
Technical Physics, 2022, Vol. 67, No. 12

01

Identification of fast hydrogen permeability parameters of gas separation
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The problem of parametric identification of some nonlinear models of fast hydrogen permeability of alloys for

membrane technologies for the release of high-purity hydrogen (on the example of alloy B1) is solved. Not only

diffusion in the bulk of the material is taken into account, but also physical and chemical processes on the surface:

adsorption, desorption and rapid dissolution. The mathematical software and the results of numerical simulation for

a three-stage breakthrough experiment with vacuum pumping at the membrane outlet from the structural material

under study are presented. The influence of the accumulation of atomic hydrogen on the surface has been studied.
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Introduction

Studies of the interaction of hydrogen isotopes with

various structural materials have different nature [1–5]:
protection against hydrogen corrosion, transportation of

hydrocarbon raw materials, rocket production, hydrogen

energetics, prospects of thermonuclear fusion.

In experimental practice, the methods of breakthrough

are mainly used (with or without vacuum evacuation from

the output side of the membrane from the material under

study) and thermal desorption spectrometry (TDS). General
analysis and practical recommendations are contained in

reviews [6,7]. Kissinger’s method is described in detail.

The corresponding models operate with the concentration

of absorbed hydrogen averaged over the sample volume

(see, in particular, [8]). Note the review of models

in the paper [9] and the analysis of the limits of the

Kissinger formula applicability in comparison with the

distributed model with reversible capture of the diffusant

by traps (the McNabb−Foster model) [20]. The effect of

trapping in various kinds of traps (heterogeneity of the

material structure) is the subject of the paper [11]. The

papers [12–14] present studies in the field of hydrogen

materials science for thermonuclear power engineering. The

general distributed model of dehydrogenation is presented

in [15], applied problems and corresponding models are

presented in [16–18]. Models taking into account various

stages of hydrogen transfer and numerical methods for

solving boundary value problems are described in [19–21].
In gas separation units, for example, for the separation

of extra-pure hydrogen the rather thin membranes with

a high throughput capacity are used. The materials are

searched with the required strength characteristics and

high capacity. According to preliminary experimental data

or theoretical considerations it is advisable to conduct a

series of computational experiments with various models

to evaluate the values of parameters and the influence

of various limiting factors (including those under extreme

operating conditions of the material) in order to narrow the

search range and identify the most effective modes, saving

the cost of expensive experiments.

The present paper is a continuation [21], which describes

in detail the experimental unit in IMET Ural Branch

of the Russian Academy of Sciences, on the basis of

which these studies were carried out. In this paper we

developed an algorithm for estimating the parameters of

the models under consideration without the stage of TDS

degassing and breakthrough without pumping out at the

outlet, which greatly simplifies the experiment. Let’s briefly

describe it. The membrane of the material under study

is a partition of the vacuum chamber and is preliminarily

degassed, the sample temperature is sufficiently high and

constant. The outlet side is evacuated and the outlet

hydrogen flow is measured using a mass spectrometer.

A constant pressure of molecular hydrogen is step-wise

created from the inlet side. After a certain time the

output flow reaches a stationary value. After that, the inlet

pressure level increases by two times. The experiment is

carried out with at least three temperatures to estimate the

parameters of the Arrhenius temperature dependences of

the coefficients. With the temperature increasing it is not

necessary to degas the sample again, i. e., the experiment
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can be carried out cyclically without depressurization of the

diffusion cell and the membrane degassing. The chamber

depressurization for repeated experiments can lead to a

change in the surface structure of the material (strictly
speaking, different materials). The cyclic option seems to

be more correct and requires only a slight modification

of the software. The uniqueness of the problem solution

of estimating the hydrogen permeability parameters is of

fundamental importance, since the experimental results on

extra thin membranes are extrapolated to the protective

structures of reactors, including the ITER project. Traps

(capturing material heterogeneities) certainly exist. But the

determining influence of capturing in the volume of the

essentially applied problem must be substantiated. In the

problem of gas separation for thin and rapidly permeable

membranes the volume traps are neglected due to the

relative small volume and the high degree of the material

homogeneity.

Under the conditions of fast hydrogen permeability

and sufficiently high temperatures (hundreds of degrees

Celsius), the following model of boundary conditions is

accepted as the base:

dq0/dt = 2µs p0 − bq2
0 + D∂x c|x=0, q0(0) = 0, (1)

dqℓ/dt = 2µs pℓ − bq2
ℓ − D∂x c|x=ℓ, qℓ(0) = 0. (2)

Let us refine the notations in (1), (2): q0(t) —
concentration of atoms (after dissociative chemisorption)
on the input surface

(

[q] = 1H/cm
2
)

, qℓ — on

output surface; µ = (2πmkT )−1/2 ≈ 2.474 · 1022
(

[µ] = 1H2
/Torr · cm2 · s

)

— gas kinetic constant; not

all hydrogen molecules dissociate into atoms, which reflects

the sticking coefficient s(T ); p0ℓ — pressures of molecular

hydrogen in the inlet and outlet chambers of the diffusion

cell; b(T ) — desorption coefficient; D(T ) — diffusion

coefficient. We calculate concentrations and flows in

atoms 1H , the temperature dependences of the coefficients

are assumed to be Arrhenius (but each experiment of a

triple pressure jump at the inlet is carried out at a fixed

temperature), [T ] = K.

As coupling conditions on the surface and in the near-

surface volume at sufficiently high temperatures, we take

c0,ℓ = g(T )q0,ℓ (x = 0, x = ℓ), where g(T ) is fast dissolu-

tion coefficient.

A more complex model: the diffusion equation (including
with reversible capture by various kinds of defects z ,
including possible inclusions of hydride phases) [19]

∂tc = D∂2x c −
m

∑

ν=1

[

a−

ν

[

1− Zν

]

c(t, x) − a+
ν z ν(t, x)

]

,

∂tz ν = a−

ν (T )
[

1− Zν

]

c(t, x) − a+
ν (T )z ν(t, x),

will not be used, since in a practically negligible small

volume of homogeneous fast-permeable alloy the number

of defects is relatively insignificant. Here z ν(t, x) —
concentrations of hydrogen atoms captured by defects of

various types; a∓
ν — coefficients of absorption and release

of H traps; Zν ≡ z ν(t, x)/z ν
max — degree of saturation

(

z ν
max = max z ν

)

. For practical purposes, the capture

is taken into account in the simplest
”
integral“ form;

refinement of the geometry of defects and their distribution

would significantly complicate the model. If the defect,

for example, is not a microcavity, but an inclusion of a

hydride phase, then at the degassing stage the corresponding

coefficient a−

j (T ) is identically equal to zero, and the

value a+
j (T ) is positive only after reaching the critical

temperature: T (t) ≥ Tcrit. Due to different bond energies

(coefficients Ea), a given number of peaks can be achieved.

Specify the required numerical data. Membrane mate-

rial — alloy V1 (in wt%): Pd–15Ag–25Au–0.7Pt–0.7Ru–
0.2Al. Membrane thickness — ℓ = 0.01 cm; surface area

(each of two) — S = 0.4 cm2; the input and output

volumes are V1 = Vout = 2840 cm3, V2 = Vin = 1680 cm3

(notation V1,2 correspond to Fig. 1 [21]). Fixed membrane

temperature is T1 = 400◦C. The sample was preliminarily

degassed. Three constant inlet pressures: 21.2, 50.3,

82.1 Torr. Repeated cycles were carried out at the following

temperatures and pressures: 450◦C (21.8, 39.9, 61.1 Torr),
500◦C (14.9, 31.2, 51.5 Torr). There is no need to re-degas

the sample: we change the temperature of the diffusion cell

and again increase stepwise the pressure at the inlet, keeping

them constant until reaching the next stationary state of the

outlet flow.

1. Model refinement under experimental
conditions

1.1. Model taking into account H accumulation on
the output surface

In a short time, a practically linear distribution of

dissolved atomic hydrogen will be established in a thin

membrane with high hydrogen permeability (relatively
slowly moving quasistationary state). The initial distortion

is not critical, since integral relations will be used for

q0,ℓ . The initial stage with a low output flow will not

introduce significant distortion. Besides, the diffusion

equation complicates the difference scheme, since the

boundary conditions are not standard (I−II−III kind), and
methods for integrating ordinary differential equations are

enough in any mathematical package (the authors used the

freely distributed Scilab 6, since the programming language

is consistent with Matlab). Neglecting resorption at the

output of the powerful vacuum system, we obtain a system

of ordinary differential equations (ODE):

dq0/dt = 2µs p − bq2
0 − Dgℓ−1[q0 − qℓ], p = p0 = const,

(3)

dqℓ/dt = −bq2
ℓ + Dgℓ−1[q0 − qℓ], q0(0) = 0, qℓ(0) = 0.

(4)

Here we assume that atomic hydrogen (q̇ℓ(t) > 0, t > 0)
can accumulate on the output surface. The concentration
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gradients quickly reach quasistationary state, which allows

to approach them by a difference ratio.

1.2. Model not considering accumulation at the
output

If H accumulation on the output surface is insignificant,

then we arrive to the model

dq0/dt = 2µs p − bq2
0 − Dgℓ−1[q0 − qℓ], q0(0) = 0,

(5)

bq2
ℓ = Dgℓ−1[q0 − qℓ], qℓ(0) = 0, (6)

i. e. all diffusively penetrating hydrogen is immediately

”
carried away“ by desorption.

In the presented models by measurements (using a mass

spectrometer) we calculate the desorption flow density

J(t) = b(T )qℓ(t), t ∈ [0, t∗],

where t∗ — the time when flow J(t) reaches the stationary

value J(t) = J̄ = const. By shifting the origin of the

time reference, we describe all three successive transient

processes of reaching the stationary value.

The problem is to restore the parameter values from the

experimental data for, in particular, determination how sig-

nificant H accumulation on the output surface is. Estimation

of D, g, b, s then allows one to experiment numerically

without additional costs (including under extreme operating

conditions of the material).

2. Stationary modes analysis

Let us equal the derivatives q̇0,ℓ in (3), (4) to zero

and take into account the practically linear nature of the

concentration distribution in the volume:

2µs p − bq̄2
0 = J̄ = −Dcx |0 ⇒ q̄0 =

√

[2µs p − J̄]b−1,

bq̄2
ℓ = J̄ ⇒ q̄ℓ =

√

J̄b−1 ⇒ J̄ = Dgℓ−1[q̄0 − q̄ℓ ]

⇒ J̄ = X
[

√

2µs p − J̄ −
√

J̄
]

, X ≡ gD

ℓ
√

b
. (7)

There are three such equations (7), corresponding to the

pairs
(

p, J̄
) (

p ≡ p̄0

)

, and at three different temperatures

T = T̄ .
Let’s use, for example, the first two:

(

p1, J̄1

)

,
(

p2, J̄2

)

.

We divide the corresponding equations (7) one by another
(

J̄2 > J̄1

)

, reducing the set of parameters X :

J̄1

J̄2

−
√

2µs p1 − J̄1 −
√

J̄1
√

2µs p2 − J̄2 −
√

J̄2

= 0, µs pi > J̄ i . (8)

This equation is one-parameter and can be rewritten in a

more convenient form

f (s) ≡
[

J̄1

{

√

2µs p2 − J̄2 −
√

J̄2

}

− J̄2

{

√

2µs p1 − J̄1 −
√

J̄1

}]

· 10−24 = 0

(Fig. 1) and is solved numerically, taking into account

the inequalities indicated in (8). But s can also be

found analytically from a somewhat cumbersome quadratic

equation:

y =
√

2µs p1 − J̄1,

√

(

y2 − J̄1

)

p2p−1
1 − J̄2 =

√

2µs p2 − J̄2

⇒ F(y) ≡ a2y
2 + a1y + a0 = 0,

y >
√

J̄1, a2 = p2p−1
1 − J̄ 2

2 J̄−2
1 ,

a1 = 2J̄ 3/2
2 J̄−1

1

[

√

J̄2J̄−1
1 − 1

]

,

a0 = −J̄2

[

√

1− J̄2J̄
−1
1

]2

− J̄2 + p2p−1
1 J̄1.

So, the parameter s is found, and other pairs
(

pi , J̄ i
)

can

be used, followed by averaging s values. Returning to

equation (7), we define the complex X .

As a result, instead of (3), (4) we get the system

dq0/dt = 2µs p − bq2
0 −

√
bX [q0 − qℓ], q0(0) = 0, (9)

dqℓ/dt = −bq2
ℓ −

√
bX [q0 − qℓ], qℓ(0) = 0. (10)

Note that for already known s and X this is a system of two

ODEs with one parameter b. Varying it we achieve a good

approximation bq2
ℓ = J(t), where J(t) — the corresponding

experimental diagram. We emphasize that choosing b it is

necessary to approximate three transient processes at once

0 → J̄1 → J̄2 → J̄3, t ∈ [0, t∗], t∗ = t∗3. The numerically

one-dimensional problem of minimizing the root-mean-

square residual error is relatively simple. Knowing s, b,
it is impossible to determine g and D from the known

X = gD/[ℓ
√

b]. Therefore, it is necessary to look for

additional equations for the parameters.

For the simplified model (5), (6) (without taking into

account the atomic hydrogen accumulation on the output

surface), the algorithm is simplified: we express qℓ(t) from

the second equation and substitute it into the first one,

reducing the numerical integration to one ODE.

3. Estimation of diffusion and dissolution
parameters D, g

Let us use the fact that the stationary value c̄0 = gq̄0 is

relatively quickly established at the inlet due to the high

pressure. In this case, q̄ℓ ≪ q̄0. Usually the equilibrium

value is used in accordance with the Sieverts law c̄0 ∝
√

p.
But we will not use such an assumption, since for thin,

fast-permeable membranes, the stationary value of the

concentration at the input is much less than the equilibrium

one.

The diffusion coefficient is estimated by the

Daines−Barrer method. Asymptotically, the flow J1(t)
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reaches the stationary value J̄1. For certainty, we consider

the initial stage, the initial pressure jump. Respectively

Q(t) ≡
t

∫

0

J(τ ) dτ ≈ J̄1[t − ℓ2(6D)−1]
(

t ≥ t∗ ≡ t∗1
)

.

The intersection of the asymptote with the t axis gives the

so-called delay time τ0 = ℓ2/(6D). Analytically

τ0 ≈ t∗ −
t∗

∫

0

J1(τ )J̄−1
1 dτ , J1 ≈ J̄1, t ≥ t∗.

Under the integral — a relative value that does not require

absolute values of the penetrating flow. For uniformity, we

count in atoms. The flow is calculated from the measured

pressure in the output volume using a calibration multiplier,

so that the ratio of the measured pressures can be taken

under the integral. Moreover, the value τ0 does not depend

on the concentration level c̄01.

With a new time count (t∗ → t0 = 0), integrating the

expression J2(t), we obtain

t
∫

0

[J2(τ ) − J̄1] dτ ≈ [J̄2 − J̄1][t − ℓ2(6D)−1],

where t ≥ t∗ ≡ t∗2 . Formally, changing not only the initial

time, but also the flow reference level (exceeding the

value J̄1), we obtain the same expressions for the delay time

and estimate of D. It is expedient to average the values D
over three transients.

Note. The asymptotic formula τ0 = ℓ2/[6D],
strictly speaking, is derived for the model c t = Dcxx ,

c0(t) = ĉ > 0, cℓ(t) = 0, c(0, x) = 0. The solution should

be understood as generalized due to the mismatch between

the initial and boundary conditions at x = 0. Here ĉ —
any positive constant. Formally, the input concentration

instantly makes a jump at t = 0, and zero concentration

is maintained at the output. We apply this asymptotics to

a slightly different model: a stationary concentration (less
than the equilibrium one) is very quickly established at the

input, and only a relative zero cℓ(t) ≪ c0(t), t > ε ≪ 1 is

at the output. This introduces an additional error into the

approximate formula for τ0. At the same time, the problem

is posed in a unique way to find approximations of the

parameters D, g, b, s with subsequent local variation to

minimize the root-mean-square residual error between the

model and experimental graphs of the output desorption

flow. The drive to
”
complete“ coincidence of the graphs is

partially justified, since the accuracy of the experimental

data is hardly less than 10%.

After evaluating D
(

[D] = cm2/s
)

from X = gD/[ℓ
√

b]

we find the value g
(

[g] = 1/cm
)

.

4. Results of numerical modelling

Fig. 1 illustrates the uniqueness of the parameter s
determination. We present the results mainly for the tem-

perature T = T̄ = 400◦C. For 450 and 500◦C (to determine

that model coefficients are Arrhenius one), the results are

similar.

Fig. 2 shows that it is necessary to take into account the

hydrogen atoms accumulation on the output surface. It is

noticeable that the first model has the best approximation

capabilities. The parameters of the Arrhenius dependences

are presented in Fig. 3.

Fig. 4 shows the dependence J̄ = J̄
(√

p
)

(
√

p =
√

p(J̄) ,
µs p > J̄ ) in accordance with formula (7). It is noticeable

that this dependence differs from J̄ ∝ √
p.
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Conclusion

The algorithm for estimating the parameters of the

hydrogen permeability of gas separation membranes (on
the example of alloy V1) based on the results of a

breakthrough experiment with three pressure jumps of

molecular hydrogen on the input side and evacuation at

the output is presented. This then makes it possible

to numerically simulate the permeability in a wide range

of parameters for possible necessary adjustment of the

experimental conditions, identification of limiting factors,

and assessment of sensitivity to parameters variations (alloy
composition). The algorithm guarantees the uniqueness of

estimates, which is important when recalculating the results

for other sample thicknesses. Only integral measurement

processing operators are used, which predetermines a rather

high noise immunity of the calculation results.

The Arrhenius dependence of the model coefficients on

temperature and the difference between the dependence

J̄
(√

p
)

and J̄ ∝ √
p are presented.

The expediency of taking into account the accumulation

of dissolved atomic hydrogen on the output surface of the

membrane, despite the evacuation of the outlet chamber of

the diffusion cell, is shown.
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