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Detection of rapid eye movement sleep period in EEG signals using

wavelet modifications
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The aim of the present research was to examine the electrical activity of the brain on polysomnographic recordings

using a new approach of oscillatory wavelet patterns. This study has shown that EEG signals recorded in the REM

stage of sleep have specific oscillatory characteristics in the band 20−40Hz, which make it possible to statistically

reliably distinguish this stage of sleep both from other stages of sleep and from wakefulness.
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Biomedicine is one of the key areas of application of novel

nonlinear dynamics techniques. Specifically, automation and

avoidance of subjectivity of the clinical assessment of sleep

of patients are currently regarded among the long-range

goals of application of such methods. A complete scientific

understanding of the role of sleep in normal functioning

of a human organism and preservation of cognitive abil-

ities is still lacking. The fundamental and clinical study

of sleep is made difficult by the complexity of staging

and analysis of polysomnographic recordings (PSGRs; in

essence, overnight recordings of a complex of biomedical

signals). Somnologists still routinely perform visual analysis

of PSGRs in accordance with official standards [1–3]. This
analysis takes quite some time and makes such studies

rather costly. In addition, the PSGR interpretation becomes

subjective and strongly dependent on the proficiency of the

expert. The introduction of new analysis techniques should

help automate the process of sleep staging and thus make

the analysis more ergonomic, reduce the expenditure of

human labor, and make the results of somnology studies

less subjective.

A considerable number of papers focused on the con-

struction of automated PSGR staging systems have already

been published. Various fractal methods and their mod-

ifications for electroencephalogram (EEG) analysis [4,5],
nonlinear dynamics techniques [6,7], and artificial neural

networks (including multilayer ones with simultaneous use

of EEGs, electromyograms (EMGs), and electrooculograms

(EOGs) [8]) serve as the mathematical basis for such

studies. However, expert reviews of the obtained results

of automated staging in routine clinical testing still reveal

them to be largely incorrect [9,10].

The detection and identification of clear EEG markers

differentiating between stage 1 of non-rapid eye movement

sleep (N1), rapid eye movement sleep (REM), and wake-

fulness is one of the subproblems that need to be solved

in order to create a versatile automated marking system

for polysomnographic recordings [11,12]. Additional EOG

and EMG signals are currently used to differentiate between

these stages [13]. This complicates the process of PSGR

analysis and makes it infeasible to construct portable devices

for sleep structure monitoring based on EEG signals only.

In the present study, we examine the possibility of

application of a new method for analysis of frequency

patterns [14] for identification of clear distinctions between

stage N1, REM sleep, and wakefulness on EEG recordings

made in overnight monitoring. The frequency pattern

method, which is based on the continuous wavelet trans-

form, is distinct in its capacity to reveal fine distinctions

between bioelectric signals that are impossible to identify

using classical methods (see [14–16]).
The continuous wavelet transform is the mathematical

basis of the developed technique [17,18]:

W (s, t0) =
1√
s

∞
∫

−∞

x(t)ψ∗

(

t − t0
s

)

dt, (1)

where x(t) is the signal under analysis, s is the time scale

that sets the wavelet width, complex conjugation is denoted

by an asterisk, and ψt0,s (t) is the wavelet transform basis

in the form of a complex function. The Morlet wavelet

is commonly used as a basis function in the analysis of

biological signals [17]:

ψt0,s (t) =
√

f π1/4e jω0 f (t−t0)e f (t−t0)
2/2. (2)

Here, ω0 is the wavelet scaling parameter that relates the

time scale of the wavelet transform (s) to the Fourier

transform frequency ( f ), where f = 1/s . The instantaneous
energy distribution of the continuous wavelet transform is

given by

E( f , tn) = |W ( f , tn)|2. (3)

Let us give a brief description of the algorithm for identifi-

cation of frequency patterns proposed in [15]. We compile
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a set of frequencies f j ( j = 1, 2, . . . , m) corresponding

to local maxima E( f j , tn) of the instantaneous energy for

each time point tn . A set of frequencies f n
j , where n is

the experimental signal duration (i.e., the number of signal

samples), is produced in analysis of the complete duration

of the studied signal. We then introduce the condition of

existence of a pattern of activity with frequency f j within

time interval [tn; tn+1]:

| f n
j − f n+1

s | < δ, (4)

where f n
j is every frequency for which local maxima

E( f j , tn) are observed at time step tn, f n+1
s are frequencies

with local maxima E( f s , tn+1) at the next time step

tn+1, and δ is a numerical constant chosen according

to the specifics of experimental signals. If condition

(4) is satisfied for certain frequencies f n
a1 and f n+1

a2 ,

one needs to check the fulfillment of this condition at

each subsequent time step for f n+1
a2 , stopping at the

moment when condition (4) gets violated (in other words,

when the activity of a given oscillatory pattern ceases).
Each oscillatory pattern P may be characterized by a

certain frequency at each moment of its existence; i.e.,

P( f , t) =
{

{a1, tn}, {a2, tn+1}, . . . , {am, tn+m}
}

, where m
characterizes the discrete duration of pattern existence. The

”
lifetime“ of pattern P is then written as

T = tn+m − tn. (5)

In addition, we may introduce mean frequency f md for each

frequency pattern P :

f md =
6m

i=1a i

m
. (6)

If time duration T of oscillatory pattern P does not exceed

the oscillation period of its mean frequency f md (i.e.,
T < ( f md)

−1), this pattern is regarded as random noise

interference and is neglected in further analysis. However,

we propose to calculate mean energy E in addition to these

known pattern parameters:

E =
6m

i=1Ei

m
. (7)

This method was applied to PSGRs of five apparently

healthy patients studied at the clinical site (National Medical

Research Center for Therapy and Preventive Medicine).
Standard signals (EEG, EMG, EOG, ECG tracing, breathing

pattern) were recorded during polysomnographic testing.

An experienced somnologist processed the obtained data

and plotted a hypnogram (i.e., a graph that represents the

stages of sleep as a function of time). EEGs were recorded

for each patient in six channels (O1, O2, C3, C4, Fp1,

Fp2) in accordance with the standard international
”
10-

20“system.

Pattern characteristics (5)−(7) were calculated for each

EEG recording in eight frequency ranges: 1 f 1 ∈ [1; 2.5]Hz,
1 f 2 ∈ [2.5; 4.5]Hz, 1 f 3 ∈ [4.5; 6.5]Hz, 1 f 4 ∈ [5; 9]Hz,

1 f 5 ∈ [9; 12]Hz, 1 f 6 ∈ [12; 14]Hz, 1 f 7 ∈ [14; 20]Hz,
1 f 8 ∈ [20; 40]Hz. Number N of patterns emerging in a

given window and averaged characteristics of
”
lifetime“ T

and normalized energy E for these patterns were calculated

within each interval 1 f i in sliding time window 1t = 30 s.

The statistical estimates of these characteristics for each

sleep stage were also determined based on hypnograms

prepared by the expert. Figure 1 presents the distributions

of pattern number N, mean
”
lifetime“ of patterns T , and

mean pattern energy E for all EEG channels in frequency

range 1 f 8 for one of the patients. Compared to all the

other stages for EEGs recorded in channels O1, O2, C3, and

C4, the REM sleep stage features statistically significant dif-

ferences in mean pattern
”
lifetime.“ Statistically significant

differences in pattern number N and energy E are also seen

between the REM stage and N1 and AW (wakefulness)
stages in all EEG channels.

Let us now introduce parameters characterizing the

difference between mean numbers N, mean
”
lifetimes“ T ,

and mean energies E in frequency range 1 f 8 to compare

each stage with the REM sleep one:

1τ
O1,O2,C3,C4

NN1,N2,N3,AW
= 〈NO1,O2,C3,C4

N1,N2,N3,AW〉 − 〈NO1,O2,C3,C4
REM 〉, (8)

1τ
O1,O2,C3,C4

TN1,N2,N3,AW
= 〈TO1,O2,C3,C4

N1,N2,N3,AW〉 − 〈TO1,O2,C3,C4
REM 〉, (9)

1τ
O1,O2,C3,C4

EN1,N2,N3,AW
= 〈EO1,O2,C3,C4

N1,N2,N3,AW〉 − 〈EO1,O2,C3,C4
REM 〉. (10)

The results of estimation of relations (8)−(10) are

presented in Fig. 2. The pattern
”
lifetime“ in frequency

range 1 f 8 for the REM sleep stage tends to decrease in

all EEG channels (except for frontal ones). In addition,

the REM sleep stage differs significantly from wakefulness

in that the patterns in it are fewer in number and have a

lower energy. At the same time, N1 and REM stages differ

significantly in the number of patterns only in channels C3

and C4.

Thus, the method of frequency wavelet patterns solves

one of the problems of staging of sleep: relying exclusively

on the analysis of EEG recordings, it introduces clear criteria

for isolation of REM stages against the background of N1

and wakefulness stages. The obtained result opens further

opportunities for development of automated PSG marking

systems with the application of wavelet patterns.
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Figure 2. Distribution of parameters (8)−(10), which characterize the difference between mean pattern numbers N, mean
”
lifetimes“ of

patterns T , and mean pattern energies E in frequency range 1 f 8 in all sleep stages and the REM sleep stage for all patients.
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