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Introduction

When studying various processes in dusty plasmas and

electrolytes, an important role is played by taking into

account the forces of electrostatic interaction of charged

macroparticles [1,2]. If the potentials of the electric field at

the considered points of the plasma or electrolyte are rather

small, so that the potential energy of free charge carriers

in the electrostatic field is much less than the energy of

their thermal motion [2,3], the distributions of ϕ potential

in the vicinity of the particles can be searched based on the

linearized Poisson−Boltzmann equation:

1ϕ − k2
Dϕ = 0, (1)

where kD is screening constant (inverse Debye radius) [4].
A large number of papers relate to forces calculations

of the electrostatic interaction of macroparticles based on

equation (1), however, if we exclude the asymptotic cases

of very small and very large distances between the surfaces

of particles [5], they consider the interaction of spherical

particles. Usually, in this case, the analysis is carried

out on the basis of the solution of equation (1) found

in the paper [6]. This solution describes the axially

symmetric potential distribution in the vicinity of spherical

particles and is represented as infinite series based on the

products of Legendre polynomials and modified Bessel

functions. A detailed review of these works is given in [7].
Therefore, it is of interest to calculate the force of the

electrostatic interaction of particles whose shape differs from

spherical. In this paper, using the finite element method,

we consider the electrostatic interaction of two charged

spheroidal macroparticles with a common axis of symmetry.

Note that the distribution of potentials on the surface of

particles depends on the distance between them, their

sizes, velocities, and the characteristic relaxation time of the

surface charge [8], and the search for such a distribution

is a separate problem. Therefore, when calculating the

interaction forces, one often confines oneself to two limiting

cases: a constant surface charge of particles and a constant

potential on their surfaces. The latter case takes place

at thermodynamic equilibrium in equilibrium plasma and

electrolytes [8] and it is this case that will be considered in

this paper.

1. Calculation procedure

As already mentioned, in this paper, the finite element

method is used to study the electrostatic interaction of

macroparticles. In this method the area, in which the

distribution of one or another quantity is determined, is

divided into a set of subareas. As a result, a computational

grid is obtained, on the basis of which a set of basis

functions is generated that are used to approximate the

desired distribution. Thus, the distribution is sought in

the form of expansions into series by these functions with

unknown coefficients. At present, there are a number of

computer programs that allow to use the finite element

method to find a numerical solution of the differential

equation by its weak form. Weak form of the equation (1)
is [9]:

�∫

�

∇̃u∇̃φdṼ +

�∫

�

k2uφdṼ = 0, (2)

where

u =
ϕ

ϕ0

, k = kDR1.

Here ϕ0 is the particle surface potential, � is the finite

region in which the potential distribution is determined, V is

the volume of this region, φ is test function. Sequential

substitution of test functions into equation (2) makes it

possible to obtain a system of equations for calculating

the above unknown coefficients. Here and below, the

use of a tilde over operators and quantities expressed by
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coordinates indicates that the coordinates are normalized

to the characteristic size R1 of the first particle, which in

the case of a spherical particle is equal to its radius, and

in the case of a spheroidal particle — to the maximum

distance from the particle symmetry axis to its surface.

We will assume that the corresponding distance R2 for

the second particle does not exceed R1. Note that the

weak form (2) has a unique solution provided that the

distribution u is given on the boundary of the region

under consideration, or provided that this distribution is

given at least on a part of this boundary, and on the rest

portion the normal component ∇̃u is equal to zero. If the

desired distributions are axisymmetric, as in this case, the

requirements for computing resources can be reduced by

many times passing to cylindrical coordinates, and as a

result the three-dimensional problem can be reduced to a

two-dimensional one, in which all distributions depend on

the polar radius ρ and applicate z of a cylindrical coordinate

system only. The information necessary for the transition to

a cylindrical coordinate system is given in [10]. With an

uniform distribution of the potential on the particle surface,

the distribution of the electric field strength E on it will

coincide with the distribution on the surface of the metal

particle. Therefore, the force F acting on the particle can be

calculated as the force acting on a conductor in a liquid or

gaseous dielectric [11]:

F = −
εε0

2

�∮

S

E2ndS. (3)

Here n is unit normal vector to the surface element di-

rected inside the body, S is body surface area, ε0 is electrical

constant, ε is permittivity of the medium. From a formal

point of view, to solve the problem under consideration it is

sufficient to perform calculations according to formulas (2),
(3) using any mathematical package supporting the finite

element method. However, without special measures aimed

at the accuracy improvement of calculations and estimates

of the indicated accuracy, the calculations based on the

available packages will be incorrect. Let’s explain what

has been said. The finite element method is inherently

approximate method. Therefore, due to calculation errors

the resulting potential distribution fluctuates around some

true distribution. When calculating surface integrals of

functions containing these distributions, the effect of these

fluctuations accumulates, and the values of such integrals

can be calculated with a significant error. In our case, this

leads to a noticeable accuracy decreasing of force calculation

by formula (3) in a situation where the change in the

field strength along the body surface is small compared

to its average value. As a result, the larger k and the

distance between macroparticles are, the lower the accuracy

of calculations is. Therefore, it is necessary to use additional

methods aimed at improving the accuracy of calculations,

and to carry out test calculations to evaluate this accuracy.

Since the change of the field strength along the surface

of the body decreases with distance increasing between

the surfaces of particles, then actually the corresponding

test calculations are necessary to determine the limiting

distances between particles for certain values of k , at

which calculations can be performed with the required

accuracy.

Let us first consider the methods that were applied to

increase the accuracy of calculations. One such method is

the use of high order element. It uses hierarchical basis

functions [12]. The functions associated with the vertices of

the computational grid are linear functions of the barycentric

coordinates [13], the value of each of which is equal to

unit at one of the nodes and zero at all the others. The

functions associated with edges are basis functions, each of

which is equal to zero at all vertices and on two edges, and

is described by polynomials of some order. The functions

associated with cells are equal to zero at the cell boundary

and are described using polynomials of some order. A more

complete description of these functions can be found in the

papers [12,13]. Increasing the order of the basis functions

makes it possible to approximate the potential with a smaller

number of larger grid cells. In this paper, we assume that

such an approach will make it possible to reduce fluctuations

of the potential gradient, and thereby increase the accuracy

of calculating the forces acting on bodies. One of the

packages, supporting work with finite elements of high

powers, is the freely distributed package NGSolve [13,14],
which is used in this paper. Unfortunately, clear criteria

for choosing the optimal orders of basis functions for

solving the problem under consideration are unknown,

therefore, in this paper we used a simple selection of these

orders. As a result, the calculation was performed using

polynomials of the fourth power associated with the cells

of the computational grid and functions associated with the

edges of the tenth power. The NGSolve package is a set of

libraries created using the C++ language, designed to build

the corresponding basic functions that can be accessed from

scripts written in the Python language. For this a module

called ngsolve is used. The netgen module is used to build

grids. As a result, it is possible to fully describe the required

calculation procedure in the Python language. Relevant

documentation, including the methods of these modules

installation in various operating systems, is available on the

website ngsolve.org, and the source codes are contained in

the repository https://github.com/NGSolve/ngsolve. Another

method for increasing the accuracy of calculations is h-
adaptation. h-adaptation is understood as an iterative

process of changing the computational grid, leading to a

refinement of the desired result. In the simplest case, which

is considered in this paper, based on the value of some

parameter η calculated for each cell on the basis of the

obtained solution, a decision is made to split this cell into

two. Note that h-adaptation will not necessarily lead to

a monotonous increasing of the force calculation accuracy

with the number of cells increasing, since the situation is

quite typical when, starting from a certain moment, with

the cell size decreasing, the maximum deviations of the
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Figure 1. Structure of the initial computational domain.

potential from the true value will decrease, and the gradient

deviations increase. As a result, the accuracy of calculating

expressions that use integrals of the potential gradient begins

to fall. Therefore, h-adaptation must be carried out using

one or another method for estimating the accuracy of

calculations. Before proceeding to the description of the h-
adaptation method used, let us describe the computational

grids used. The NGSolve package allows splitting a

two-dimensional computational domain into triangular cells

using the Delaunay−Voronoi algorithm [15], based on the

size of the edges of these cells on the boundary of the

specified domain. An example of the initial computational

grid is shown in Fig. 1. The lower boundary of the domain

corresponds to the axis of symmetry of the problem.

For the convenience of displaying individual elements, the

ratio of their sizes differ from those actually used. The outer

boundary radius was assumed equal to 100R1 if the distance

hc between macroparticle centers is less than 10R1, and

10hc otherwise. On the boundary coinciding with the axis

of symmetry, no explicit conditions were specified, since the

transition to a cylindrical coordinate system automatically

introduces the condition that the radial component of

the gradient of the calculated value is equal to zero at

ρ = 0 [10]. In our case, this means the implicit introduction

of the condition that the radial normal component of the

potential gradient on the axis of symmetry of the problem

is equal to zero. On the outer boundary the potential was

initially assumed to be zero and refined in the process of

h-adaptation by a way that will be described below. The

parameter η for each cell was calculated using the following

expression [16]:

ηk =

�∫

�k

E2dV

�∫

�k

(E− Ee)
2dV.

Here ηk is a parameter, the value of which is used to judge

the need to split the k-th cell, �k is the domain obtained

by rotating the k-th two-dimensional cell grid around the

symmetry axis of the body, V is its volume. The desired

distribution E of the electric field strength was obtained

from the found distribution of potentials. Ee distribution

was obtained by extrapolation of the obtained distribution E

using vector basis functions. To extrapolate the distribu-

tion E, we used the set of basis functions described in the

papers [13,14] that make up the Sobolev space H1, and

to extrapolate the distribution Ee the set of basis functions

described in the paper [13] that make up the space H(div).
The notations used here for functional spaces coincides with

those generally accepted in the literature for finite elements

and with the notations in papers [13,14], where one can find

their detailed description. The orders of the corresponding

types of basis functions related to different spaces were

assumed to be the same. At each iteration step, the splitting

was carried out for those cells for which the condition

ηk > 0.5ηmax was satisfied, where ηmax is the maximum

value ηk . At distances from the outer boundary less than

0.2 of its radius the h-adaptation was not carried out, and

the values of the parameter ηk for the corresponding cells

were not considered when finding ηmax. The nature of the

grid change during h-adaptation is illustrated in Fig. 2. The

adaptation process is repeated until the number of degrees

of freedom, understood in this case as the total number of

unknowns in the expansion of the desired solution by the

basis functions, does not exceed 106. From a formal point of

view, the zero potential at the outer boundary means that,

from a physical point of view the boundary is represented

by a conductor on which induced charges are induced that

act on particles. This effect decreases with the increasing of

size of the considered domain and of k value. It is possible

to reduce the size of the domain without reducing the

calculation accuracy if the potential at the outer boundary

is set at least on the basis of some approximate solution.

In the present paper, in the process of grid adaptation the

particle charges are calculated at each step using the Gauss

theorem. Further, the potential distribution at the outer

boundary is approximately represented as a distribution

obtained by a superposition of distributions created by

single spherical macroparticles [1], whose position coincides

with the centers of the considered macroparticles, and

the charges coincide with those found at the previous

step. Note that such refinement of the potential at the

outer boundary makes it possible to obtain a noticeable

accuracy increasing of calculations or size decreasing of the

computational domain at a given accuracy only for k values

that differ from zero by maximum a few hundredths. For

Figure 2. Computational domain after several steps of h-
adaptation.
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large k , due to a faster potential decreasing with distance

from the particles, such refinement becomes irrelevant.

Using the described algorithm, the time for calculating the

force of interaction between macroparticles using Intel(R)
Core(TM) i9-10980XE processor was, depending on the

situation under consideration, from 5 to 9min.

Let us now describe the test calculations performed.

As the distance h between the surfaces of spherical

macroparticles increases, the force F of their electrostatic

interaction tends to the repulsive force FDLVO, described by

the asymptotic expression [8]

FDLVO = F04π
R2

R1

1 + h̃ck

h̃2
c

exp(−kh̃),

where

F0 = εε0ϕ
2
0 .

For identical particles at k = 1, h̃ = 5, the difference

between the force modules acting on the first and second

macroparticles, which occurs due to inaccurate calculations,

was 0.13%, and the difference of the average value of

these modules from FDLVO was 0.1%. For the same k and

h̃, if the radius of the second particle by two times was

lower the radius of the first particle, these differences were

0.048 and 0.044%, respectively. In paper [17] using the

same approach as in the papers [6,8], the dependence of

the electrostatic repulsion force of spherical particles at a

given potential on their surfaces on the distance between

these surfaces at k = 1 was plotted. With the accuracy,

which can be judged from the graphically presented data,

the results of calculations carried out for h̃ from 0.01 to 4

on the basis of the presented method coincided with the

results of the paper [17]. In the paper [8] the dependence

of the electrostatic repulsion force of spherical particles at

a given potential on their surfaces on the distance between

these surfaces was plotted for k = 0.12 and h̃ values from

1.5 to 15. Based on the method developed in this paper,

the same dependence was plotted. The resulting curve

coincided with the curve given in the paper [8]. Note

that, with the unchanged allocated computing resources, the

achievable accuracy of calculations based on all solutions

obtained using the approach of work [6] decreases with k
and h̃ decreasing, while the accuracy of calculations based

on method proposed in this paper increases. In the

paper [18], using a bispherical coordinate system, based

on the Laplace equation, expressions were obtained that

allow one to calculate the interaction forces of charged

unshielded metal balls for given charges of these particles.

These expressions were used for test calculations at k = 0.

In the calculations based on the expressions obtained in [18],
the charge values obtained in the process of grid adaptation

were used. Calculations carried out for particles of identical

radii showed that at h̃ = 20 the difference between the

force modules acting on the first and second macroparticles,

which arises due to inaccurate calculations, was 0.17%, and

between the average of these forces and the force obtained

by expressions in paper [18], — 0.11%. And if the radius

of the second particle by two times was lower the radius of

the first particle, these differences were 0.016 and 0.008%,

respectively. To illustrate the accuracy increasing with

distance decreasing between the surfaces of macroparticles,

we state that for two particles of equal radius at h̃ = 0.01,

the difference between the force values obtained on the

basis of the proposed method and the expressions of the

paper [18] was 0.0002%.

Thus, we see that the developed method of calculation

is quite applicable for finding the forces of electrostatic

repulsion of macroparticles at not too large distances be-

tween their surfaces and k ≤ 1, and the difference between

the modules of the forces acting on the first and second

macroparticles can serve as the upper limit of the possible

calculation errors.

2. Study of macroparticles shape for the
strength of their electrostatic
interaction

The developed calculation algorithm was applied to study

the interaction of spheroidal particles at different values

of the screening constant. Fig. 3 shows the forces acting

on spheroidal particles vs. minimum distance between

their surfaces at k = 1 and R1 = R2. The values a1 and

a2 in the text to the Figure represent, respectively, for

the first and second macroparticles the distances from

the center of the particle to its surface along the axis

connecting the centers of the particles. It can be seen from

this Figure that for particles with the same cross-section

and a sufficient degree of their screening the decreasing

of the longitudinal dimensions of the particles leads to

increasing of their electrostatic repulsion forces, and these

sizes increasing — to these forces decreasing. However,

as can be seen from Fig. 4, which shows the same

dependences, but at k = 0.1, if the screening degree is

0 1 2 3 4
0

1

2

3

4

5

h/R1

F
/F
0

Figure 3. Normalized force vs. normalized distance be-

tween particle surfaces for k = 1 and R1 = R2: dotted line —
a1/R1 = a2/R2 = 0.5; solid — balls of equal radius; dash-dotted

line — a1/R1 = 2, a2/R2 = 0.5; dashed — a1/R1 = a2/R2 = 2.
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Figure 4. Normalized force vs. normalized distance between

particle surfaces for k = 0.1 and R1 = R2: dotted line —
a1/R1 = a2/R2 = 0.5; solid — balls of equal radius; dash-dotted

line — a1/R1 = 2, a2/R2 = 0.5; dashed — a1/R1 = a2/R2 = 2.
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Figure 5. Normalized force vs. normalized screening constant for

h/R1 = 0.1 and R1 = R2: dotted line — a1/R1 = a2/R2 = 0.5;

solid — balls of equal radius; dashed — a1/R1 = a2/R2 = 2.
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Figure 6. Normalized force vs. normalized screening constant

for h/R1 = 4 and R1 = R2: dotted line — a1/R1 = a2/R2 = 0.5;

solid — balls of equal radius; dashed — a1/R1 = a2/R2 = 2.
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Figure 7. Normalized force vs. normalized distance be-

tween particle surfaces at k = 1 and R1 = 2R2: dotted line —
a1/R1 = a2/R2 = 0.5; long stroke — double dotted line —
a1/R1 = 0.5, a2/R2 = 2; solid line — balls; dash-dotted —
a1/R1 = 2, a2/R2 = 0.5; dashed — a1/R1 = a2/R2 = 2.
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Figure 8. Normalized force vs. normalized distance between

particle surfaces at k = 0.1 and R1 = 2R2: dotted line —
a1/R1 = a2/R2 = 0.5; long stroke — double dotted line —
a1/R1 = 0.5, a2/R2 = 2; solid line — balls; dash-dotted —
a1/R1 = 2, a2/R2 = 0.5; dashed — a1/R1 = a2/R2 = 2.

not large enough, then such dependence of the force on

the longitudinal size of the particle is observed only up to

a certain distance between the surfaces of macroparticles.

The aforesaid is additionally illustrated in Figs 5 and 6,

from which it is seen that at a sufficiently large distance

between the surfaces of macroparticles, depending on the

degree of screening the interaction force of macroparticles

can increase both upon increasing and decreasing of their

longitudinal dimensions. Moreover, a situation is possible

when both increasing and decreasing of the longitudinal

dimensions of the particles will lead to decreasing of the

interaction force between them. Besides, as can be seen

from Figs 7, 8, for particles of different lateral dimensions

the same situation can also arise at small distances between

their surfaces.
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Conclusion

The electrostatic interaction of two charged spheroidal

macroparticles with a common axis of symmetry and a

constant potential on their surfaces under conditions of

weak and moderate screening is considered. Calculations

show that at sufficiently high degree of screening and

the same lateral dimensions of particles at a constant

distance between their surfaces, the decreasing of their

longitudinal dimensions leads to increasing of the forces

of electrostatic interaction between them. However, if

the degree of screening is not large enough or the lateral

dimensions of the particles are different, then there is no

such unambiguous dependence of the force on the lateral

dimensions of the particles. In this case, at different

degrees of screening and the ratio of the lateral dimensions

of macroparticles at different distances, the nature of the

dependence of the interaction force between particles on

their longitudinal dimensions can be different. In this case,

a situation is possible when the interaction force between

spherical macroparticles will be greater than the interaction

forces of particles both in the form of an oblate spheroid

and in the form of elongated spheroid.
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