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Charge carrier localization in InAs self-organized quantum dots
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We considered the problem of localization of electrons and holes taking for instance the pyramidal InAs quantum

dots in GaAs. The problem of quantum mechanics was solved for the localizing potential taking into account the

geometry, chemical composition and built-in fields of the mechanical stress and strain. We found that the strongest

localization of both types of charge carriers can be achieved if the ratio of the pyramid height to its base is about 0.2.
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The depth and nature of the localization of electrons and

holes are the main parameters of quantum dots (QDs),
which determine their electronic and optical properties

and the possibility of their use in various electronic,

optoelectronic and photonic devices [1,2]. Despite the

significant difference in the band gaps of the material from

which the QD is formed (self-organized) and the material

of the surrounding barrier layer, the localization of charge

carriers in the QD often turns out to be weak or even

impossible. The reason for this is mechanical deforma-

tions, the presence of which is necessary for the process

of self-organization according to the Stranski−Krastanov

mechanism [3,4]. Glaring example of this phenomenon are

InAs QDs, the technology of obtaining (self-organization)
of which in the process of molecular beam epitaxy is well

developed [5]. Since the band gap of InAs is 0.4 eV, and

the band gap of the GaAs barrier is 1.5 eV, InAs QDs could

potentially cover a very wide and practically important near-

infrared optical range, including the transparency window

of an optical fiber near 1.55 µm (0.8 eV), commonly used

in optical communication lines. In reality, radiation from

InAs QD takes place in the wavelength range 0.8−1.1µm,

increasing with the size of the QD [6].
In this work, the localization problem of electrons and

holes on the example of pyramidal InAs QDs in gallium

arsenide, is considered. We found that, for a given QD

volume, the localization depth of both types of carriers has

a nontrivial dependence on the ratio of the height of the

pyramid to its base.

We performed calculations for typical InAs QDs obtained

by molecular-beam epitaxy on (001) GaAs substrates in

the Stranski−Krastanov mode with the growth of five

InAs monolayers. Pyramidal InAs QDs formed on the

growth surface were overgrown by a 30 nm thick GaAs

barrier layer. The procedure for growing and forming

the QD system is described in reference [7]. The results

of detailed electron microscopic studies of such QDs are

presented in reference [8]. These studies, in particular,

showed that the typical height of InAs QDs overgrown by

in GaAs is H = 9.0± 0.5 nm, and the base of the pyramid

L = 28.0± 0.5 nm. In this case, the edges of the base

of the pyramid were parallel [100] and [010]. The faces

of the pyramid corresponded to the Miller indices {203}.
Such dimensions and shape of QD were chosen by us as

reference ones. It should be noted that overgrowth of QD

leads to a decrease in the ratio of the height of the pyramid

to its base. This effect is typical for QDs formed by self-

organization on the surface [9,10]. The manifestation of this

effect significantly depends on the overgrowth conditions.

In addition to changing the size ratio, the overgrowth can

also lead to In−Ga mixing. For the reference QD, we

considered the indium concentration as homogeneous and

equal to 0.92, which ensured the agreement between the

energy level calculations and the observed energy position

of the photoluminescence line from the QD.

The approach used in the calculations is described in our

work [11]. To determine the localization depth of electrons

and holes and then calculate the spectral position of the

exciton radiation peak, the problem of quantum mechanics

was solved numerically for both types of carriers in a single-

zone model. In this case, the localizing potential was

obtained as a result of solving the problem of the linear

theory of elasticity for a given geometry and homogeneous

chemical composition of QD. In process of calculation

the ratio of the height to the base of the pyramid was

0.05 < H/L < 1.75 on retention of its volume. The indium

concentration corresponded to the reference QD and also

remained unchanged. All calculations were carried out

by the finite element method. The volume of the cell

in which the calculation was performed was ∼ 450 times

greater than the volume of the QD. The parameters of the

material for calculations were taken from references [4,12].
The determination of the parameters of the quasi-binary

InAs−GaAs solid solution was carried out according to
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the Vegard’s law. The band gaps for GaAs and InAs were

1.51 and 0.4 eV, respectively, for the temperature of 77K, at

which the exciton radiation spectra from the reference QD

were experimentally studied.

The results of calculating the elastic deformation energy

for various ratios of the height and base of the pyramid H/L
are shown in Fig. 1. In Fig. 1, a, the energy is integrated over

the entire cell over which the calculation was performed,

and Fig. 1, b shows part of this energy stored in the volume

of the InAs QD. It can be seen that the decrease in the

H/L form factor leads to the decrease in the total energy of

the system, which creates thermodynamic driving force that

causes the decrease in the H/L ratio during QD overgrowth.

In this case, the part of the total elastic energy, which is

localized inside the QD, increases.

The total elastic energy can be represented in terms of the

components of the mechanical stress tensors σ and elastic

deformation tensors ε:

Wtotal =

∫
[

1

6
tr(ε)tr(σ ) +

(

1

2
εiiσii −

1

6
tr(ε)tr(σ )

)

+
1

2
εi jσi j

]

dV. (1)

Here the first term in square brackets represents the

hydrostatic energy. The second term, which we will call

as the
”
deviatoric“, corresponds to the biaxial distortion.

The last term represents the energy of shear deformations

described by the off-diagonal components of the tensors σ

and ε. The variation of these contributions to the total elastic

energy as a function of the H/L ratio is shown in Fig. 1. It

can be seen from the Figure that the hydrostatic part of

the elastic energy is mainly accumulated inside the QD,

while the elastic energy outside the QD is mainly provided

by the deviatoric and shear components of the field of

mechanical stresses and strains. This result agrees well with

the predictions of analytical inclusion models [13–15].
In contrast to the total elastic energy of the system,

its part accumulated inside the QD increases with the

decreasing in the H/L ratio. It is important that this increase

is mainly provided by the deviatoric energy component. The

explanation for this fact is that as the height decreases and

the base increases, the distribution of mechanical stresses

and deformations approaches to realized one in the thin

film.

The influence of mechanical fields on the energies of

electrons and holes is described in terms of deformation

potentials and the piezoelectric effect. The change in the

electron potential with respect to the undeformed material

is proportional to the change in the volume of the lattice

cell of the crystal lattice:

δEe = aetr(ε). (2)

Here ae is negative hydrostatic deformation potential of

electron. The InGaAs valence band is degenerate at the

center of the Brillouin zone, where its top is located. The
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Figure 1. Dependence of the elastic deformation energy on

the height-to-base ratio for the pyramidal InAs QD. Curves are

presented for total energy (Total), hydrostatic component (Hy-
drostatic), deviatoric component (Deviatoric), shear component

(Shear). a is the energy of the whole cell, b is the energy of the

QD volume only.

deviatoric and shear components of deformations release

this degeneracy of heavy and light holes in addition to the

hydrostatic energy shift

δEh = ahtr(ε) ±

√

√

√

√

√

b2

2

[
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2+
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2
]

+d2(ε2xy +ε2xz +ε2yz ).

(3)

Here ah is positive hydrostatic deformation potential for

holes, b and d are deformation potentials for the deviatoric

and shear components of the elastic deformation tensor.

The presence of elastic deformations causes the piezo-

electric effect in InGaAs. Our calculations showed that the

contribution of the piezoelectric effect to the QD localizing

potential is relatively small and can be neglected in most

cases. The authors of the work [12] came to the same

conclusion earlier, when they carried out similar calculations

for pyramidal InAs QDs with {101} faces.

The results of the quantum-mechanical calculation of the

ground state energies of electrons Ee and holes Ehh in InAs

QD surrounded by a GaAs barrier, depending on the ratio

H/L are shown in Fig. 2, b (filled circles and squares). Filled
circles in Fig. 2, a show the corresponding dependence for

the ground state energy of the exciton in QD, calculated

under the assumption that the exciton binding energy is

independent of the H/L ratio. When the form factor

was changed, the QD volume remained unchanged and

equal to the volume of the reference QD. The form

factor of the reference QD H/L = 0.32 is marked in

Figs 1 and 2 by vertical dashed lines. Assuming the binding

energy of exciton in the QD of the given volume equal
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Figure 2. Dependences of the exciton energy (a), electron

and heavy hole energies (b) on the height-to-base ratio for the

pyramidal InAs QD. Filled symbols show the result of calculation

taking into account all components of the deformation tensor, light

symbols show the result of calculation taking into account only the

hydrostatic part of deformations. The reference QD form factor

H/L = 0.32 is marked with vertical dashed lines and corresponds

to the intersection points of the curves.

to 10meV [12], we obtained the quantitative agreement

between the calculation results and the photoluminescence

data obtained at 77K. The corresponding point is marked

in Fig. 2, a by an arrow.

It can be seen from Fig. 2, b that the energy of the

ground state of electron has the minimum in the vicinity

of H/L = 0.2. This energy increases rapidly at small H/L
due to the enhancement of quantum confinement along the

pyramid axis. The relatively slow increase in the electron

energy with the increase in H/L is associated with the

increase in the hydrostatic part of the deformations, as can

be seen from Fig. 1.

The influence of size quantization on the energy of the

ground state of hole in the QD is less pronounced due to

the larger effective mass than in the case of the electron. In

this case, Ehh shifts upward on the energy scale due to the

transformation of hydrostatic deformations into deviatoric

ones with the decrease in the H/L ratio.

As a result of the non-monotonic change in both the

electron and hole energies, the energy of excitons localized

in QDs has the well-defined minimum corresponding to the

ratio of the height and base of the pyramid H/L = 0.2.

Compared to pyramidal QDs with nonoptimal form factor,

the benefit for the exciton energy can exceed 0.1 eV at the

constant QD volume.

To understand the nature of the discovered phenomenon,

we carried out additional calculations, in which only the

hydrostatic component of the deformation tensor was taken

into account. The results of such calculations are shown

in Fig. 2 by light symbols. It can be seen that in this

approximation, neither the energy of electrons, nor the

energy of holes, nor, respectively, the energy of excitons

have the minimum, i.e., the presence of the optimal form

factor of the pyramidal QD is caused by the complex

structure of the stressed state.

Obvious and natural approach to changing the localization

of charge carriers in a QD is to change its dimensions.

In this case, the enhancement of localization is achieved

solely by reducing the quantum confinement energy. This

approach, however, has two significant limitations. First,

the given and, possibly, nonoptimal structure of the elastic

deformation field does not change significantly with the

change in the QD volume. Secondly, an increase in the size

of QD above a certain limit inevitably leads to the formation

of misfit dislocations [16,17], which is usually unacceptable

for the use of QD in electronic and optoelectronic devices.

Important advantage of strengthening the localization of

charge carriers in QDs due to the shape effect is that

this process should not lead to the formation of misfit

dislocations, since the total mechanical energy of the system

decreases in this process.

The results of calculating the elastic deformation energy

for various height ratios of typical InAs pyramidal QDs

showed that, at the constant QD volume, deeper localization

of carriers can be achieved by implementing the optimal

ratio of the pyramid height to its base H/L = 0.2. For

such QDs, the gain in energy can reach 0.1 eV. The shape

effect found is not specific to the material system chosen.

It can be stated with confidence that similar effects should

be observed in QDs based on various materials, including

traditional III−V, III-N, II−VI, Si−Ge.
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