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Small amplitude breather of the nonlinear Klein−Gordon equation
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Introduction

Equation of type

∂2u
∂t2

− ∂2u
∂x2

+ F(u) = 0, (1)

where F(u) is an odd function, occurs in various branches

of theoretical and mathematical physics. A linear approxi-

mation of this equation is known in quantum theory as the

Klein−Gordon equation, and one of the most important

(and most common) special cases of this equation is

equation sine-Gordon (SG) [1–3]:

∂2u
∂t2

− ∂2u
∂x2

+ sin u = 0. (2)

The SG equation is remarkable in that it has solutions in the

form of solitary waves — solitons and breathers. The exact

solution of equation (2) in the form of a travelling breather

has the form [4–6]:

uω(x , t) = 4 arctan

(√
1− ω2

ω

×
cos
(

ωγt − ωx
√

γ2 − 1
)

cosh
(√

1− ω2
(

γx − t
√

γ2 − 1
)

)

)

. (3)

Here γ = (1−V 2)−1/2, V is group velocity of impulse

propagation.

The work [2] is devoted to the numerical study of

kink and breather solutions of the sine-Gordon equation

under the influence of
”
force“determined by the Heaviside

function H(ξ):

∂2u
∂t2

− ∂2u
∂x2

+ sin u = F(x , t), (4)

F(x , t) = AH(t − x).

Boundary conditions of various types are considered, and

the exact solutions of equation (2) are used as the initial

condition for solving the perturbed equation (4).

In the paper [3] solutions of the two-dimensional

sine-Gordon equation, similar to kink solutions of the one-

dimensional equation (2) are studied:

∂2u
∂t2

− ∂2u
∂x2

− σ
∂2u
∂y2

+ sin u = 0, (5)

σ = ±1. Here, the interaction of a kink and an antikink is

considered, and a system of equations is derived that makes

it possible to determine the width and shape of both a lone

kink and soliton-like pulses interacting with each other. A

numerical procedure for determining the kink center, and a

variational procedure for studying the shape dynamics of a

single kink in the direction perpendicular to its propagation

are discussed. The paper [7] also relates to the numerical

study of stationary and traveling breather solutions of the

two-dimensional sine-Gordon equation.

The paper [8] relates to the study of real space-periodic,

central-symmetric solutions of the Klein−Gordon equation

of the form:

∂2u
∂t2

− ∂2u
∂x2

− ∂2u
∂y2

− ∂2u
∂z 2

+ m2u − Ŵ(x)u3 = 0. (6)

The author of the paper [8] calls the obtained solutions

breathers by analogy with solutions of the sine-Gordon

equation with similar properties. In [8] the equation (6) was
reformulated as a system of coupled nonlinear Helmholtz

equations under certain field conditions in the far zone.

Exact and approximate breather solutions of various op-

tions of the Klein−Gordon equation are studied in a number

of papers, for example, [9,10]. The paper [9] considers the

numerical solution of the discrete Klein−Gordon equation,

which describes oscillations of an infinite chain of particles
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coupled with nearest neighbors, in a local potential V [11]:

d2xn

dt2
+ V ′(xn) = γ(xn+1 + xn−1 − 2xn). (7)

In the long-wavelength approximation the equation (7) is

reduced to the Klein− Gordon equation (1).
In the paper [11] related to the study of oscillation in a

one-dimensional chain of atoms considering anharmonicity,

a method for the approximate solution of the Klein−Gordon

equation in the limit of small amplitudes (u ≪ 1) is

proposed. In this case, equation (1) is transformed to the

form
∂2u
∂t2

− ∂2u
∂x2

+ u − βu3 = 0. (8)

In papers [11,12] a one-parameter localized periodic

solution is sought in the form

u = A(x) cos(ωt) + B(x) cos(3ωt) + . . . . (9)

For the solution (9) convergence it is necessary to set

|A| ≫ |B | . . .. In the case of small amplitudes, the largest

contribution to the solution is provided by the first term,

i. e., solution is like a standing wave. Such solutions

are sometimes referred to in the literature as standing

(stationary) breathers. For example, for the sine-Gordon

equation the solution [4] is known:

uω(x , t) = 4 arctan

(√
1− ω2

ω

sin(ωt)

cosh(x
√
1− ω2

)

, (10)

which for values ω ≈ 1 can be approximately represented

as y = A(x) cosωt). The purpose of this paper is to obtain

solution in the form of a travelling breather for the nonlinear

Klein−Gordon equation (8) using the method developed

in [11,12].

1. Method of obtaining an approximate
solution of the nonlinear
Klein−Gordon equation in the form of
a small-amplitude travelling breather

Consider obtaining the approximate analytical solution

of the Klein−Gordon equation (1). As noted, in case of

u ≪ 1 the equation (1) is transformed to the form (8).
We will look for solution to equation (8) in the form of

a series (9) with uniformly decreasing coefficients in front

of the cosines. Substituting (9) into (8) and taking into

account that |A| ≫ |B | (for convergence of the series (9)),
we obtain the system

{

d2A
dx2 − (1− ω2)A = − 3

4
βA3,

d2B
dx2 + (9ω2 − 1)B = − 1

4
βA3.

(11)

By solving the system in the region of localized solutions

limited at infinity, it is possible to determine the functional

form of the small-amplitude breather.

Let’s try to develop, by analogy with the above, a method

for finding traveling low-amplitude breathers that are the

solution of equation (8). In fact, the solution of interest

to us is now a two-parameter delocalized time-periodic

solution. We will proceed from the well-known form of

such solution for the sine-Gordon (2) equation represented

by expression (3). We will look for solution to equation (8)
in the form

u = A
(

√

1− ω2
(

γx − t
√

γ2 − 1
)

)

× cos
(

γωt −
√

γ2 − 1ωx
)

+ B
(

√

1− ω2
(

γx − t
√

γ2 − 1
)

)

× cos
(

3γωt − 3
√

γ2 − 1ωx
)

+ . . . . (12)

Now, following the previous method, after substitut-

ing (12) into equation (8) and some manipulations, we

obtain a system for determining functions A(ζ ), B(ζ ), (next

we implement the notation ζ =
√
1− ω2(γx − t

√

γ2 − 1)):

{

(1− ω2) d2A
dζ 2 − (1− ω2)A = − 3

4
βA3,

(1− ω2) d2B
dζ 2 + (9ω2 − 1)B = − 1

4
βA3.

(13)

The solution of the first equation in (13) that suits us in

terms of properties is the function

A(ζ ) =

(

8

3β
(1− ω2)

)1/2
1

cosh(ζ )
. (14)

For the sine-Gordon equation β = 1/6 and in the highest

approximation we obtain the solution

u = 4
√

1− ω2
cos(γωt −

√

γ2 − 1ωx)

cosh
(√

1− ω2(γx − t
√

γ2 − 1)
)
. (15)

It can be seen from (3) that, in fact, the condition u ≪ 1

means
√

1/ω2 − 1 ≪ 1 =⇒ ω ≈ 1. Considering this the

approximate solution obtained by expanding (3) into a series

takes the form

u = 4

√

1

ω2
− 1

cos(γωt −
√

γ2 − 1ωx)

cosh
(√

1− ω2(γx − t
√

γ2 − 1)
)
. (16)

and coincides with (15).

2. Example — approximate breather
solution of the equation for the
vector-potential of an electromagnetic
field in graphene superlattice

As an example, we will consider the equation describing

the propagation of sole electromagnetic waves in the

graphene superlattice (GSL) [13–15]:

∂2u
∂t2

− c2 ∂
2u

∂x2
+

ω2
0b2 sin u

√

1 + b2(1− cos u)
= 0. (17)
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Figure 1. Comparison of numerical (red line (online version)) and approximate analytical (dashed blue line (online version)) at different

times, t : a — 0; b — 50; c — 100; d — 150; e — 200; f — 250.

Here u = edAz/~c is the dimensionless component of the

vector potential in the direction of alternating SL layers,

c is the speed of light, e is the elementary electric charge,

ω2
0 = 2πn0e2d21/(a0~

2), n0 is surface concentration of

charge carriers, a0 = 0.12 nm is graphene layer thickness,

b = 11/1, the parameters 1 and 11 can be conventionally

called the half-widths of the forbidden and allowed mini-

band, respectively, d is the SL period. It is assumed that

the layers alternate along the z axis. Equation (17) has

2π-impulse solution, expressed implicitly [13]:

u(ξ)
∫

π

du
√

√

1 + b2(1− cos u) − 1

= 2ξ, (18)

ξ = (x − vt)/L0, L0 = (c/ω0)
√

1− v2/c2 v is electromag-

netic pulse speed.

Let’s transform equation (17). Let’s introduce new

variables

xω0b/c → x , tω0b → t. (19)

Equation (17) takes the form

∂2u
∂t2

− ∂2u
∂x2

+
sin u

√

1 + b2(1− cos u)
= 0. (20)

Expanding sin u/
√

1 + b2(1− cos u) into u series up to

cubic terms, we obtain

∂2u
∂t2

− ∂2u
∂x2

+ u −
(

b2

4
+

1

6

)

u3 = 0, (21)

then

β =
b2

4
+

1

6
. (22)
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Figure 2. Approximate solution vs. time, x = 50.

According to (12), (14), the solution of equation (20) in

the form of breather has the form

u =

(

32(1 − ω2)

3b2 + 2

)1/2
cos(γωt − ωx

√

γ2 − 1)

cosh
(√

1− ω2
(

γx − t
√

γ2 − 1
)

) .

(23)
Passing to the original notations, we obtain

u =

(

32(1 − ω2)

3b2 + 2

)1/2

×
cos(t γω

(ω0b) − x ωc
ω0b

√

γ2 − 1)

cosh
(√

1− ω2

(

x γc
ω0b − t

ω0b

√

γ2 − 1
)) . (24)

The study of the stability of the approximate solution (23)
is of interest. Using the Wolfram Mathematica package, we

will numerically solve equation (20), taking function (23) as
the initial condition. Fig. 1 shows graphs of the approximate

analytical and numerical solutions at different times. When

plotting graphs, it was assumed that b = 0.90, ω = 0.97.

It can be seen from the graphs in Fig. 1 that although

the condition |u| ≪ 1 is not satisfied for these values, the

numerical solution turns out to be close to the analytical

one presented above and exhibits stability, i. e. the range of

applicability of the approximate analytical solution turns out

to be somewhat wider than originally assumed.

Fig. 2 shows the solution vs. time for a fixed x . It can be

seen from this Figure that the pulse width is approximately

20 units along the time axis. Fig. 3 shows a graph of the

solution when time t is shown along one of the axes, and

the spatial coordinate x is shown along the other axis.

To quantify the differences between the numerical solu-

tion and the approximate analytical solution, we use the

following method. For a given t in the region where the

solution takes non-zero solutions (i.e. |u| is greater than

some small positive value ε), we calculate the extrema

of the numerical solution. Based on the list of values

{x i , |u(x i , t)|}, where x i determine the position of the

extrema of the numerical solution, we plot the interpo-

lation function. Fig. 4 shows graphs of the interpolation

function, i. e., the envelope of the absolute value of the

numerical solution near the amplitude maximum at different

times. After finding the position xmax(t) of the maximum

of the interpolation function, we determine the segment

[xmax(t) − L, xmax(t) + L], where L is half the pulse width

in space (as per Figs 1, 4, L ≈ 10). Next, randomly

select N values {x i}i=1...N from this segment and form two

vectors: a = {ua ppr(x i )}i=1...N and b = {unum(x i)}i=1...N —
values of approximate analytical and numerical solutions,

respectively, at the points {x i}i=1...N . To compare the

approximate analytical and numerical solutions we calculate

the correlation coefficient at different times:

Kcorr =

N
∑

i=1

(a i − a)(bi − b)

σaσb(N − 1)
. (25)

Here a =
N
∑

i=1

a i/N is average random value,

σa =

√

N
∑

i=1

(a i − a)2/(N − 1) -is standard deviation.

Fig. 5 shows the correlation coefficient between the

numerical solution and the approximate analytical solution

vs. time. It can be seen that the correlation coefficient

monotonically decreases, however, even at the moment

t = 250Kcorr ≈ 0.94, which indicates that the proposed

approximate solution in the form of travelling breather

decays rather slowly.

3. Comparison with the papers of other
authors. Discussion of results

The paper [16] considers a two-component breather

solution of the nonlinear Klein−Gordon equation

∂2U
∂t2

−C
∂2U
∂x2

= −α2
0U +

α2
0

6
U3, (26)

obtained by expanding in Taylor series the right side of the

sine-Gordon equation for U ≪ 1. In [16] the generalized

pertubative reduction method developed in [17–19] is used.
The solution obtained in [16] is

U(x , t) = A sech
(

(t − x/V0)/T
){

cos(k1x − ω1t)

+ B cos(k2x − ω2t)
}

. (27)

Solution (26) is similar in form to solutions (15), (23)
obtained in this paper. The essence of the perturbation

reduction method used in [16–19] is the search for a solution

to a nonlinear partial differential equation in the form of an

amplitude modulated plane wave:

U =

∞
∑

α=1

εαU (α),

U (α) =

+∞
∑

l=−∞

U (α)
l (τ , ξ) exp[il(kx − ωt)], (28)
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Figure 3. General view of the approximate solution in the region t = 85−100, x = 80−100: a — heat map; b — 3D graph.
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Figure 5. Correlation coefficient between the numerical and

approximate analytical solution vs. time.

where ε is some small parameter, τ = ε2t, ξ = ε(x − λt),

λ = ∂ω/∂k is group velocity, U (α)
l = U (α)∗

−l . Thus, the

authors [17], solving the equation of the form (26) for

arbitrary values of the coefficients in front of the linear

and cubic terms on the right-hand side, obtain a nonlinear

Schrodinger equation for the modulating function. However,

as shown in [18], the solution of equation (26), taken in the

form of the amplitude modulated plane wave, turns out to

be unstable. From our point of view, the method proposed

in this paper for obtaining the approximate solution of the

nonlinear Klein−Gordon equation in the form of small-

amplitude breather has an advantage over the perturbation

reduction method used in [16–19] due to its simplicity.

The paper [15] relates to the study of breather solutions

of equation (17), which describes the propagation of

nonlinear waves in a graphene superlattice. In [15] the

inelastic collision of the kink and the antikink, described

by expression (18), moving with the same magnitude and

oppositely directed velocities, which are the solution of

equation (17), is numerically studied. The calculation shows

that after the collision the solitary waves continue to move

up to
”
infinity“if their speed is greater than some critical

value or belongs to a set of resonant windows. Otherwise,

after the collision, the solutions form a state similar to the

breather, which slowly decays, radiating energy. The fractal

structure of these resonant windows is characterized by a

multi-index notation, the main features of this structure are

compared with the predictions of the theory of resonant

energy exchange and show good agreement with this theory.

Conclusion

Thus, the paper proposes a method for obtaining the ap-

proximate solution of the nonlinear Klein−Gordon equation,

which is the small-amplitude traveling breather. The exam-

ple of obtaining such solution for the equation describing the

propagation of nonlinear waves in the graphene superlattice

is considered. The obtained solution was analyzed for

stability. It is shown that the form of the solution changes

weakly over a time interval of tens of pulse widths.
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