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A kinetic model, a physical reason and a condition for stimulated by external infrasonic mechanical vibrations of

the formation of nanocrystals in an amorphous metal film. The nanostructural elements of the amorphous medium

are responsible for these processes: locally ordered nanoclusters and nanoregions containing free volume, which

contain two-level systems. When glass is deformed, two-level systems are excited, due to which they make a

significant contribution to inelastic deformation, structural relaxation, formation of nanoclusters and nanocrystals.

The physical mechanism of nanocrystallization of metallic glass during mechanical exposure includes, in addition

to the mechanism of local thermal fluctuations, also athermal mechanism of quantum tunneling of atoms or atomic

groups stimulated by inelastic deformation.
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Introduction

Amorphous metal alloys became widely used in electrical

engineering, radio and space engineering [1]. Amorphous

metal alloys with a nanostructure appearing as randomly

oriented nanocrystals in an amorphous matrix [2,3] have

unique mechanical properties. For nanostructuring of

liquid-hardened amorphous film, low-frequency mechanical

vibrations are used at a temperature well below the glass

transition temperature, while the deformation of the sample

remains within the elastic region [4]. TiNi-based amorphous

thin tape samples, 40µm thick, 1.6mm wide and 10µm

long were exposed for 10 minutes to 20Hz infrasound

with displacement amplitudes of 1µm and 4µm at the

temperature of T0 = 25◦C. The structure of the amorphous

alloy was tested by X-ray diffraction (XRD) technique and

high resolution transmission electron microscopy (HRTEM)
before and after low-frequency treatment. XRD and

HRTEM data testify that the initial alloy is completely amor-

phous; the structure of the sample exposed to mechanical

oscillations with an amplitude of 1µm is close to that of

the initially untreated sample(the short-range order changes

and the free volume decreases); nonspherical clusters with

regular atomic positions and sizes of 3−5 nm arise in the

amorphous matrix in the structure of the sample exposed to

mechanical oscillations with an amplitude of 4µm.

It was established [4] that the mechanical action slightly

reduces the latent crystallization heat, i.e. the free energy

of state with nanocrystals slightly decreases compared to

the free energy of the amorphous state. The chemical and

phase compositions of alloys with and without nanocrystals

are the same, so the reason behind infrasound stimulation of

nanocrystallization is not related to diffusion, being caused

by collective atomic rearrangements during structural relax-

ation.

Further experimental studies showed [5] that the increase

of oscillations duration to 2 h enhances the size of clusters,

and their growth can be different in different directions.

After mechanical oscillations within 4 h the film acquires

a crystalline structure consisting of irregularly shaped grains

of different crystal-lattice orientations, with amorphous

islands embedded in them.

The influence mechanism of mechanical oscillations on

the nanocrystallization of amorphous material remains un-

clear.

According to classical ideas [2,3,6], crystal nucleation in

amorphous alloys can take place following the homogeneous

or heterogeneous mechanism. In the vicinity of glass

transition temperature, homogeneous nucleation takes place

through fluctuational (spontaneous) nucleation with a radius

greater than the critical one [2,3,6]. Below the glass

transition temperature, heterogeneous nucleation (on the

defects, boundaries, etc.) [2,3,6,7] and the nucleation driven

by
”
frozen-in“ crystallization centers play a significant role

in the crystallization process.

However, typical densities of heterogeneous nuclei in

metallic melts make 1014−1012 m−3. Even in amorphous

alloys with no nanoscale crystallites, the crystallite den-
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sity visibly exceeds those values (for example, in the

Fe80B20 alloy the crystallite density makes 1018 m−3 [9]).
In nanostructured systems (e.g., in Cu−Ti [10]) alloys) the

crystallite density can reach 1025 m−3, so the major part of

crystal nuclei are most likely to be formed by homogenous

nucleation during annealing.

The analysis of physical conditions of nanocrystallization

by stationary annealing and mechanical action [2–5] shows
that the mechanisms of amorphous film nanocrystallization

in those impacts differ significantly. In thermal annealing,

the sample temperature is much higher than the room

temperature, the nanocrystallization proceeds slowly and is

largely homogeneous, and nanocrystals are formed through-

out the volume, by way of thermofluctuation.

In mechanical action, the temperature of the

medium equals room temperature, so the probability of

nanocrystal formation by ordinary thermofluctuation is

much lower than at annealing temperature, due to the

high activation energy of nanocrystal formation process.

However, mechanical oscillations with an amplitude of 4µm

produce significant shear stresses in the film. At a critical

value of shear stress, the medium loses its shear stability,

and inelastic irreversible deformation occurs. Therefore,

the mechanism of metallic glass nanocrystallization in

mechanical action should include, apart from the local

thermal fluctuations, athermal quantum tunneling of atoms

or atomic groups [11–13], stimulated by inelastic irreversible

deformation. Inelastic deformability of amorphous metallic

alloys, their ability to structural relaxation and formation

of nanocrystals are associated with the collective inter-

atomic metallic bonding in which collective atomic displace-

ments [2,3] can be accomplished much easier. Therefore,

in constructing the mechanism of inelastic deformation,

of structural relaxation and nanocrystallization of metallic

glass, the influence of the electronic subsystem [14–16]
should be taken into account, and specifically for metallic

glass, the localization of the conduction electron in the

nanometer potential well and phason [16] formation.

The aim of this paper is to describe a potential physical

mechanism, kinetic model, physical cause and condition

of the first order infrasound-stimulated non-equilibrium

transition in a metal film from the amorphous state to a

nanostructure. This approach should take into account both

thermal and athermal mechanisms of inelastic deformation,

structural relaxation, and nanocrystallization, and also, the

localization of the conduction electron in the potential well

of the emerged nanocrystal, and phason formation.

1. Physical mechanism of inelastic
deformation of metallic glasses

Inelastic deformation is explained by local static

atom/atomic group displacements from their initial equi-

librium positions to new equilibrium positions located at

a less than an interatomic distance away from their initial

positions, in response to an applied shear stress σ [17–
21]. The probability of such atomic rearrangement through

thermal fluctuation is proportional to exp
(

− (Ea−σ a3
0
)

kT

)

,

where Ea is the energy activation barrier of rearrangement,

and a0 is the interatomic distance. In plastic deformation

it is assumed that (Ea−σ a3
0) ≤ 0, while in inelastic de-

formation (Ea−σ a3
0) > 0, therefore inelastic deformation

is thermoactivated. However, the inelastic deformation

effect is observed experimentally at cryogenic temperature

(77K) [22], where the thermal fluctuation energy is low

(0.007 eV), and at lower temperatures [23]. Therefore,

it is important to establish the physical mechanism of

inelastic deformation of metallic glasses within the room

temperatures range and below.

The first microscopic model of elementary cooperative

inelastic rearrangements in metallic glasses based on the

concept of homogeneously distributed free volume was

proposed by Argon [17]. The model [18] assumes that

due to the glass structure heterogeneity, regions arise

in it with a free volume excessive with respect to the

”
ideal structure“-̃– the

”
relaxation centers“. An activation

energy spectrum model [19], and also, a directed structural

relaxation model oriented by an external force [20] are

commonly used nowadays. The model [21] proposes a

method to describe the local structure of amorphous alloys

based on the concept of n-, p- and τ -defects.

The [24] paper proposes a polycluster model of amor-

phous state structure in which elementary rearrangements of

atomic configurations take place at intercluster boundaries,

through exposure to external forces, this happening through

thermal fluctuations at high temperatures, and through

quantum tunneling at low temperatures. It is also worth

mentioning earlier works [25,26] that had a significant

impact on the modern concepts of inelastic deformation

in solids. It was shown [25] that if impurity atoms have

high mobility, e.g. as hydrogen in metals, then diffusion

relaxation occurs under strain gradient conditions. The non-

diffusive mechanism of martensitic phase transformation is

proposed in [26], according to which the lattice cell of a

new phase is formed as a result of spontaneous distortion

(inelastic rearrangement) of the old phase cell.

Comparing the polycluster model [24] and the free

volume model [17–21] note that in the latter, the stress-

induced inelastic atomic rearrangements occur in the re-

gions of empty cavities localization, the availability and local

structure of those not being associated with the existence of

local ordering. Therefore, regardless of the free volume

nature, origin and distribution it plays a crucial role in

inelastic deformation and structural relaxation in liquid-

hardened metallic glasses.

The mechanical properties of metallic glasses are struc-

turally sensitive, so they depend on the method of amor-

phous state preparation [2–5]. During liquid
”
hardening“

dislocations, disclinations and other defects are unlikely to

appear in the system, so in order to create a mechanism

of inelastic deformation, structural relaxation in hardened
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metallic glass, it is most adequate to use a free (excess)
volume model [17–21] and a polycluster model [24].
Of particular interest are the structural elements of the

amorphous medium (
”
relaxation centers“) that contain free

volume and can be rearranged not only through thermal

fluctuations, but also through quantum tunneling. An

atom moving in the double-well potential created by the

surrounding atoms, or a group of atoms that can form two

or more configurations with slightly different energies with

all other atoms in the structure remaining essentially the

same, is a two-level system [11–13,24]. The transition of

an atom from one well to another, or the transition of one

atomic arrangement to another, meaning the transition from

one energy level to another can occur through quantum tun-

neling at room and lower temperatures. This occurs when

the two-level system is about to degenerate, i.e., the levels

of zero atom oscillations in each of the neighboring wells,

without regard to tunneling, should have little difference.

The initial resonance detuning of 10 ≪ 1 eV, and the initial

tunneling frequency of ω0
K = ω0 exp

(

− a
adB

)

, on the one

hand, should be much lower than 10, for the initial level

splitting E0 =
√

12
0 + ~2(ω2

K)2 to be small (∼ 1), and on

the other hand, not too small to allow tunneling to be

manifested during the experiment.

Here adB is the de Breuil wavelength, a is the

width of the potential barrier in the double-well potential

ω0 ≈ 1013 Hz.

In order to estimate the atom tunneling significant

parameters, let us make a model calculation. Let us

assume that an atom in a free-volume nanodomain finds

itself in a binary potential, or a group of atoms exists

capable of forming two configurations with slightly different

energies [11–13,24]. The potential energy of the system can

be represented as the total of two single-well potentials, UL

and UR . At the reference time, in the absence of mechanical

load, the left (L) and the right (R) potential wells have

different depths, the left well being deeper than the right

one. The impact of an external mechanical force on the

system results in a change of the distance between the atoms

in the medium (deformation), which, in turn, changes the

shape of the double-well potential.

Let us assume that the wave functions 9L, 9R and

energy eigenvalue EL, ER for the Schrödinger equation with

single-well potentials UL,UR are known. The complete

Hamiltonian of a one-dimensional system with a double-

well potential UL + UR is written as [27]:

H = − ~
2

2m
∂2

∂x2
+ UL + UR,

9 = aL9L + aR9R, 1 = EL − ER. (1)

Assuming a weak overlapping of the wave functions 9L

and 9R (S =
∫

dx9L9R ≪ 1), let us find the stationary

level energy E±

E± =
1

2
[EL + ER ±

√
D], D = 12 + 4UL

LRUR
LR,

UL
LR =

∫

dx9LUL9R (2)

and stationary states 9± in which the atom is delocalized

between the two wells. A linear combination of stationary

wave functions 9(x , t) satisfying the Schrödinger time

equation with the Hamiltonian (1) and the initial condition

9(t = 0) = 9L, allows identifying the probability of finding

the atom in the left well

W (t) = a(t)2 = 1− 16(1+
√

D)2UL
LRUR

LR
[

(1+
√

D)2+4UL
LRUR

LR

]2
sin2

(

√
D

2~
t

)

,

a(t) =

∫

dx 9(x , t)9L(x). (3)

W (t) is a periodic time function oscillating from one to a

certain minimum value to be determined by the resonance

detuning 1 and by the value of the product UL
LRUR

LR .

If 1 = 0, then

W (t) = 1− sin2
(

√

UL
LRUR

LR

~
t

)

.

The probability of finding an atom in the left well varies

from one to zero with the period of

τ =
π~

√

UL
LRUR

LR

,

and the atom spends the same amount of time in both wells.

If 12 ≫ 4UL
LRUR

LR , then

W (t) = 1− 4UL
LRUR

LR

12
sin2

(

1

2~
t

)

.

The atom stays in the left potential well almost all the

time. When the external mechanical force is equal to

zero, the 1 < 0, 12 ≫ 4UL
LRUR

LR scenario is implemented

and the atom only stays in the left well. With the critical

deformation value, the 1 = 0 situation is reached, and the

atom tunnels into the right well. Further increase of the

strain leads to 1 > 0, 12 ≫ 4UL
LRUR

LR case, and the atom is

only found in the right well. Since inelastic displacement

of an atom is an elementary act of structural relaxation

of the medium under load and is accompanied by stress

relaxation, it leads to a change in the atom positions from

the immediate surroundings and
”
freezing“ of the modified

form of the double-well potential. As a result, the atom

does not return to the left well but remains in the right well

after the load is removed. This is how elementary inelastic

deformation occurs in metallic glass at T = 0.

The energy level splitting corresponding to two atomic

arrangements between which the transitions occur is ex-

pressed through 1 and ~ωK =
√

4UL
LRUR

LR by the following

relation: E =
√

~2ω2
K + 12. There are many such two-level

systems (relaxation centers) in glass that are characterized

by the difference between the energies (resonance detuning)
1 in the two states and the tunnel transition frequency

ωK = ω0 exp
(

− a
adB

)

. Both those values are statistically
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distributed within certain intervals. A study of the

distribution of double-well potentials parameters testifies of

the potential availability of two groups of such potentials —
soft (with the inter-well barrier V ∼ 10−4−10−3 eV), and
hard ones (V ∼ 10−1−1 eV) [11–13,24] ones. In the

temperature domain T ≈ 1−300K, thermal hoppings are

activated between the states whose barrier value makes

V ≤ 10−4−2.4 · 10−2 eV, so a hard potential quantum

tunneling mechanism is more likely for a two-level system.

In one-particle model of phonon interaction with two-

level systems [11–13,24], the seed energy difference 1,

also called the asymmetry parameter, is renormalized,

and the distance between the two levels of the two-

level system becomes equal to E =
√

~2ω2
K + 12. In real

systems, transitions are possible between those diagonal

states. They are conditioned by the connection of the two-

level system with oscillations of the environment atoms and

are accompanied by the emission or absorption of phonons.

In transition of the phonon wave the atoms forming the

potential curve of the two-level system are displaced. This

distorts the individual wells of the curve thus leading to

a shift in δ1 seed levels. The shape of the potential

barrier also changes causing a change in the seed tunneling

frequency δωK :

δ1 = B i jεi j , δωK = Di jεi j, εi j =
1

2

(

∂ui

∂x j
− ∂u j

∂x i

)

. (4)

Here B i j, Di j are the tensors of deformation potentials

depending on the local structure of the glass in the point of

two-level system location, εi j is the strain tensor expressed

through the displacement vector components ui . The energy

per atom over a deformation cycle ε = 4 · 10−4 is equal to

ea ≈ 1 · 10−6 eV, so δ1 ≈ ea ≈ 1 · 10−6 eV. As 10 < 0, we

can estimate the |10| ≈ δ1 ≈ 1 · 10−6 eV and the maximum

value of ωK ≈ 109 s−1.

In glass deformation two-level systems are excited, so that

they make a significant contribution to inelastic deformation,

structural relaxation and the formation of nanoclusters and

nanocrystals. (4) demonstrates that the morphology (shape)
of nanoclusters and nanocrystals formed during inelastic

deformation is anisotropic being determined by the tensor

of strain potentials which depend on the local structure of

glass in the place where the two-level system is located.

Let us investigate the tunneling transition of an atom from

one potential well to another at a finite temperature using

the density operator formalism ρ [28]. In this case the atom

tunneling between the wells interacts with the thermostat

(the solid-phase environment maintaining its temperature

during transitions). Using 9L, 9R eigenvectors as basis

vectors, we obtain differential equations for the matrix

elements of the density operator ρ, to the S accuracy.

i~
∂ρLL

∂t
= U(ρRL − ρLR) − i~

τLL
(ρLL − ρ0

LL),

U ≡ UL
LR = UR

LR, τi j = τ ji, i, j = L, R, (5)

i~
∂ρRR

∂t
= U(ρLR − ρRL) −

i~
τLL

(ρRR − ρ0
RR),

ρ0
j j =

e−
E j
kT

∑

i
e−

Ei
kT

, ρ0
j 6= j = 0, (6)

i~
∂ρLR

∂t
=

(

1− i~
τLR

)

ρLR −U(ρLL − ρRR), ρLR = ρ∗
RL,

(7)

The diagonal matrix element ρLL means that it is proba-

bilistically possible to find an atom in the left well. For the

sake of simplicity, the system under study is characterized

by two relaxation times: the longitudinal relaxation time of

the system τLL = τR with an atom in the left (right) potential
well, and τLR = τRL — the transverse relaxation time of

non-diagonal matrix elements. If the period of quantum

oscillations is much shorter than the time of longitudinal

and transverse relaxation, the process is coherent; and

the probability of tunneling is an oscillatory function of

time, i.e it is described by quantum kinetics. When the

atom tunneling time significantly exceeds the longitudinal

or transverse relaxation time, coherence is disturbed, and

the probability of finding a particle in a certain state can be

derived from the solution of classical kinetic equations.

Let us estimate the T∗ temperature at which the quantum

sub-barrier tunneling frequency of the atom ωK becomes

equal to the frequency of the over-barrier fluctuation

hopping ωT . Using Gamow formula and Arrhenius law

and setting the exponents equal, we obtain

ωK = ω0e−
a

adB , ωT = ω0e
− V

kT ,

adB =
~√
2mV

, T∗ =

√

V
2m

~

ak
, (8)

where adB is the de Breuil wavelength, V, a is the height and

width of the potential barrier in the double-well potential.

(8) demonstrates that T∗ increases in proportion to
√

V and

with m growing, and decreases proportionally to
1

√

m ,
1
a .

For a two-level system with a hard potential, the

values V ≈ 1 eV, m ≈ 10−25 kg, adB ≈ 0.56 · 10−12 m

are characteristic. At the barrier width of

a = 3 · 10−11; 1.5 · 10−11; 0.9 · 10−11 m (0.1; 0.05; 0.03
of interatomic distance) we get T∗ ≈ 65; 216; 721K

and quantum tunneling frequency ωK ≈ 10−10; 20; 105 Hz,

respectively. For a structural transformation with local

atoms displacements much smaller than the interatomic dis-

tance, the tunneling effect is significant for room tempera-

tures, being a core effect for lower temperatures. Therefore,

a possible physical mechanism of inelastic deformation at

room temperature is quantum tunneling of certain atoms in

the double-well potential, or of atomic groups. The ability

of amorphous alloys to inelastic irreversible deformation, to

structural relaxation, and to formation of nanoclusters and

nanocrystals is associated with the collective interatomic

metallic bonding with which collective atomic displacement

processes can be much more easily accomplished.
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2. Localized electron states in
the potential nanometer well,
and phason formation

Let us assume that the electron moves in a three-

dimensional potential well, spherically symmetric with

respect to the center of force. In this case, the potential

energy only depends on the distance from the electron

to the center of force — U(r). Let us assume that the

three-dimensional potential well has the following form:

U(r) = −U0 at r < a , and is equal to zero at r > a . In

the spherical coordinate system, the Schrödinger equation

for stationary states has the following form [27]:

1

r2
d
dr

(

r2
d

dr
9

)

+
2m
~2

(

E −U(r)
)

9 = 0. (9)

Let us introduce a new function 8 = r9. Then the

equation (9) can easily be reduced to the form

d2

dr2
8 +

2m
~2

(

E −U(r)
)

8 = 0. (10)

This equation is mathematically identical to the

Schrödinger equation for the one-dimensional case [27].
However, a boundary condition should be taken into

account that at r = 0 the function 8 should go to zero,

because otherwise the wave function 9 = 8
r would become

infinite. Then, to solve the equations (10) finite at r = 0 and

converting to zero at r → ∞ we can take

8 = B sin(kr)at r ≤ a,

8 = C exp(−αr) at r > a,

k =

√

2m(E + U0)

~2
, α =

√

−2mE
~2

(11)

(as we are considering a particle inside a potential well, we

should assume E < 0). Thus, the problem was reduced to a

problem of electron motion in a one-dimensional potential

well, so the energy levels are defined in the same way. The

only difference is that now it is necessary to discard the

states with even wave functions only leaving the states with

odd wave functions.

The fundamental difference between a one-dimensional

potential well and a three-dimensional potential wells is that

for a one-dimensional well, there always exists at least one

eigenvalue of energy with an even wave function. In the

case of a spherically symmetric rectangular well, this may

not be the case. From the equation k2 + α2 = 2m
~2

U0 it is

clear that if

2mU0a2

~2
<

(

π

2

)2

, i.e. U0 <
π2

~
2

8ma2
, (12)

then the curve set by the equation tg
( ka

2

)

= − k
α
will never

intersect the circle set by the equation k2 + α2 = 2m
~2

U0.

This means that if condition (12) is satisfied, no discrete

energy spectrum level will appear in the potential well

because the well power is too low.

Substituting the values of the fundamental constants —
~ ∼= 1 · 10−34 J, the electron mass m = 9 · 10−31 kg, for

the radii of the first, second, third coordination sphere

a1 = 0.35 · 10−9 m, a2 = 0.7 · 10−9 m, a3 = 1.05 · 10−9 m,

we obtain U0(a1) = 0.7 eV,respectively U0(a2) =
= 0.18 eV, U0(a3) = 0.08 eV. From physical grounds

it follows that a perfect local order can propagate starting

from the first coordination sphere, and the minimum radius

of the potential well is equal to the interatomic distance

a1 = 0.35 · 10−9 m. For an electron localized state to occur

in a potential well with a minimum radius, the depth of

the potential well of the produced nanocrystal should be

approximately equal to 1 eV.

The principal condition for the production of fluc-

tuons [16] is the mobility of the atomic system ensuring its

potential rapid rearrangement and production of fluctuations

with a minor change of the thermodynamic potential.

Such situation is implemented near the first kind phase-

transition point from amorphous to crystalline state, where

the densities of thermodynamic potentials of both structures

become close. With high interphase surface energy inherent

to the solid-phase transformation, the fluctuating formation

of the crystalline phase region leads to a significant change

in the thermodynamic potential and can be unstable (non-
equilibrium). However, in case of an attraction of the

conduction electron to the crystal phase region, the electron

can be localized in it. If the related decrease in electron

energy exceeds the increase in thermodynamic potential

energy during the formation of the crystalline phase region,

then the fluctuation stabilizes. The resulting thermodynam-

ically stable formation of a region of a new phase with an

electron localized in it (non-equilibrium if an electron is not

available) is called a phason [16]. As shown in Sect. 1, the

formation of the nanodomain of the crystal phase can also

occur through quantum tunneling stimulated by inelastic

deformation, so under such conditions localization is also

possible of the conduction electron and phason production

in the crystal phase nanodomain.

In the simplest case, the phason can be described as a

spherical nanoparticle of the crystalline phase of R radius,

with a potential well corresponding to it, −U in depth,

relative to the average potential energy of the amorphous

state. The change in the thermodynamic potential 18 is

expressed by the formula

18(R) =
4

3
πR3ϕ′ + 4πR2σs + Ee(R),

Ee(R) = −U +
~
2k2

2m∗

, (13)

where Ee(R) is the electron energy in a potential well, −U
in depth, and m∗ is the effective mass of the electron.

Here ϕ′ < 0 is the difference of thermodynamic potentials

densities of crystalline and amorphous states, σs is the

Technical Physics, 2022, Vol. 67, No. 14
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interphase surface energy. The first term in (13) takes into

account the decrease of potential 8 of the amorphous state

during the phason formation, the second term is the increase

of 8 due to the formation of the phase boundary with

the additional surface energy σs , the third term describes

the negative contribution to 18 of the energy of localized

conduction electron.

Let us make sure that 18 falls below zero (and phasons

are stable) at U above certain value U0. The minimum value

of 18 corresponds to the critical value of R0 determining

the radius of the stable phason. Let us determine the value

of R0. Let us consider that a stable phason corresponds to a

bound electron state Ee(R) < 0. The kinetic energy of the

ground state of an electron in a potential well R in radius

can be estimated based on 2R = λ = 2π
k where λ is the

electron wavelength. Substituting k value in the expression

for the electron kinetic energy we can find

~
2k2

2m∗

=
~
2π2

2m∗R2
.

Then the formula (13) takes the form

18(R) =
4

3
πR2ϕ′ + 4πR2σs −U +

~
2π2

2m∗R2
. (14)

By setting ∂18(R)/∂R =0, we can find R4
0[4πϕ

′m∗R0 +
+8πσs m∗] = ~

2π2. With high interphase surface energy of

4π|ϕ′|m∗R0 ≪ 8πσs m∗ or |ϕ′|R0 ≪ 2σs we obtain

R0 =

(

~
2π

8σs m∗

)1/4

. (15)

The phason radius (15) is determined by the value of

interphase surface energy σs , and increasing σs causes

the radius of the phason to decrease. For values of

σs = 20 erg/cm2 [16] and |ϕ′|R0 ≪ 2σs the critical phason

radius makes R0 ≈ 0.5 nm. Based on physical grounds,

it is clear that the minimum radius of the phason is

equal to the interatomic distance a1 = 0.35 · 10−9 m, so

the R0 ≈ 0.5 nm value of the phason critical radius is quite

reasonable.

Let us now consider the conditions for the phason

formation. The phason is formed at such values of the

system parameters at which the value of 18(R) becomes

negative, i.e., at 18(R0) = 0. If condition ϕ′R0 ≪ 2σs

of (14) is satisfied, neglecting the first term in the right-

hand side, we obtain

4πR2
0σs −U0 +

~
2π2

2m∗R2
0

= 0. (16)

The (16) formula determines the critical value U0 of

the potential well depth at which the phason is formed.

Using (16), (15), we obtain

U0 = 8πσs R2
0 = (2π)3/2

√

~2σs

m∗

. (17)

With the above values of σs and ϕ′R0 ≪ 2σs , the

value of U0 makes roughly 1 eV. Since the estimates of

the phason radius coincide in terms of the order of

magnitude with the experimentally detected values of the

nanocrystal radius [2–5], it is reasonable to assume that the

nanocrystal formation mechanism in metallic glass is the

phason formation mechanism.

3. A non-equilibrium transition model
from amorphous structure to
nanocrystalline structure

The absence of long-range order in the mutual ar-

rangement of atoms is a defining feature of amorphous

bodies [29], so the description of their complex structure

based on long-range order parameter only, like for the

crystals, is insufficient. The order of body atoms positions

regardless of the types of the latter is called topological. The

local order of an atom is determined by the configuration of

its first coordination sphere, i.e. coordination polyhedron.

Experiments prove that in metallic glasses with strong

topological disorder, a rather perfect local order is often

realized, accurate to elastic distortions, coinciding with the

local order in stable or metastable crystalline bodies of the

same composition [2,3,30].

The structure of amorphous bodies obtained in

works [2,3,30] is well described by the conglomerate

model [31]. In this model, the structure of a solid

amorphous body consists of atom clusters with a certain

short range ordering that are immersed in a medium

with a less perfect ordering, such as a system of spheres

with random dense packing. Further development of the

conglomerate model was a concept of polycluster — a

solid consisting of locally regular clusters (LRC) being

populations of atoms with a perfect local order [24]. An

essential feature of the polycluster is that the cluster

boundaries are two-dimensional, of monolayer thickness.

Unstable amorphous structures relaxing to the polycluster

have regions with imperfect local order that are not two-

but three-dimensional. That is, the LRC are separated by

three-dimensional regions of local disorder. The structure of

the intercluster regions does not allow the atoms in them to

possess any perfect types of local order providing maximum

values of bonding energy. It is this circumstance that

allows concluding that the specific free energy in intercluster

regions is higher than in locally regular clusters. Due to

that, the relaxation of amorphous structures begins with

the rearrangement of intercluster regions, in which process

the atoms acquire local ordering. At the same time, both

finishing building of regular extensions of existing LRC and

forming new LRC is possible.

The latter relaxation option is energetically beneficial

when the gain in specific free energy of the new cluster

exceeds the new intercluster boundary formation energy.

Let us assume that the elastic deformation energy in the
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cluster grows in proportion to the volume, then, once a cer-

tain critical size is achieved, further LRC growth becomes

less beneficial than the boundary formation accompanied

by stress relaxation. In this case, during relaxation, the

amorphous body acquires a nanocluster structure given that

the initial structure is not very much different from the

nanocluster structure.

In order to describe the relaxation of an amorphous

(conglomerate) structure into a nanocluster structure, let

us introduce a dimensionless quantity characterizing the

structural state of the medium that is called the order

parameter η. Physically, the order parameter η is a volume

fraction of atoms in the LRC with a perfect local order

of a certain type, per unit volume. In a completely

amorphous state, the order parameter η is equal to zero,

and in a nanocluster structure, the order parameter η

is equal to one. The process of structural relaxation is

viewed as a temporal sequence of structural states of the

medium described by the order parameter variation in time,

i.e. η = η(t). We assume that the amorphous state is

unstable in terms of η parameter, i.e. it is not separated from

the locally stable nanocluster state by an energy barrier.

The structural relaxation of a deformable non-equilibrium

homogeneous system to a nanocluster structure is described

by the Landau−Khalatnikov equation [32] for the order

parameter
∂η

∂t
= −αη(T, A)(η − 1), (18)

αη(T, A) = ω0

[

e−
(Eα−σ ν)

kT + 2(A − Ac)e
− a

adB

]

, (19)

where αη(T, A) is the relaxation rate containing two mem-

bers of different physical nature. The first of them, a

”
thermal“one, is associated with local thermal fluctuations

of the medium, and the second, an
”
athermal“one, —

with tunneling of an atom or a group of atoms in a double-

well potential, stimulated by local inelastic deformation

of the medium. Eα is the activation energy of atomic

rearrangement, σ is the mechanical stress, and ν is

the specific volume per atom. 2(A−Ac) is the theta-

function which is different from zero when the amplitude

of infrasound A causes inelastic irreversible deformation.

In cyclic deformation of the medium the order parameter

increases in proportion to the number of cycles. With the

critical number of deformation cycles nc ≫ 1, i.e. over the

time tc = nctimp ≫ α−1
η , the medium fully relaxes into a

nanocluster structure.

The classical phase transition of the first kind gas−liquid

is implemented through the formation of a critical nucleus of

a new phase directly in the initial phase [32]. However, the
formation of nanocrystals in the amorphous phase volume

is greatly hampered by additional factors. For example,

the density of the crystalline phase differs from that of the

amorphous structure, so in order to form a nanocrystal the

elastic stresses should be taken into account occurring in

both the nanocrystal and in the amorphous matrix. Another

important factor preventing the formation of a nanocrystal

are the elastic stresses caused by the coherent coupling of

crystal and amorphous lattices. Additionally, low room-

temperature mobility of atoms in the amorphous state also

inhibits the formation of nanocrystals.

So, the elastic energy and other factors significantly

increase the energy of nanocrystals formation directly in

the amorphous structure, and this heterogeneous state

ceases to play the role of the activated complex for the

structural transition. Nanocrystals no longer correspond

to the lowest energy barrier separating amorphous and

crystalline structures. Therefore, in relaxation stimulated

by cyclic deformation, to begin with, another homogeneous

state is formed from the amorphous state — a nanocluster

structure playing the role of a pre-transition state, with

nanocrystals to be formed from it afterwards.

To describe the process of non-equilibrium transition of

the first kind from amorphous to nanocrystalline structure,

let us introduce another dimensionless quantity character-

izing the structural state of the medium that is called

the order parameter ϕ. In case of nanostructuring, let

us choose as the order parameter the normalized volume

fraction of atoms (normalized for the saturation volume

fraction) that are located in nanocrystals with perfect local

crystal order, per unit volume. In the amorphous state the

order parameter is equal to zero, and in the nanocrystalline

state the order parameter is equal to one. The structural

transformation process is viewed as a temporal sequence

of structural states of the medium described by order

parameter variation in time, i.e. ϕ = ϕ(t). We assume that

in terms of parameter ϕ the amorphous state is locally

stable, being separated by an energy barrier from the

locally stable nanocrystalline state located below in terms

of free energy. In cyclic deformation, the amorphous

structure first relaxes into nanocluster structure in terms of

the order parameter η, while the potential energy of local

static displacements of atoms (internal energy of inelastic

deformation of the medium) is accumulated. Therefore, the

energy barrier separating the amorphous and nanocrystalline

states by the parameter ϕ decreases. With critical number

of deformation cycles nc ≫ 1, the medium goes into a

nanocluster state when that energy barrier becomes very

small or even equal to zero. The medium becomes

unstable with respect to the formation of nanocrystals.

The structural relaxation of a deformable non-equilibrium

amorphous system to a nanostructured state is described

by the Landau−Khalatnikov [32] equation for the order

parameter ϕ

∂ϕ

∂t
= −αϕ(T, A)ϕ

(

ϕ − 1

2
[1− η]

)

(ϕ − 1), (20)

αϕ(T, A) = ω0

[

e−
(Eβ−Ee−σ ν)

kT + 2(A − Ac)e
− a

adB

]

, (21)

where αϕ(T, A) is the relaxation rate containing two

members of different physical nature. The first of them,

a
”
thermal“one, is associated with local thermal fluctuation

of the medium, while the second, an
”
athermal“one, —
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with tunneling of a group of atoms in a double-well potential

stimulated by local inelastic deformation of the medium.

Eβ is activation energy of nanocrystal formation, Ee — the

energy of localized conduction electron in local potential

well of the nanocrystal. In cyclic deformation of the

medium the order parameter η increases in proportion to

the number of cycles. With critical number of deformation

cycles nc ≫ 1, i.e. over the time tc = nctimp, the medium

fully relaxes into a nanocluster structure η → 1, and the

energy barrier in terms of parameter ϕ goes to zero, and

nanocrystal formation begins.

As the formation of nanocrystals directly in the amor-

phous structure is suppressed, the non-equilibrium transition

of the first kind has to pass through a pre-transition

state — a nanocluster structure, and it is described by

two parameters (η, ϕ) obeying equations (18), (20). From

the nanocluster state, the system goes to the nanostructured

state through the highest point of the lowest energy barrier

in the phase transition coordinate space (η, ϕ), i.e. the

saddle point.

Let us construct a model potential of this phase transition

F(η, ϕ) in the coordinate space of the phase transi-

tion (η, ϕ). The analysis conducted (18), (20) shows that

the transition with two coordinates (η, ϕ) can be modeled

by the following dependence of the model potential

F(η, ϕ) =
1

2
[η − 1]2 + A(η)ϕ2 + B(η)ϕ3 +

ϕ4

4
, (22)

A(η) =
1

4
[1 + η], B(η) = −1

2

[

1 +
η

3

]

. (23)

With η = 0 factors A(0) = 1
4
, B(0) = − 1

2
, and the

simplest potential F(0, ϕ) is double-well and symmetric.

With a fixed parameter 0 ≤ η < 1, function F(η, ϕ)
has two minima at ϕ1 = 0, ϕ3 = 1 and one maximum at

ϕ2 = 1
2

[1−η]. And for

1F(η, ϕ) = F(η, ϕ) − 1

2
[η − 1]2, 1F(η, ϕ1) = 0,

1F(η, ϕ2) =
1

64
[1− η]3

[

1 +
η

3

]

, 1F(η, ϕ3) = − η

12
.

(24)
Thus, with a fixed parameter 0 ≤ η < 1, function F(η, ϕ)

can describe the non-equilibrium transition of the first kind

from amorphous (ϕ1 = 0) to nanocrystalline state (ϕ3 = 1)
through the potential barrier 1F

(

η, ϕ2(η)
)

. Analyzing (22),
we can see that function F(η, ϕ) in the definition do-

main of variables 0 ≤ η < 1, 0 ≤ ϕ ≤ 1 has two minima

(η, 0), (η, 1); one maximum
(

0,
1
2

)

and three saddle

points (0,0), (0,1),
(

η,
1
2

[1−η]
)

. With η = 1 the potential

barrier 1F
(

η, ϕ2(η)
)

disappears, point (1,0) becomes an

unstable saddle-point, only one minimum (1,1) remains.

From the initial state (0,0), the final state (1,1) can be

immediately achieved using, for example, the stoichiometric

relation η = ϕ. But for that, a rather large barrier (almost

equal to the maximum) needs to be overcome, as 1F(η, ϕ2)

can be quite large. This is the classical mechanism of the

phase transition of the first kind.

In the transformation amorphous state− nanostructure,

the transition barrier is too large due to the elastic energy

of nanocrystal formation. But there is another way for

that — through the pre-transition state (η → 1, 0). In this

state ϕ2 = 1
2

[1−η] tends to zero, so the barrier to be

overcome in order to get to the nanostructured state also

tends to zero 1F(η, ϕ2) → 0. It is much more beneficial

to first make a transition along coordinate η from 0 to 1 as

this leads to a drastic decrease of barrier 1F(η, ϕ2) along

coordinate ϕ. And only afterwards to make the transition

along coordinate ϕ from 0 to 1.

4. Assessment of model parameters
and conclusions

Let us estimate the density of the stored potential

energy of static displacements of the atoms (inelastic
deformation) upon infrasonic exposure of the amorphous

film. The film size is known from the experiment [4,5]:
its length is l = 1 · 10−2 m, r = 1.6 · 10−3 m, its thickness

is d = 4 · 10−5 m. Cyclic mechanical exposure time is

10min, exposure frequency is 20Hz. The infrasound tensile

displacement amplitude is A = 4 · 10−6 m, the relative lon-

gitudinal elongation of the film making ε = A
l = 4 · 10−4. It

is known that the potential energy density of homogeneous

longitudinal elastic deformation is e = E
2
ε2, where E is the

longitudinal elasticity (Young’s modulus). The amorphous

film is an alloy with nickel (45 percent) and titanium

(41 percent) being its main elements. It is known that

EtextNi ≈ 220GPa, ETi ≈ 110GPa, their average value being

E ≈ 165GPa. Given the average value of E ≈ 165GPa and

relative elongation ε = A
l = 4 · 10−4, the potential energy

density makes e ≈ 1.3 · 104 J/m3.

For clarity, let us calculate the potential energy of ho-

mogeneous longitudinal elastic deformation per an atom of

the medium. As the concentration of atoms in the medium

is approximately equals 0.9 · 1029 atom/m3, the energy per

atom per deformation cycle equals ea ≈ 1 · 10−6 eV/atom.

Over the time of infrasound exposure, n = 12 000 deforma-

tion cycles occur, so the energy input to the system during

the entire exposure time makes nea ≈ 1.2 · 10−2 eV/atom.

Obviously, only a small fraction (e.g., 10 percent) of this en-
ergy can be converted into the potential energy of inelastic

deformation. Therefore, the value of the stored potential en-

ergy of inelastic strain makes 0.1nea ≈ 1.2 · 10−3 eV/atom,

which is less than the kinetic energy of an atom at room

temperature kT0 ≈ 0.024 eV/atom.

The latent heat of amorphous-crystalline transformation,

determined through the temperature difference (differential)
of the amorphous and crystalline states of the medium

1T ≈ 150K [33] is known to make k1T ≈ 0.012 eV/atom.

Experiments proved [4] that over 12,000 cycles of in-

frasound exposure the heat of the amorphous-crystalline
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transformation slightly decreases. Therefore, the free energy

of the amorphous state with nanocrystals gets slightly

lower compared with the free energy of the amorphous

state. It is reasonable to assume that the latent heat of

amorphous state transformation into nanostructured state

is much smaller than k1T ≈ 0.012 eV/atom, for example

0.1k1T ≈ 0.0012 eV/atom. Thus, the latent heat of trans-

formation of amorphous state into nanostructured state

0.1k1T ≈ 0.0012 eV/atom, is equal, in terms of order

of magnitude, to the value of stored potential energy of

inelastic deformation 0.1nea ≈ 1.2 · 10−3 eV/atom.

Therefore, we can conclude that the physical cause

and condition for the instability onset of the amorphous

state relative to the transition to the nanostructured state

(formation of nanocrystals) is the accumulation of potential

energy of inelastic deformation to a critical value equal to

the latent heat of transformation of the amorphous state into

nanostructured state.

The estimated stored potential energy density of inelastic

deformation, the identified physical reason and condition of

the amorphous state instability allows defining the following

physical phenomenon of the non-equilibrium transition to

the nanostructured state, as well as possible microscopic

mechanisms of relaxation into the nanocluster state and the

appearance of nanocrystals.

We assume that on weak infrasound exposure with an

amplitude of 1µm the medium only experiences dynamic

displacements of atoms (vibrations of atoms near equilib-

rium positions), the medium relaxes slowly due to thermal

fluctuations, and the amorphous structure changes weakly.

External mechanical work turns into elastic oscillation

energy of the medium, and then such elastic energy of

vibrations (due to phonon-phonon interactions, phonon

scattering on a disordered lattice etc.) turns into the thermal

energy of the medium.

On high infrasound exposure with an amplitude of 4µm,

along with dynamic atomic displacements, the medium

experiences static atomic displacements to new equilibrium

positions (inelastic deformation), and the rate of amor-

phous medium relaxation into nanocluster state increases

significantly. External mechanical work is transformed

both into elastic energy of medium oscillations and is

stored as potential energy of static atomic displacements

(inelastic deformation). With each successive cycle of

mechanical loading, the inelastic deformation of the medium

grows, and the amorphous structure of the medium changes

progressively (the medium rapidly relaxes into nanocluster

state). Accordingly, the stored potential energy of inelastic

deformation of the medium consistently increases. With a

critical number of infrasonic oscillations the stored potential

energy of inelastic deformation achieves a critical value

(equal to the value of the latent transformation heat), at

which the energy barrier separating the amorphous and

nanocrystalline states disappears. The amorphous medium

becomes absolutely unstable in terms of nanocrystals for-

mation.

The physical mechanisms of medium relaxation into the

nanocluster state and infrasound-stimulated nanocrystals

formation at room temperature are as follows. At a

reference time, the medium is an amorphous matrix

with disordered nanodomains containing free volume, and

ordered non-crystalline nanoclusters distributed in it. Upon

a single infrasound exposure of the medium, an atom with

a free volume, at the nanocluster or nanodomain periphery,

located in a double-well potential, or a group of atoms

capable of forming two configurations with the energies

differing insignificantly, can both experience thermal fluctu-

ation (thermal mechanism) and quantum tunneling to new

positions (athermal mechanism). For a structural transfor-

mation with local static atomic displacements much smaller

than the interatomic distance, the tunneling frequency at

room temperature is greater than the thermal hopping

frequency. This means that at room temperature or below,

the athermal (quantum) inelastic deformation mechanism

prevails. As a result of inelastic deformation, the size of

the cluster with perfect local order increases, and a new

nanocluster with perfect local order can arise from the

nanodomain with a free volume.

As the temperature dependence of relaxation and tunnel

transition times is different, both mechanisms — thermal

and athermal — are implemented in the deformation of

metallic glasses. As the temperature goes down, the thermal

atomic motion freezes thus leading to an exponential

decrease in the relaxation rate according to Arrhenius’ law.

Consequently, at low temperatures the tunnel transition rate

exceeds the relaxation one, and coherent tunneling will

occur. With the temperature increase, the relaxation rate

increases faster than the tunneling one. Those quantities

first become equal and afterwards, the relaxation rate can

significantly exceed the tunneling rate. The transition

process becomes thermofluctuational. Thus, by changing

the temperature we can change the inelastic deformation

kinetics of metallic glasses from quantum to classical.

When repeatedly exposed to infrasound, the nanocluster

grows and reaches such critical size that its thermal

fluctuation — a less likely act of atoms rearrangement into

crystalline state — or quantum tunneling — a more likely

act of atoms rearrangement — creates a local potential

well where the bound conduction electron state occurs.

If an electron is attracted to a region of an unstable

crystalline phase and localizes in it, an electron energy

decrease can compensate for the surface energy of the

interphase and a stable formation — a phason — appears.

The phason radius is determined by the interphase surface

energy σs , and the growth of σs causes the radius of

the phase to decrease. Physically, the phason radius

cannot be smaller than the radius of the first coordination

sphere. For the values σs = 20 erg/sm2 the critical phason

radius is equal to R0 ≈ 0.5 nm. The critical value of

the potential well depth (relative to the average potential

energy of the amorphous state), i.e. the condition for phason

formation with R0 ≈ 0.5 nm makes approximately 1 eV. As

the critical phason radius value coincides, in terms of
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the order of magnitude, with the experimental value of

nanocrystal radius [2–5], it is reasonable to assume that the

nanocrystal formation mechanism in metallic glass is the

phason formation mechanism. When conduction electrons

are localized on the resulting nanocrystals, they drive

the system energy down, that resulting in stabilization

of the state with nanocrystals and formation of locally

stable nanostructure (relative to the globally stable crystal

structure).
It was proved experimentally [2–5] that the nanocrystals

morphology depends on the nanocrystallization method.

The difference in the nanocrystals morphology, isotropic

when annealed [2,3] and anisotropic in infrasound expo-

sure [4,5] is related to different nanocrystals nucleation

and growth mechanisms. In nanocrystallization by high-

temperature annealing, nanocrystals nucleation and growth

are controlled by thermofluctuational processes. However,

at room temperature the contribution of thermofluctuational

processes is small, and the inelastic deformation, structural

relaxation, and nanocrystallization run by way of quantum

transitions in two-level infrared-stimulated nanoscale sys-

tems. The anisotropy of the nanocrystal shape is determined

by the deformation potential tensor depending on the local

structure of the glass in the two-level system site.

Conclusion

Thus, the proposed kinetics model allows formulating

the cause, condition and microscopic mechanism of the

amorphous-nanostructural transformation in metallic glasses

initiated by exposure to infrasound at room temperature

and to quantitatively and qualitatively describe the results

and regularities proved by experiments.
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