12,18 Особенности фактора термоэлектрической мощности капсулированных структур, образованных двумерными слоями

© С.Ю. Давыдов¹, О.В. Посредник²

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), Санкт-Петербург, Россия
 E-mail: Sergei_Davydov@mail.ru

Поступила в Редакцию 3 февраля 2023 г. В окончательной редакции 3 февраля 2023 г. Принята к публикации 19 февраля 2023 г.

> В рамках модельного подхода получено выражения для фактора термоэлектрической мощности σS^2 (σ — статическая проводимость, S — коэффициент Зеебека), характеризующего моноатомный 2D-слой, образованный элементом IV группы, находящийся между обкладками, образованными гексагональными 2D-слоями соединений III–V. Подробно рассмотрена структура *h*-BN/графен/*h*-BN и проанализирована зависимость фактора σS^2 от положения химического потенциала μ . Приведены аналитические оценки характерных значений функции $\sigma S^2(\mu)$.

> Ключевые слова: статическая проводимость, коэффициент Зеебека, гексагональные моноатомные двумерные слои.

DOI: 10.21883/FTT.2023.04.55305.15

1. Введение

Одной из широко используемых характеристик термоэлектической способности материала является параметр $Z = \sigma S^2 / \kappa$, именуемый в англоязычной литературе figure of merit, где σ — электропроводность, S – термоэлектрическая мощность (или коэффициент Зеебека), к — теплопроводность. Иногда для тех же оценок используется безразмерное произведение ZT, где T температура. Достаточно долгое время для лучших термоэлектрических объемных материалов удавалось добиться значений ZT ≈ 1 [1]. Существенный прогресс наметился после выхода работы [2], где рассматривались структуры с квантовыми ямами. С появлением двумерных материалов и структур на их основе начался современный этап изучения термоэлектричества [3]. В настоящей работе в качестве термоэлектрической характеристики мы будем рассматривать произведение σS^2 .

Подавляющее большинство современных приборных структур представляют собой набор вертикально расположенных микро- и/или нанослоев различной природы [4]. В настоящей работе рассматриваются гексагональные монослои (monolayer, ML), заключенные между двумя обкладками, т.е. капсулированные монослои (encapsulated monolayer, EnML). Для описания электронного спектра EnML используется модель [5], основанная на адсорбционном подходе к задаче об эпитаксиальных монослоях (еріtaxial monolayer, EpML) [6]. Сущность этой модели сводится к представлению EpML в виде решетки адатомов, а именно: если электронное состояния адатома описывается функцией Грина $g_{ad}(\omega) = (\omega - \varepsilon_a - \Sigma(\omega))^{-1}$, где ω — энергетическая переменная, ε_a — энергия уровня адсорбируемого атома A, $\Sigma(\omega)$ — собственно-энергетическая часть (self-energy), описывающая взаимодействие с подложкой, то, выстраивая адатомы в решетку и включая между ближайшими соседями взаимодействие t, получим для EpML функцию Грина $G_{\text{EpML}}^{-1}(\omega, \mathbf{k}) = g_{ad}^{-1}(\omega) - tf(\mathbf{k})$, где периодическая функция $f(\mathbf{k})$ отвечает геометрии решетки адатомов, \mathbf{k} — волновой вектор. Тот же результат можно получить, если свободному ML приписать функцию Грина $g_{\text{ML}}(\omega, \mathbf{k}) = (\omega - \varepsilon_a - tf(\mathbf{k}))^{-1}$, а затем включить взаимодействие с подложкой $\Sigma(\omega)$. Целью настоящей работы является определение влияния обкладок EnML на величину произведения σS^2 капсулированного ML.

2. Общие соотношения

Согласно формуле Мотта [7], коэффициент Зеебека

$$S = -\frac{1}{3} \left(\pi^2 k_{\rm B}^2 T/e \right) [d \ln \sigma(\mu, T=0)/d\mu],$$

где e — элементарный заряд, $k_{\rm B}$ — постоянная Больцмана, T — температура, μ — химический потенциал, проблема сводится к определению зависимости $\sigma(\mu)$ при нулевой температуре. Задача о статической проводимости и коэффициенте Зеебека эпитаксиального графена в рамках адсорбционного подхода была впервые решена в [8] для полупроводниковой подложки, плотность состояний (DoS) которой описывалась моделью Халдейна—Андерсона.

Переходя от EpML к задаче о EnML, легко сообразить, что соответствующая функция Грина имеет тот же вид, что и $G_{\rm EpML}(\omega, \mathbf{k})$, но $\Sigma(\omega)$ заменяется на $\Sigma(\omega) = \Sigma_1(\omega) + \Sigma_2(\omega)$, где $\Sigma_{1(2)}(\omega)$ — вклад обкладки 1(2) [9]. Воспользовавшись результатами [8,9], можно показать, что для μ , находящегося внутри результирующей запрещенной зоны, границы которой $E_{\rm C}^*$ и $E_{\rm V}^*$ определяются неравенством

$$E_{\mathrm{V}}^* = \max\{E_{\mathrm{V}_1}, E_{\mathrm{V}_2}\} < E_{\mathrm{C}}^* = \min\{E_{\mathrm{C}_1}^*, E_{\mathrm{C}_2}^*\},\$$

где $E_{V_{1,2}}^*$ и $E_{C_{1,2}}^*$ — края валентной зоны и зоны проводимости обкладок 1 и 2, приведенная статическая проводимость $\sigma^* := \sigma \pi \hbar/e^2$ при T = 0 имеет вид

$$\sigma^* = \frac{\xi^2 F}{F^2 + 4\tilde{\mu}^2 \gamma^2} + \frac{\tilde{\mu}^2 + \gamma^2}{2\tilde{\mu}\gamma} R \equiv \sigma_1^* + \sigma_2^*,$$
$$R(\mu) = \arctan \frac{F(\mu)}{2\gamma\tilde{\mu}} + \arctan \frac{\tilde{\mu}^2 - \gamma^2}{2\gamma\tilde{\mu}}.$$
(1)

Здесь

$$F = \xi^2 + \gamma^2 - \tilde{\mu}^2, \quad \tilde{\mu} = \mu - \bar{\Lambda}(\mu), \quad \bar{\Lambda}(\mu) = \Lambda_1(\mu) + \Lambda_2(\mu),$$

где $\Lambda_{1,2} = \text{Re} \Sigma_{1,2}$, \hbar — приведенная постоянная Планка, $\xi = \sqrt{2\pi\sqrt{3}t}$ — энергия обрезания для ML [10], γ параметр собственного затухания электронных состояний в свободном ML; энергия точки Дирака $\varepsilon_{\text{D}} = \varepsilon_{\text{a}}$ принята за нуль. В той же области ($E_{\text{V}}^*, E_{\text{C}}^*$) производные $d\sigma^*/d\mu = d\sigma_1^*/d\mu + d\sigma_2^*/d\mu$ равны

$$d\sigma_{1}^{*}/d\mu = -\frac{2\xi^{2}\tilde{\mu}C}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}} \left(1 - 2\frac{F(F - 2\gamma^{2})}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}}\right),$$

$$d\sigma_{2}^{*}/d\mu = \frac{\tilde{\mu}^{2} - \gamma^{2}}{2\gamma\tilde{\mu}^{2}}CR + \frac{\tilde{\mu}^{2} + \gamma^{2}}{2\gamma\tilde{\mu}}\frac{dR}{d\mu},$$

$$\frac{dR}{d\mu} = -4\gamma CD, \quad C = 1 - d\bar{\Lambda}/d\mu,$$

$$D = \left(\frac{\xi^{2} + \gamma^{2}}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}} - \frac{1}{2(\tilde{\mu}^{2} + \gamma^{2})}\right).$$
 (2)

3. Графен, капсулированный слоями *h*-BN

В качестве примера рассмотрим структуру *h*-BN/Gr/*h*-BN, где Gr — однослойный графен, *h*-BN — двумерный гексагональный нитрид бора. Согласно оценкам [11], расстояния между ближайшими соседями, энергии перехода *t* и точек Дирака $\varepsilon_{\rm D}$ для свободных Gr и *h*-BN можно считать одинаковыми. При этом функции $\sigma(\mu)$ и $S(\mu)$ являются соответственно симметричной и антисимметричной относительно точки $\mu = 0$ как для EpML, так и для EnML, причем $\sigma(0) = \sigma_{\rm min}$ и S(0) = 0. Функция сдвига $\Lambda(\mu)$ для графеноподобных бинарных соединений, вычисленная в рамках низкоэнергетического приближения, равна

$$\bar{\Lambda}(\mu) = (4V^2\mu/\xi^2) \ln |(\Delta^2 - \mu^2)/(\xi^2 + \Delta^2 - \mu^2)| \ [12],$$

Зависимости *a*) безразмерной статической проводимости σ^* (кружки) и функций $L = d \ln \sigma^* / d\mu$ (квадраты) и *b*) $Z^* = \sigma^* L^2$ (треугольники) от положения химического потенциала μ внутри запрещенной зоны *h*-BN для структуры *h*-BN/Gr/*h*-BN (Gr — рафен) при $\gamma = 0.1$, $V^2 = 0.25$ (светлые символы) и $V^2 = 0.50$ (темные символы). Все энергетические величины приведены в ед. Δ . Изображены только правые половины четных $\sigma^*(\mu)$, $Z^*(\mu)$ и нечетной $L(\mu)$ функций.

откуда получаем $\tilde{\mu} = \mu M, M = 1 + \bar{\Lambda}(\mu)/\mu,$

$$C = M + \frac{8V^2 \mu^2}{[(\Delta^2 - \mu^2)(\xi^2 + \Delta^2 - \mu^2)]},$$

 2Δ ширина щели в спектре гле ML, матричный элемент взаимодействия ML. Vс обкладкой. Так как $\xi \approx 10 \,\text{eV}$ и $\Delta \approx 3 \,\text{eV}$, имеем $\Delta^2/\xi^2 \ll 1$. Полагая $\gamma/\Delta = 0.1$, $V^2/\Delta^2 = 0.25$, 0.50, получим зависимости $\sigma^*(\mu)$, $L(\mu) = d \ln \sigma^*/d\mu$ $Z^{*}(\mu) = (\sigma^{*})^{-1} (d\sigma^{*}/d\mu)^{2} \propto S^{2},$ И представленные на рисунке. Легко показать, что при $\mu \rightarrow 0$ имеем

$$\sigma_0^* \approx 2(1 + \mu^2 M_0^2/\gamma^2), \quad L_0 \approx 2\mu M_0^2/\gamma^2,$$

 $Z_0^* \approx 2\mu^2 M_0^4/\gamma^4,$

где $M_0 = M(\mu = 0)$ и $C_0 = C(\mu = 0)$, так что $M_0 = C_0$. При $\mu^2 \to \Delta^2$ получаем

$$\sigma_{\pm\Delta}^* \approx \frac{1}{2} \pi \bar{\Lambda}_{\Delta} / \gamma, \quad L_{\pm\Delta} \approx \pm C_{\Delta} / \bar{\Lambda}_{\Delta},$$
$$Z_{\pm\Delta}^* \approx \frac{1}{2} \pi C_{\Delta}^2 / (\gamma \bar{\Lambda}_{\Delta}), \tag{4}$$

где

$$\bar{\Lambda}_{\Delta} \approx (4V^2 \Delta/\xi^2) \ln[\xi^2/(\Delta^2 - \mu^2)]$$

И

$$C_{\Delta} \approx 4V^2 \Delta^2 / \xi^2 / (\Delta^2 - \mu^2).$$

Отсюда следует, что влияние обкладок учитывается функциями $\bar{\Lambda}$, M и C: с ростом константы связи V^2/ξ^2 проводимость, коэффициент Зеебека и термоэлектрический фактор увеличиваются.

Об экстремумах функций L(µ) и Z*(µ)

· ? ...

Рассмотрим теперь функции $L(\mu)$ и $Z^*(\mu)$, положения экстремумов которых $\pm \mu_{\text{ext}}^L$ и $\pm \mu_{\text{ext}}^{Z*}$ определяются соответственно из уравнений $\sigma^*(d^2\sigma^*/d\mu^2) = (d\sigma^*/d\mu)^2$ и $2(d^2\sigma^*/d\mu^2) = (d\sigma^*/d\mu)^2$. Воспользовавшись формулами (2), найдем:

$$\frac{d^{2}\sigma_{1}^{*}}{d\mu^{2}} = -B_{1}^{*}\frac{dA_{1}^{*}}{d\mu} - A_{1}^{*}\frac{dB_{1}^{*}}{d\mu},$$

$$\frac{dA_{1}^{*}}{d\mu} = \frac{2\xi^{2}C^{2}}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}}\left(1 + \frac{\tilde{\mu}}{C^{2}}\frac{dC}{d\mu} + 4\tilde{\mu}^{2}\frac{F - 2\gamma^{2}}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}}\right),$$

$$\frac{dB_{1}^{*}}{d\mu} = \frac{8C\tilde{\mu}}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}}\left(F - \gamma^{2} - \frac{F(F - 2\gamma^{2})^{2}}{F^{2} + 4\gamma^{2}\tilde{\mu}^{2}}\right),$$
(5)

T A

где мы положили $d\sigma_1^*/d\mu := -A_1^*B_1^*$ и $A_1^*(B_1^*)$ — первый (второй) сомножитель в (2);

$$\frac{d^{2}\sigma_{2}^{*}}{d\mu^{2}} = \frac{dA_{2}^{*}}{d\mu} + \frac{dB_{2}^{*}}{d\mu},$$

$$\frac{dA_{2}^{*}}{d\mu} = \frac{\gamma C^{2}R}{\tilde{\mu}^{3}} + \frac{\tilde{\mu}^{2} - \gamma^{2}}{2\gamma\tilde{\mu}^{2}} \left(R \frac{dC}{d\mu} + C \frac{dR}{d\mu}\right),$$

$$\frac{dB_{2}^{*}}{d\mu} = \frac{\tilde{\mu}^{2} - \gamma^{2}}{2\gamma\tilde{\mu}^{2}} C \frac{dR}{d\mu} + \frac{\tilde{\mu}^{2} + \gamma^{2}}{2\gamma\tilde{\mu}^{2}} \frac{d^{2}R}{d\mu^{2}},$$

$$\frac{d^{2}R}{d\mu^{2}} = -4\gamma D \frac{dC}{d\mu} - 4\gamma C \frac{dD}{d\mu},$$

$$\frac{dD}{d\mu} = \frac{4(\xi^{2} + \gamma^{2})C\tilde{\mu}}{(F^{2} + 4\gamma^{2}\tilde{\mu}^{2})^{2}} (F - 2\gamma^{2}) + \frac{C\tilde{\mu}}{(\tilde{\mu}^{2} + \gamma^{2})^{2}}, \quad (6)$$

где $A_2^*(B_2^*)$ — первое (второе) слагаемое в формулах (2) для $d\sigma_2^*/d\mu$. Анализ выражений (5) и (6) в пределе слабой связи $V^2 \ll \Delta^2 \ll \xi^2$ дает

$$\mu_{\text{ext}}^{Lt} \sim \mu_{\text{ext}}^{eZ^*} \sim \gamma, \quad \sigma^* \sim \pi/2,$$
$$|L_{\text{ext}}| \sim \frac{2}{\pi \nu}, \quad Z_{\text{max}}^* \sim \frac{2}{\pi \nu^2}. \tag{7}$$

Из порядковых оценок (7) следует, что влияние обкладок на рассмотренные характеристики практически отсутствует.

5. Заключение

(3)

Отметим, что рассмотренные здесь структуры, построенные из монослоев бесщелевого (gapless) графена и h-BN, представляют не только академический, но и реальный приборный интерес [13-15]. Далее, полученные в настоящей работе результаты легко обобщаются на другие моноатомные слои элементов IV группы (бесщелевые силицен, германен и станен) [16] и обкладки типа 2D соединений А₃В₅. Главный вывод работы состоит в том, что максимальные значения коэффициента термоэлектрической мощности реализуются в случаях, когда химический потенциал находится вблизи краев результирующей запрещенной зоны капсулированной структуры. Этот вывод справедлив, на наш взгляд, также для монослоев со щелью в спектре (gapped ML) и диэлектрических и/или полупроводниковых двух- и трехмерными обкладок. В случае металлических обкладок следует ожидать максимума коэффициента термоэлектрической мощности в случае, когда химический потенциал находится вблизи краев щели в спектре монослоя (см., например, [17]).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- A.M. Dehkordi, M. Zebarjadi, J. He, T.M. Tritt. Mater. Sci. Eng. R 97, 1 (2015).
- [2] L.D. Hicks, M.S. Dresselhaus. Phys. Rev. B 47, 19, 12727 (1993).
- [3] D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie. Nano-Micro Lett. 12, 1, 36 (2020).
- [4] T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang. Adv. Sci. 7, 11, 2000058 (2020).
- [5] С.Ю. Давыдов. Письма в ЖТФ 47, 13, 52 (2021). [S.Yu. Davydov. Tech. Phys. Lett. 47, 9, 649 (2021).].
- [6] С.Ю. Давыдов, О.В. Посредник. ФТТ 58, 4, 779 (2016).
 [S.Yu. Davydov, O.V. Posrednik. Phys. Solid State 58, 4, 647 (2016).].
- [7] Дж. Займан. Принципы теории твердого тела. Мир, М. (1974). Гл. 7. [J.M. Ziman. Principles of the theory of solids. University Press (1965).].
- [8] Z.Z. Alisultanov. Low Temp. Phys. **39**, 7, 592 (2013).

- [9] С.Ю. Давыдов, О.В. Посредник. ФТП 55, 7, 587 (2021).
 [S.Yu. Davydov, O.V. Posrednik. Semiconductors 55, 7, 782 (2021).]. DOI: 10.1134/S1063782621070071
- [10] N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 12, 125411 (2006).
- [11] С.Ю. Давыдов. ФТТ **60**, *9*, 1815 (2018). [S.Yu. Davydov. Phys. Solid State **60**, *9*, 1865 (2018).].
- [12] С.Ю. Давыдов. ФТП **51**, *2*, 226 (2017). [S.Yu. Davydov. Semiconductors **51**, *2*, 217 (2017).].
- [13] A.K. Geim, I.V. Grigorieva. Nature 499, 7459, 419 (2013).
- [14] J. Duan, X. Wang, X. Lai, G. Li, K. Watanabe, T. Taniguchi, M. Zebarjadi, E.Y. Andrei. PNAS **113**, *50*, 14272 (2016).
- [15] И.В. Антонова. ФТП **50**, *1*, 67 (2016). [I.V. Antonova. Semiconductors **50**, *1*, 66 (2016)].
- [16] F.B. Wiggers, A. Fleurence, K. Aoyagi, T. Yonezawa, Y. Yamada-Takamura, H. Feng, J. Zhuang, Y. Du, A.Y. Kovalgin, M.P. de Jong. 2D Materials 6, 3, 035001 (2019).
- [17] А.А. Варламов, А.В. Кавокин, И.А. Лукьянчук, С.Г. Шарапов. УФН 182, 11, 1229 (2012). [А.А. Varlamov, А.V. Kavokin, I.A. Luk'yanchuk, S.G. Sharapov. Phys.-Uspekhi 55, 11, 1146 (2012).].

Редактор Е.В. Толстякова