D_2CO$ (VI)		
Мода	Гармонические	Ангармонические	Мода	Гармонические	Ангармонические
v_1 (oop bend)	35 (7)	_	v_1 (bend)	41 (4)	_
v_2 (C=O···F bend)	40 (7)	_	v_2 (bend)	51 (9)	_
ν_3 (twist)	73 (14)	-	$\nu_3 \ (C=O \cdots F \text{ bend})$	77 (6)	—
$\nu_4 \ (O \cdots D_2 C \ str)$	84 (9)	—	$v_4 \ (O \cdots DC \ str)$	111 (6)	—
$v_5 (D_2 CO rot)$	118 (21)	-	$v_5 (D_2 CO tors)$	131 (2)	—
$v_6 \ (D_2 CO tors)$	137 (< 1)	—	$\nu_6 \ (O \cdots D_2 C str)$	160 (41)	—
$\nu_7 \left(\mathbf{O} \cdots \mathbf{D} \mathbf{C} \mathbf{s} \mathbf{t} \mathbf{r} \right)$	147 (8)	125 (13)	$v_7 \ (C=O \cdots C \ bend)$	180 (3)	102 (11)
v_8 (D ₂ CO tors)	194 (2)	142 (1)	$\nu_8 \ (O \cdots DF str)$	258 (26)	228 (23)
$v_9 (O \cdots DF str)$	257 (35)	217 (20)	$v_9 (D_2 CO tors)$	282 (6)	227 (2)
v_{10} (DF oop libr)	520 (56)	474 (56)	v_{10} (DF oop libr)	579 (89)	527 (90)
v_{11} (DF ip libr)	549 (64)	496 (54)	v_{11} (DF ip libr)	586 (47)	528 (56)
v_{12} (CD ₂ ip wag)	957 (< 1)	947 (< 1)	v_{12} (CD ₂ wag)	955 (1)	946 (< 1)
v_{13} (CD ₂ oop wag)	976 (1)	961 (1)	v_{13} (CD ₂ wag)	965 (1)	952 (2)
v_{14} (CD ₂ oop rock)	999 (9)	987 (9)	v_{14} (CD ₂ rock)	1002 (11)	987 (7)
v_{15} (CD ₂ ip rock)	1012 (12)	998 (6)	v_{15} (CD ₂ rock)	1008 (12)	995 (10)
v_{16} (CD ₂ ip sci)	1123 (7)	1108 (9)	v_{16} (CD ₂ ooph sci)	1127 (4)	1108 (1)
v_{17} (CD ₂ oop sci)	1128 (3)	1111 (3)	v_{17} (CD ₂ iph sci)	1127 (5)	1112 (4)
v_{18} (C=O iph str)	1686 (51)	1662 (51)	v_{18} (C=O iph str)	1687 (56)	1662 (13)
v_{19} (C=O ooph str)	1702 (60)	1675 (56)	v_{19} (C=O ooph str)	1697 (74)	1676 (106)
v_{20} (CD ₂ sym str)	2176 (54)	2098 (48)	v_{20} (CD ₂ sym str)	2184 (38)	2105 (39)
v_{21} (CD ₂ sym str)	2203 (37)	2126 (38)	v_{21} (CD ₂ sym str)	2213 (56)	2132 (49)
v_{22} (CD ₂ asy str)	2294 (48)	2207 (46)	v_{22} (CD ₂ asy str)	2308 (42)	2220 (36)
v_{23} (CD ₂ asy str)	2340 (19)	2253 (23)	v_{23} (CD ₂ asy str)	2346 (25)	2259 (15)
v_{24} (D–F str)	2699 (515)	2619 (395)	v_{24} (D–F str)	2620 (507)	2541 (398)

Таблица 5. Гармонические и ангармонические значения частот (в cm⁻¹) и интенсивностей (в скобках, в km · mol⁻¹) фундаментальных полос поглощения неплоских тримеров ($D_2CO)_2 \cdots DF$ (V) и $D_2CO \cdots DF \cdots D_2CO$ (VI)

Обсуждение результатов

Гармонические и ангармонические расчеты спектральных параметров полос поглощения изолированных молекул DF и D_2CO и составленных из этих молекул димеров и тримеров, выполненные на одном уровне *ab initio* теории, позволяют проанализировать изменения спектральных параметров при вхождении молекул в комплексы и роль ангармонических эффектов. Сравнение этих результатов с аналогичными теоретическими результатами, полученными для соединений, содержащих легкие атомы водорода, показывает величину изотопных эффектов.

Различия между гармоническими и ангармоническими значениями частот спектральных переходов имеют наибольшие значения в случае валентных колебаний водородных связей и либрационных колебаний DF (до 12%) и в случае валентных колебаний связей C=O, C-D и D-F (до 4%). Интенсивность полос поглощения D-F всех рассмотренных выше комплексов, содержащих DF, понижается при учете ангармонических эффектов в среднем на 15%. Наиболее интенсивными полосами поглощения гомодимеров $(D_2CO)_2$ являются полосы валентных колебаний C=O и C-D. Близость значений частот и интенсивностей полос плоского и неплоского гомодимеров может помешать экспериментальному определению вида гомодимера. Полосы валентного колебания D-F, которые являются наиболее интенсивными полосами в спектрах гетеродимера D₂CO···DF и рассматриваемых тримеров, сдвинуты относительно частоты изолированной молекулы DF на 189-520 cm⁻¹. Эти полосы поглощения гетеродимера и наиболее прочных тримеров I, IV и VI сдвинуты относительно других интенсивных полос комплексов, что может облегчить детектирование этих комплексов спектроскопическими методами. Довольно высокой интенсивностью, как правило, превышающей $50 \,\mathrm{km} \cdot \mathrm{mol}^{-1}$, обладают полосы поглощения либрационных колебаний DF и валентных колебаний С=О и С-D. Существенно, что эти полосы удалены по частоте друг от друга. Величина голубого сдвига полос валентных колебаний С-D при образовании комплексов максимальна в тримере II, в котором две относительно слабые водородные связи действуют кооперативно. Эти сдвиги довольно велики также в тримерах I, IV и VI, в которых большие значения имеют частоты валентных колебаний связей О· · · DF.

Выполненные расчеты показали, что значения отношений частот колебаний комплексов, содержащих легкие атомы водорода, к частотам аналогичных колебаний дейтерированных комплексов $\nu_{\rm H}/\nu_{\rm D}$ зависят от типов колебаний. Эти значения практически одинаковы для колебаний одного типа всех рассмотренных комплексов и, следовательно, могут быть использованы для идентификации деталей экспериментальных спектров. Ангармонический расчет предсказывает значительные изменения относительных интенсивностей полос поглощения валентных колебаний групп CH_2 при дейтерировании гомодимеров $(H_2CO)_2$. Интенсивности полос поглощения либрационных и валентных колебаний фтористого водорода в гетеродимере $H_2CO \cdots$ HF и тримерах I–VI значительно, от 1.3 до 2.2 раз, понижаются при дейтерировании этих систем.

Заключение

Параметры колебательных спектров поглощения изолированных молекул DF и D₂CO, водородносвязанных димеров (D₂CO)₂ и D₂CO···DF, двух $D_2CO \cdots (DF)_2$ тримеров И четырех тримеров (D₂CO)₂···DF рассчитаны с использованием пакета программ Gaussian 2016 [17] в приближении MP2/augсс-рVTZ с учетом ошибки наложения атомных функций мономеров. Ангармонические значения частот и интенсивностей спектральных переходов получены с применением колебательной теории возмущений второго порядка [5,6]. Изменения спектральных параметров при образовании комплексов определены из сравнения результатов расчетов мономеров, димеров тримеров в одном приближении. Определены И достаточно интенсивные и характеристичные полосы каждого комплекса, которые могут быть использованы для спектроскопического обнаружения этих систем. Произведено сравнение значений спектральных параметров, полученных для шести тримеров с различным расположением мономеров. Выполнен анализ изменений частот и интенсивностей полос поглощения, происходящих при дейтерировании рассмотренных комплексов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F.A. Baiocchi, W. Klemperer. J. Chem. Phys., 78 (6), 3509 (1983). DOI: 10.1063/1.445174
- [2] S.B.H. Bach, B.S. Ault. J. Phys. Chem., 88 (16), 3600 (1984).
 DOI: 10.1021/j150660a044
- [3] L. Andrews, G.L. Johnson, J. Phys. Chem., 88 (24), 5887 (1984).
 - DOI: 10.1021/j150668a029
- [4] R.E. Asfin, V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze.
 J. Mol. Struct., **1225**, 129080 (2021).
 DOI: 10.1016/j.molstruc.2020.129080
- [5] V. Barone. J. Chem. Phys., **122** (1), 014108 (2005).
 DOI: 10.1063/1.1824881
- [6] J. Bloino. J. Phys. Chem. A., 119 (21), 5269 (2015).
 DOI: 10.1021/jp509985u

- [7] A. Karpfen, E.S. Kryachko, J. Phys. Chem. A, 109 (39), 8930 (2005). DOI: 10.1021/jp0504080
- [8] В.П. Булычев, А.М. Кошеварников, К.Г. Тохадзе. Опт. и спектр., 122 (6), 883 (2017).
 DOI: 10.7868/S0030403417060046 [V.P. Bulychev, A.M. Koshevarnikov, K.G. Tokhadze. Opt. Spectrosc., 122 (6), 851 (2017). DOI: 10.1134/S0030400X17060042]
- [9] R.E. Asfin, V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze. Comp. Theor. Chem., **1217**, 113876 (2022).
 DOI: 10.1016/j.comptc.2022.113876
- [10] Isotope Effects in Chemistry and Biology, ed. by A. Kohen, H.-H. Limbach (CRC Press / Taylor & Francis group, Boca Raton, FL, 2006). DOI: 10.1201/9781420028027
- [11] V.P. Bulychev, M.V. Buturlimova. J. Mol. Struct., 928 (1–3), 32 (2009). DOI: 10.1016/j.molstruc.2009.03.008
- [12] V.P Bulychev, M.V. Buturlimova, K.G. Tokhadze. Phys. Chem. Chem. Phys., **13**, 14019 (2011). DOI: 10.1039/c1cp20696f
- [13] V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze. J. Chem. Phys., 149 (10), 104306 (2018). DOI: 10.1063/1.5042059
- [14] V.P. Bulychev, M.V. Buturlimova, I.K. Tokhadze, K.G. Tokhadze, J. Phys. Chem. A, **118** (34), 7139 (2014).
 DOI: 10.1021/jp505245x
- [15] В. П. Булычев, М.В. Бутурлимова К.Г. Тохадзе. Опт. и спектр., 108 (6), 931 (2010). [V.P. Bulychev, М.V. Buturlimova, K.G. Tokhadze. Opt. Spectrosc., 108 (6), 883 (2010). DOI: 10.1134/S0030400X1006010X]
- [16] В.П. Булычев, М. В. Бутурлимова К. Г. Тохадзе. Опт. и спектр., 128 (8), 1077 (2020).
 DOI: 10.21883/OS.2020.08.49701.122-20 [V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze. Opt. Spectrosc., 128 (8), 1082 (2020). DOI: 10.1134/S0030400X2008010X]
- [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian 16, Revision A.03 (Wallingford CT, 2016)
- [18] G.A. Dolgonos. Chem. Phys. Lett., 585, 37 (2013).
 DOI: 10.1016/j.cplett.2013.08.073
- [19] B. Nelander. J. Chem. Phys., 73 (3), 1034 (1980).DOI: 10.1063/1.440274
- [20] K.P. Huber, G. Herzberg. Molecular Spectra and Molecular Structure, Vol. 4: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979; Mir, Moscow, 1984). DOI: 10.1007/978-1-4757-0961-2
- [21] A. Perrin, J.-M. Flaud, A. Predoi-Cross, M. Winnewisser,
 B.P. Winnewisser, G. Mellau, M. Lock. J. Molec. Spectrosc.,
 187 (1), 61 (1998). DOI: 10.1006/jmsp.1997.7469
- [22] J. Lohilahti, O.N. Ulenikov, E.S. Bekhtereva, S. Alanko, R. Anttila. J. Molec. Structure, **780–781**, 182 (2006). DOI: 10.1016/j.molstruc.2005.05.055
- [23] V.G. Tyuterev, S.A. Tashkun, M. Rey, R.V. Kochanov, A.V. Nikitin, T. Delahaye. J. Phys. Chem. A, **117** (50), 13779 (2013). DOI: 10.1021/jp408116j
- [24] V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze. J. Phys. Chem. A, 119 (38), 9910 (2015).
 DOI: 10.1021/acs.jpca.5b06466
- [25] Z. Mielke, L. Sobczyk. Vibrational isotope effects in hydrogen bonds, Isotope Effects in Chemistry and Biology, ed. by A. Kohen, H.-H. Limbach (CRC Press / Taylor & Francis group, Boca Raton, FL, 2006), pp. 281–304. DOI: 10.1201/9781420028027
- [26] S. Oswald, M.A. Suhm. Phys. Chem. Chem. Phys., 21 (35), 18799 (2019). DOI: 10.1039/C9CP03651B