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Two coupled quasiperiodic generators excited by external force
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A system of two dissipatively coupled generators, which can exhibit autonomous quasiperiodic oscillations,

excited by a harmonic signal, is studied. Lyapunov charts are presented that reveal the regimes of invariant tori of

different dimensions and chaos. Phase portraits in stroboscopic section and double Poincare section are presented.
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Introduction

It is known several examples of autonomous oscillators

capable of exhibiting quasi-periodic oscillations. This is

one of Chua’s circuits [1], the modified Anishchenko-

Astakhov oscillator [2–7], the family of autonomous os-

cillators with minimal phase space dimension [8]. Quasi-

periodic oscillations occupy a kind of intermediate position

between periodic and chaotic oscillations, but the dynamics

of autonomous systems with quasi-periodicity has been

little studied. At the same time, it is of fundamental

interest. Two coupled quasi-periodic oscillators are studied

in [9]. They demonstrate a sufficient number of interesting

phenomena, including the effect of
”
oscillator death“,

synchronized quasi-periodicity, etc. It is of interest to

study the excitation of such a system by an external

periodic signal, i.e. study of a kind of control over the

dynamics of coupled quasi-periodic oscillators. As we will

show, the structure obtained is quite complicated, it is

interesting to compare it with the problem of excitation

of two coupled van der Pol oscillators by harmonic sig-

nal [10–12].

1. Chart of Lyapunov exponents

In accordance with [9], the system of coupled quasi-

periodic oscillators is described by equations in which an

external action is added:

ẍ1 − (λ1 + z 1 + x2
1 − βx4

1)ẋ1 + ω2
0x1

+ Mc(ẋ1 − ẋ2) = a cosωt,

ż 1 = b(ε − z 1) − kẋ2
1,

ẍ2 − (λ2 + z 2 + x2
2 − βx4

2)ẋ2 + (ω0 + 1)2x2

+ Mc(ẋ2 − ẋ1) = 0,

ż 2 = b(ε − z 2) − kẋ2
2, (1)

where x1, y1 = ẋ1, z 1 are variables characterizing the first

oscillator, x2, y2 = ẋ2, z 2 are second oscillator variables,

1 is frequency mismatch of oscillators, MC is dissipative

coupling coefficient, ω is frequency of external signal, a is

its amplitude. Next, we will use the parameter values b = 1,

ε = 4, k = 0.02, λ = −1, β = 1/18, ω0 = 2π.

Figure 1, a shows the Lyapunov chart of the system (1)
without external influence (i.e., at a = 0) on the parameter

plane, the frequency mismatch 1 — the value of the

coupling MC [9]. Different colors show the types of modes,

the color palette is presented next to the picture. Modes

of
”
oscillation death“ OD, synchronous periodic modes P,

broadband quasi-periodicity mode BQ were visualized. In

Fig. 1 the designations Tn correspond to the n-frequency
torus. Note that for a flow system, one of the Lyapunov

exponents 3 is always equal to zero, and we will discard

it. Thus, the case 31 = 0 corresponds to the two-frequency

torus T2. An increase in the dimension of the torus by

one corresponds to an increase by one in the number of

zero Lyapunov exponents. For example, a three-frequency

torus T3 corresponds to the condition 31 = 32 = 0, and

so on. Chaos C and hyperchaos CH modes correspond

to one and two positive Lyapunov exponents: 31 > 0 and

31 >, 32 > 0.

Along the periphery of Fig. 1, maps of the excitable sys-

tem (1) are shown on the plane: frequency ω — amplitude

of external signal a at selected points of the autonomous

system for some characteristic modes: periodic mode (b),
two-frequency torus (c), three-frequency torus (d), four-

frequency torus (e) and chaotic mode (f).
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Figure 1. Lyapunov exponent charts of system (1): a — system without external influence, b−f — system with external signal. Parameter

values: b are 1 = 3.14, Mc = 4; c — 1 = 0.9, Mc = 4; d — 1 = 4.3, Mc = 0.2; e — 1 = 0.75, Mc = 0.05; f — 1 = 2.58, Mc = 1.8.

2. Illustration of dynamics
and discussion of results

Fig. 1, b represents the case of the periodic mode of the

autonomous model. As can be seen, in the excitable system,

a periodic regime is observed in the form of Arnold tongue

with a tip on the frequency axis, immersed in the region of

two-frequency quasi-periodicity. This is traditional for the

excitable model with limit cycle [13–15]. At the same time,

very narrow tongues of synchronization on subharmonics

and small regions of chaotic dynamics are observed.

Fig. 1, c corresponds to the case of a two-frequency

torus T2 in the autonomous system. The parameter values

are chosen in such a way that the synchronous quasi-

periodicity mode is realized in the autonomous mode, when

the phases of the oscillators are mutually locked, but the

system as a whole demonstrates quasi-periodicity [9]. At

small values of the signal amplitude a , three-frequency

tori are observed in Fig. 1, c. System of rather narrow

tongues of two-frequency modes, which are resonant with

respect to three-frequency tori, is built into the region of

their existence. At large values of the signal amplitude,

wide regions of two-frequency tori arise. Such structure is

quite natural — the external signal locks one of the two

frequencies of the autonomous model. At the same time, a

fairly large region of periodic modes arises. Its difference

from Fig. 1, b is the presence of a threshold in terms of

the impact amplitude. Thus, the external signal in this case

locks both frequencies of the autonomous system. Similar

effect is also observed in the system of two coupled van der

Pol [12] oscillators. When acting on coupled oscillators in

the beatings regime, with the sufficient amplitude of signal

and a certain frequency mismatch, the external signal locks

not only the directly excitable oscillator, but also the second

one (in this respect, it is interesting to compare Fig. 1, c and

Fig. 1, c from [12]).

Fig. 2 shows examples of characteristic phase portraits in

the non-autonomous system (1) in the stroboscopic section
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Figure 2. Projections of phase portraits (upper row) and corresponding Fourier spectra (lower row) at various points of the chart 1c;
f — normalized frequency, Sm — spectral intensity expressed in dB. Parameter values: a — ω = 3.25π, a = 100; b — ω = 3.25π,

a = 60; c — ω = 4.26π, a = 30.

(i.e, after the period of external action). One can see the

closed invariant curve corresponding to the two-frequency

torus (Fig. 2, a), the doubling torus of this type (Fig. 2, b),
as well as the three-frequency torus (Fig. 2, c). The bottom

row shows the Fourier spectra for these modes. It is worth

noting the enrichment of the spectra when a three-frequency

torus appears.

Figure 3 shows graphs of the three largest Lyapunov

exponents inside one of the tongues of two-frequency

regimes along the line ω = const (a) and in the
”
transverse“

direction a = const (b). In the first case, we can note

the doubling bifurcation of the two-frequency torus DT.

It corresponds to the point when one of the exponents

vanishes 31 = 0, while the exponent 32 remains negative,

except for the bifurcation point, when it turns out to be zero.

In the second case, we fix the bifurcation of two-frequency

torus SNT when the value of the Lyapunov exponent 32

becomes negative- from zero-value. Such bifurcation is a

saddle-node bifurcation of two-frequency torus [16] with

partial frequency locking, and the pair of two-frequency

tori is born on the surface of the three-frequency torus:

stable torus and saddle torus. At the exit from the region of

two-frequency quasi-periodicity, the merging of stable and

unstable tori is observed, which leads to the appearance

of three-frequency torus. Thus, the side boundaries of the

tongues of two-frequency tori in the chart in Fig. 1, b are the

lines of the saddle-node bifurcations of the tori.

Fig. 1, d and e show the Lyapunov charts for the case of

three- and four-frequency tori in the autonomous (without

signal) system. In Fig. 1, d one can see the tongue of three-

frequency torus immersed in the region of four-frequency

tori. The side boundaries of the tongue are the lines

of saddle-node bifurcations of the three-frequency torus.

Inside the tongue, vertical windows of two-frequency tori

are visible, the boundaries of which are also saddle-node

bifurcations. Inside the region of four-frequency tori, narrow

bands of three-frequency tori are observed, corresponding to

partial synchronization tongues at higher harmonics.

In Fig. 1, e in the case of a four-frequency torus in the

autonomous system in the presence of an external signal,

the tongue of three-frequency tori is retained, but it has a

small threshold on the signal amplitude. It is surrounded by

a region of four-frequency quasi-periodicity, in which a large

number of tongues of three-frequency tori are embedded.

In turn, at a small amplitude of signal, the region of five-

frequency tori arises, in which tongues of four-frequency tori

are embedded, leaned on the frequency axis of the signal.

The side boundaries of four-frequency tori are the saddle-

node bifurcations of these tori.

In Fig. 4, the top line shows the phase portraits of three-,

four-, and five-frequency tori for selected points of the chart

of Fig. 1, e. It should be emphasized that visually they are

practically indistinguishable. To single out three-frequency

tori, one should construct a double Poincaré section. Note

that the usual Poincaré section for the system under external

harmonic signal is a set of discrete points obtained as a

result of stroboscopic section. In order to plot a double

section, it is necessary to take into account only those points

from the mentioned discrete set that fall into some thin layer

of the phase space, for example, in this case, the condition

|y1| ≤ 0.01 was used. The result of a double section (i.e.,
stroboscopic section and section by plane y1 = 0) of the
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Figure 3. Graphs of the three largest Lyapunov exponents of the system (1) along the lines ω = 10.47 (a) and a = 23 (b) in Fig. 1, c.
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Figure 4. Projections of phase portraits (upper row) and double Poincaré sections (lower row) for three-, four- and five-frequency tori of

the system (1) for selected points of the chart shown in Fig. 1, e. Parameter values: a — ω = 2.25π, a = 80; b — ω = 4.15π, a = 110;

c — ω = 4.75π, a = 30.

phase space of system (1) is presented in Fig. 4 on the

bottom line. The double section of a three-frequency torus

consists of two closed ovals, in contrast to four- and five-

frequency tori (to distinguish the latter, double Poincaré

sections are not informative and it is advisable to apply a

triple section, for example, using an additional cutting plane

z 1 = −1).
Finally, Fig. 1, f shows the Lyapunov chart for the case

of the chaotic dynamics of the system without signal. In

this case, for small amplitudes of signal, as expected, a

chaotic regime is observed. However, with increase in

the amplitude of the signal, similar [13] effect of chaos

suppression by an external signal with the appearance of

a periodic (synchronous) mode, is observed. Feature of

the system under consideration is that the suppression of

chaos leads not only to a periodic mode, but also to modes

of two- and three-frequency tori. This fact is illustrated

in Fig. 5, which shows the phase portrait and the double

Poincaré section for the three-frequency mode (a). Also,

with an increase in the signal amplitude, one can observe

the evolution of chaotic dynamics, the formation of the so-

called hyperchaotic mode, which is characterized by two

positive Lyapunov exponents in the spectrum. Illustrations

of the chaotic and hyperchaotic modes are shown in Fig. 5, b
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Figure 5. Projections of phase portraits at various points of the chart in Fig. 1, f (upper row) and the corresponding Poincar’e double

sections (lower row). Parameter values: a — ω = 3.75π, a = 150; b — ω = 4.5π, a = 20; c — ω = 1.6π, a = 110.

and c, respectively. Thus, with the help of an external signal,

it is possible to control the chaotic behavior in a system of

two coupled oscillators, and both to stabilize chaos and to

complicate the evolution of hyperchaos.

In Fig. 1, f one can see that tongues of two-frequency

tori are embedded in the region of three-frequency tori

(upper right part of the chart, to the right of the main

tongue of two-frequency tori). These tongues, however,
”
are

inverted“, they expand with a decrease in the amplitude of

the signal and begin to overlap with the appearance of chaos.

Note that in this case, chaos with one positive Lyapunov

exponent, which is characteristic of the chaos that arose as

a result of the loss of smoothness of the invariant curve, is

mainly observed. Hyperchaos mainly develops to the left of

the main tongue of two-frequency quasi-periodicity.

Conclusion

Thus, the system of excitable coupled quasi-periodic

oscillators demonstrates a rich variety of modes based on

invariant tori of different dimension. Mainly, the system of

tongues of invariant tori immersed in the region of tori of

higher dimension, is observed. The boundaries of tongues

are saddle-node bifurcations of tori of the corresponding

dimension. Bifurcations of tori doubling are observed inside

tongues. External signal can initiate quasi-periodicity of

different dimension in the case of chaotic dynamics of

autonomous system. It is possible to control chaos: its

stabilization or evolution into the hyperchaotic regime.
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