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Diagnostics of changes in the dynamics of complex systems from

transient processes based on multiresolution wavelet analysis
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With the use of multiresolution wavelet analysis, the possibilities of diagnosing changes in the dynamical regimes

of complex systems from transient processes depending on the rate of variations of control parameters are studied.

Estimates are made of the minimum sample size that allows diagnosing a change in the dynamical regime of

systems with self-sustained oscillations on the example of transient processes during the formation or destruction

of synchronous chaotic oscillations.
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The analysis of dynamics of complex systems based on

experimental data is usually performed for the stationary

regime with no regard for transient processes. This allows

one to utilize a wide range of standard digital signal

processing techniques that include probabilistic and spectral

methods and other approaches presupposing the ergodicity

of examined processes and providing for estimation of

statistical characteristics via time averaging [1]. However,

the non-stationary dynamics of systems often provides a

crucial insight into the specifics of their operation (e.g., in

the examination of momentary responses to external inputs),

and the inclusion of transient processes then becomes essen-

tial to the study of dynamics of such systems. A number

of methods for examination of systems with time-dependent

characteristics, which include approaches involving wavelet

transform [2–7], empirical modes [8], fluctuation analy-

sis [9–13], etc., are being used at present. However, their

capabilities in terms of estimation of dynamic characteristics

based on short data fragments (significantly shorter than the

transient process duration) generally differ, and the issue

of determination of the minimum sample size for reliable

diagnostics of the system state remains open.

In the present study, we investigate the potential for

diagnosing changes in the dynamics of complex systems

by transient processes using the example of transitions

between synchronous and asynchronous chaotic oscillations

in the model of interacting Rössler systems and estimate the

minimum sample size for reliable diagnostics of regimes of

chaotic self-sustained oscillations with the use of multireso-

lution wavelet analysis. The chosen model is characterized

by the following system of six ordinary first-order differential

equations:

dx1,2

dt
= −ω1,2y1,2 − z 1,2 + γ(x2,1 − x1,2),

dy1,2

dt
= ω1,2x1,2 + ay1,2,

dz 1,2

dt
= b + z 1,2(x1,2 − c),

(1)
where parameters a = 0.15, b = 0.2, and c = 6.8 govern

the dynamics of individual systems, γ = 0.02 is the coupling

parameter, and ω1,2 = 1.0± 1 are oscillation frequencies

with mismatch 1. As 1 varies near 0.0097, the synchroniza-

tion region boundary is crossed [14]; this transition is probed

in the present study by examining sequences of return times

to Poincaré secant x1 = 0.

These sequences are analyzed using multiresolution

wavelet analysis [1] that involves signal decomposition over

a basis, which is formed by conjugate mirror filters (scaling
function ϕ(t) (low-pass filter) and wavelet ψ(t) (high-pass
filter)), via their dilations and translations:

ϕ j,k = 2 j/2ϕ(2 j t − k), ψ j,k = 2 j/2ψ(2 jt − k). (2)

Signal f (t) is expanded into a series at the chosen

resolution level m

f (t) =
∑

k

sm,kϕm,k +
∑

j>m

∑

k

d j,kψ j,k(t), (3)

where sm,k and d j,k are approximation and detail coeffi-

cients. Daubechies wavelet D8 is used as the base one,

and standard deviations of wavelet coefficients at different

resolution levels serve as quantitative characteristics of

dynamics:

σ ( j) =

√

√

√

√

1

J

J
∑

k=1

[

d j,k − 〈d j,k〉
]2
, (4)

where J is the number of detail coefficients at level j .
This approach was used successfully in solving a wide

variety of problems in diagnostics of complex processes

and systems [2,15,16], although a more thorough analysis of
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Figure 1. Dependence of the Student’s t-test value, which char-

acterizes the differences between synchronous and asynchronous

chaotic oscillations in model (1), on number k of data segments,

which are used for averaging of the results, for three segment sizes.

The critical values for confidence level p < 0.05 are denoted as tc .

coefficients may also be performed [17]. Note that the prob-

lem of diagnostics of dynamic regimes of non-autonomous

systems by transient processes has been discussed earlier

in [18,19].

Prior to analyzing transient processes directly, we es-

timate the minimum sample size needed to differentiate

between synchronous and asynchronous oscillation regimes

in model (1) in the case of stationary processes. Let

us use the Student’s t-test for independent samples with

confidence level p < 0.05 for this purpose. Figure 1

shows how the value of t varies with the size of a data

segment chosen for analysis and with number k of these

segments used for averaging of the results. It can be

seen that data sets containing approximately 64 return times

allow one to differentiate reliably between synchronous and

asynchronous chaotic oscillation regimes. It often makes

no substantial difference whether one averages σ ( j) values

over two segments with a length of 32 samples or uses a

single segment 64 samples in length; however, according

to our estimates, the latter method is preferable. Note that

σ (1) estimates yield higher t values than σ (2); i.e., it is

reasonable to perform an analysis at the first resolution level

in this case.

Let us now turn to transient processes between syn-

chronous and asynchronous chaotic oscillation regimes,

which are modeled by either a step-wise or a smooth

(linear growth of frequency mismatch with crossing of the

synchronization region boundary) 1 change. In the former

case, the transient process evolves faster, and the moment

of crossing is identified accurately by σ (1) values for a

sample of 128 return times (Fig. 2, a). Smaller samples may

also be used, but ambiguities may arise (if, e.g., transitions
between regimes are identified by introducing a threshold

level for σ (1)).

In the latter case (the case of a slower parameter

variation), the needed sample size increases (to 256 samples

in the discussed example) (Fig. 2, b). On the one hand,

this is to be expected of a longer transient process; on the

other hand, it still remains possible to identify a regime

change by examining a relatively small data set. This

provides an opportunity to use multiresolution analysis as a

diagnostic tool for specific features of transient processes,

including their duration and projected completion time

estimated based on a short data fragment. The latter

option is viable if the examined data fragment covers

the onset of a transient process, which corresponds to a

significant change in variance of wavelet coefficients. Note

that the obtained estimates of the minimum sample size

are also valid for other transient processes in model (1)
(specifically, transitions between synchronous chaotic and

hyperchaotic oscillations or between asynchronous chaotic

and hyperchaotic oscillations). The discussed approach to

analysis of transient processes may be applied in the study

of non-stationary dynamics of systems of various nature,

and other characteristics of distributions of detail coefficients

may be used alongside with standard deviations.
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Figure 2. Variations of standard deviations of detailing coef-

ficients at the first resolution level under fast (a) and relatively

slow (b) changes of the frequency mismatch parameter in the

case of a transition from synchronous to asynchronous chaotic

oscillations. The threshold level, which serves as a boundary

between dynamic regimes, is represented by the horizontal dashed

line.
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