
March 21, 2023 12:53 1st draft

Technical Physics, 2022, Vol. 67, No. 11

01

Simulation of the features of the magnetic properties of axisummetric

granules of hard type II superconductors

© N.D. Kuzmichev, A.A. Shushpanov, M.A. Vasyutin

Ogarev Mordovia State University, Saransk, Russia

e-mail: kuzmichevnd@yandex.ru

Received April 14, 2022

Revised July 6, 2022

Accepted July 11, 2022

Based on the equations of electrodynamics and the concept of a critical state for hard superconductors of the

2nd kind, numerical simulation of the magnetic properties of axisymmetric superconducting samples, in particular,

granules, is performed for a number of models of the dependence of the critical current density on the magnetic

field induction. The magnetic moment loops are calculated directly by integrating the integral equation for the

current density over time. The phenomena of the peak effect and the asymmetry of the magnetization hysteresis

loop are also considered using the indicated equation. Various versions of the functions used in the literature were

used as peak functions. In addition to the hysteresis loop of the magnetic moment, the magnetic field induction at

the center of axisymmetric samples, and the total penetration field, the profiles of the critical current density Jc(B)
and the equilibrium magnetic moment for spherical granules were obtained. The method used for calculating the

magnetic moment of superconductors makes it possible to take into account the equilibrium and nonequilibrium

regions of the magnetization of the samples independently
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Introduction

The expansion of the scope of superconducting materials

has greatly increased scientific interest in the study of

their properties, including magnetic ones. Measuring the

parameters of known and new substances is one of the

most important aspects of research. Basic characteristics

of superconductors include, for example, critical current

density and critical magnetic field values. To obtain them,

non-contact indirect measurements are usually used. The

obtained parameters, in turn, can be used to predict the

behavior of the superconductor in other scenarios, which

technically simplifies research.

Simple sample shapes are most often used for measure-

ments: disks, cylinders, films, parallelepipeds, ellipsoids,

etc.Most of modern synthesized crystalline superconducting

materials have a granular structure and in the first approxi-

mation can be represented as a set of microscopic spheres,

ellipsoids or cylinders. For such samples, the problem

acquires axial symmetry, which facilitates the modeling

task. In this case, the current trajectories become coaxial

circles, and the problem is reduced to a two-dimensional

distribution of the basic electric and magnetic quantities:

current density J, vector potential A, electric E and

magnetic H fields. One of the first models describing

the magnetization of rigid superconductors of type II kind

was proposed by C. Bin [1]. It assumed that in fields

exceeding the first critical field Hc1, the current density

takes a constant value equal to the critical density Jc in

areas of magnetic field penetration (i.e., where Abrikosov

filaments fixed on heterogeneities were formed). In reality,

the superconductor behavior is influenced by many more

factors, and the distribution of current within the sample

becomes very complicated. It largely depends on the

movement of magnetic field carriers (Abrikosov filaments

(vortices)). The strength of their interaction with the

superconductor material (pinning, displacement, formation

of structures, etc.) will largely determine the behavior of

the sample in the magnetic field. As a result, all this causes

more complex effects: the field dependence of the critical

current density, the peak effect, equilibrium magnetization

zones, temperature dependences of parameters, etc.

The aim of this work is to numerically simulate some

features of magnetic properties of homogeneous rigid

superconductors of the second kind (RSSK) with axial

symmetry (ellipsoids of rotation, cylinders, etc.), in par-

ticular, pellets in homogeneous magnetic fields parallel

to the symmetry axis of samples. The simulations are

performed using different field dependencies of the critical

current density. The phenomena of the peak effect and

equilibrium magnetization are considered. The numerical

calculations performed in this work are based on the

works [2,3], in which the magnetic properties of plates,

disks, and short cylinders were determined within the

Bin and Kim models using the integral equation of the

second kind. For ellipsoids of rotation and cylinders, similar

calculations are made in works [4,5]. It should be noted that

there are other approaches currently used to describe the

magnetic properties of finite-size superconductors, based on

the stationary [6,7] and non-stationary [8] Ginzburg-Landau
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equations. These descriptions lead to a deeper understand-

ing of the magnetization mechanism of superconductors,

but these equations are nonlinear differential equations and

require additional setting of boundary and initial conditions,

which greatly complicates the problem.

1. Electric current equation

As noted in the introduction, the numerical simulation of

the critical state of the RSSK performed in this paper is

based on the methodology of works [2,3]. The calculation

methodology applied in the above papers can be extended

to any axisymmetric shapes and other models when consid-

ering more complex effects.

We will work in the cylindrical coordinate system r, ϕ, z .
Let’s orient the z axis along the symmetry axis of the sample

and set its boundaries: −b ≤ z ≤ b, r(z ) ≤ a(z ), where

b — half-height of the sample, and a(z ) — radius of the

sample in the section with coordinate z . If it has a horizontal
symmetry plane, the position(0, 0) is chosen at the center

of the sample. In the general case (e.g., to define a tapered

shape), you can move the origin to the bottom-most point.

Let’s consider a magnetic isotropic RSSK with linear

isotropic dependence of magnetic field induction on its

intensity B = µ0µH (µ = 1, µ0 — magnetic constant). To

describe the electrical properties, it is necessary to introduce

an analogue of the volt-ampere characteristic (VAM) —
the dependence of the electric field strength vector on

the current density E(J), which can be represented as:

E = E(J)J/J . For the correctness of the calculations,

following the works [2,3], we will use as E(J) a fast-growing

smooth function, a good approximation of which is a power

function with a large exponent rr :

E(J) = Ec(J/Jc)
n. (1)

Here, Jc — the critical current density, and Ec —the

corresponding electric field strength.

In addition, Maxwell’s equations for the magnetic field

and the London calibration for the vector potential will be

used. The initial system of equations has the form:







































E = E(J)J
J ,

B = µ0H,

J = ∇×H,

Ḃ = −∇× E,

∇× A = B,

∇ · A = 0.

(2)

Transforming this system, we obtain the Poisson equation

for the vector potential

µ0J = −∇2(A− Aa).

Here, Aa — the vector potential of the external magnetic

field. In axial symmetry, when the induction of the external

magnetic field Ba is directed along the axis, the equation

will be

µ0J = −∇2
(

A +
r
2

Ba

)

. (3)

Here, the vectors A,Aa and J have the same azimuthal

component and are respectively equal: A, Aa = −(r/2)Ba

and J .
The solution of equation (3) can be obtained using the

Green’s function in the cylindrical coordinate system [3,5,9]:

A(r) = −µ0

a
∫

0

dr ′
b

∫

0

dz ′Gcyl(r, r
′)J(r′) −

r
2

Ba , (4)

where r = (r, z ), r′ = (r ′, z ′). The integral kernel (Green’s
function) is expressed through elliptic functions:

Gcyl(r, r
′) = f (r, r ′, z − z ′) + f (r, r ′, z + z ′).

where

f (r, r ′, z ) =

π
∫

0

dϕ
2π

−r ′ cosϕ
(z 2 + r2 + r ′2 − 2rr ′ cosϕ)1/2

. (5)

For shapes that do not have a horizontal symme-

try plane, a simplified kernel form should be used:

Gcyl(r, r
′) = f (r, r ′, z − z ′).

When the external magnetic field changes Ba = Ba(t),
the current density inside the superconductor J = J(r, t)
also changes. Take the time derivative of equation (4) (dot
above the letter denoting the function). Then, using the

system of equations (2), we obtain:

E(J(r, t)) = µ0

a
∫

0

dr ′
b

∫

0

dz ′Gcyl(r, r
′)J̇(r′, t) +

r
2

Ḃa(t).

Express the derivative J̇(r, t) under the integral sign,

using the inverse kernel G−1
cyl(r, r

′) and substitute the

explicit form of the current-voltag curve (1) into the

resulting first order nonlinear time differential equation for

current density (electric current equation) [3]

J̇(r, t) = µ−1
0

a
∫

0

dr ′
b

∫

0

dz ′G−1
cyl(r, r

′)

×

[

Ec

(

J(r, r ′)
Jc

)n

−
r ′

2
Ḃa(t)

]

. (6)

This equation allows us to trace the dynamics of changes

in the local current densities inside the superconductor. We

will use numerical solution methods to obtain the complete

current distribution inside the superconductor.
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2. Numerical method of calculation

Let’s introduce a grid, along which we will divide the

homogeneous sample into elementary sections. Let’s make

it non-uniform, with the cells compacted closer to the

edges, which will allow a better description of the edge

effects. The discrete variables of equation (6) rk and r′m
have coordinates (r i , z j),in the cylindrical system, where

i = 1, . . . , Nr ; j = 1, . . . , Nz ; k, m = 1, . . . , Nz Nr . Let us

introduce new variables u and v , which were used earlier in

[5], different from the variables in [2,3]:

r i = r i (ui) = sin(ui) · a(z i), z j = z (v j) = sin(v j) · b,

ui =
π
2
(i − 1

2
)

Nr
, v j =

π
2
( j − 1

2
)

Nz
.

We replace the differentials dr ′ and dz ′ in (6) by discrete

weight functions according to the differentiation rules:

dr ′i = (r ′i )
′di →

π

2
cos ui

a(z i)

Nr
= ωr ,

dy ′
j = (y ′

j)
′d j →

π

2
cos v j

b
Nz

= ωz ,

Then, for example, the
”
weight“ of a single cell with

coordinate rm would be defined as ωm = ωrωz . The

kernel of the integral Gcyl(r, r
′) reduces to the matrix

Gcyl(rk , r
′
m) = Gkm. The electric current equation (6)

reduces to the sum (discrete analog)

J̇(rk, t) = jk(t) =
∑

m

(Gkmωm)−1
[

Ec

(Jm(t)
Jcm

)n
−

rk

2
Ḃa(t)

]

.

(7)
The function f (r, r ′, η) was calculated using the linear

grid ui :

ui =
i − 1/2

M
, i = 1, 2, . . . , M; M = 30;

φ(ui) = πui − sin(πui).

The function (5) in the new variables has the form

f =

1
∫

0

g[φ(u)]φ′(u)du ≈
1

M

M
∑

i=1

g[φ(u1)]φ
′(ui),

where

g[φ(ui)] =
1

2π

r ′ cosφ(ui)

(η2 + r2 + r ′2 − 2rr ′ cosφ(ui))1/2
,

φ′(ui) = π − π cos(πui), dui =
1

M
di →

1

M
.

The magnetic moment of the sample at the moment will

be determined by the expression

m(t) = 2π

a
∫

0

drr2
b

∫

0

dz J(r, z , t) → m(t)

= 2π
∑

k

r2kωkJk(t). (8)

The calculations were performed using a package of

application programs. For this purpose, the electric current

equation (6) was reduced to the matrix form (7):

J̇(t) = (GW)−1
[

Ec(J(t) ØJc(t))
◦n −

R

2
Ba(t)

]

,

where J̇− (J̇k1) — matrix-column of time derivatives of

current density for each grid element, G = (Gkm) — square

matrix of the equation kernel, W = diag(ωk) —diagonal

matrix of grid cell weights, J = (Jk1) and Jc = (Jck1) —
column matrices of the current and critical current densities

in the grid cells, R = (rk1) —column matrix of r -cell co-
ordinates, ◦n — element-by-element matrix exponentiation,

Ø — element-by-element division of matrices. To obtain the

complete distribution of current densities J, this equation

is solved for each time moment with step τ and the initial

condition J(0) = 0: J(t + τ ) = J(t) + J̇(t)τ .
We obtain the local magnetic field induction by numeri-

cally determining the rotor from the vector-potential (4):

B(r) = ∇× A

= −∇×

[

µ0

a
∫

0

dr ′
b

∫

0

dz ′Gcyl(r, r
′)J(r′) +

r
2

Ba

]

. (9)

Due to the axial symmetry, the vector A will have only

an azimuthal projection, which simplifies the calculation of

the vector B, which has r and z components:

B i j =
√

(B2
r )i j + (B2

z )i j,

where

B r i j = −
Ai, j+1 − Ai, j

z j+1 − z j
, B z i j =

Ai+1, jr i+1 − Ai, j r i

r i(r i+1 − r i )
,

i = 1, 2, . . . , Nr − 1, j = 1, 2, . . . , Nz − 1.

Matrix Ai j of size Nr × Ny is obtained from the column

matrix

A = −µ0GWJ−
R

2
Ba .

3. Magnetic moment hysteresis loops
for a series of dependences of the
critical current density on the
magnetic field induction

Based on the above technique, let us consider the

hysteresis curves of the magnetic moment of spherically

symmetric homogeneous samples, in particular pellets,

using a number of different field dependences of the critical

current density used in the literature. The effect of the

magnetic field on the critical current density is due to the

fact that the resulting shielding induction current interacts

with Abrikosov vortices in the area of their penetration. The

vortices are fixed on heterogeneities of the material or come

Technical Physics, 2022, Vol. 67, No. 11



March 21, 2023 12:53 1st draft

1398 N.D. Kuzmichev, A.A. Shushpanov, M.A. Vasyutin

into motion with a sufficient Lorentz force from the resulting

shielding current. Since the force depends on the local

magnetic field strength and the current flowing at that point,

the critical current density is limited by the minimum force

Fp (pinning force) sufficient to start vortex motion. In other

words, J = f (Fp, H). Different samples show differences

in the pinning force dependences, as well as in the values

of the second critical field Hc2. Based on this, the choice

of the dependence J(B) is made through comparison with

experimental magnetization loops in similar samples. Their

consistency serves as the main criterion for selecting the

dependencies J(B).
The following models were used in the present work. One

of the first dependencies describing the decay of the critical

current density as the magnetic field grows was proposed

by Kim [10]:

Jc(B) =
Jc0

(1 + |B|
B0

)
. (10)

The model describes well the behavior of the superconduc-

tor in small fields H ≪ Hc2. For fields close to Hc2, the

dependence Jc(B) better describes the model [11,12] with

the dependence of the critical current Jc(B) = Jcoe−|B|/B0 .

The following was also used:

combined two-parameter form

Jc(B) = Jc0

(

1 +
|B |

B0

)−α

(11)

and the three-parametric proposed in [13,14] et al.

Jc(B) = Jc0

1− ( |B|
Bc2

)α

1 + ( |B|
B0

)α
. (12)

The latter dependence accounts for the behavior of the

superconductor at different scales by accounting for the

second critical field Bc2 = µ0Hc2.

For the calculation, we chose samples in the form of

balls, the shape of the lateral boundary is described by the

equation: a(z ) = a0(1− z 2)1/2, a0 = b = 1. The density of

the grid on which the calculation was made is 15 cells per

unit length. All constants in the matrix equations for conve-

nience were taken as one: Ec = Jc0 = Ḃa = µ0 = µ = 1.

”
Speed of calculation“ (time step) — τ = 8 · 10−6 s.The

degree of the current-voltage curve is chosen by a large

odd number n, as in the work [3]. Reducing n a

few times, for example, from n = 51 to 11, leads to

a small increase in magnetic moment (∼ 9%) without

qualitatively changing the hysteresis pattern of the loop.

In the calculations, all magnetic field strength values

were normalized to Jc0a0 and magnetic moment values

to Jc0a4
0. The index of degree α was taken to be 0.5, and

Bc2 = 20µ0Jc0a0.

A complete magnetization cycle in a uniformly varying

magnetic field was calculated for each model. The graphs

below (Fig. 1) show the calculated magnetic moment loops

m(Ha) of the samples with variation of the main parameters

based on formulas (10)−(12). Also presented here are the

hysteresis loops B(Ha), where B — magnetic field induction

in the center of the sample, Ha — external field strength

and Ha,max — maximum field strength of the magnetization

cycle.

From the magnetic moment loop graphs in Fig. 1, a, c, e, g,

we can see that the magnetic moment corresponding to the

dependence (11) decreases more slowly with increasing Ha

due to the slow decrease of Jc(B). The magnetic moment

corresponding to formula (12) has a sharper peak near zero

of the external field. In general, the curves m(Ha) have a

similar appearance. Fig. 1, b, d, f, h shows the hysteresis

curves of the field induction B(Ha) at the center of the

sample, which show that the dependence Jc(B) (11) gives

a wider loop, as in the case m(Ha). In addition, the curve

B(Ha) in Fig. 1, h at Ha,max = 0.5Jc0a0 is missing, since

Ha,max < Hp — full penetration fields.

In addition to obtaining the magnetic moment loops,

the calculation was made of the total penetration field Hp

depending on the values of the main parameter B0 = µ0H0

of ellipsoidal samples with different ratios of half axes

a0/b = 0.5, 1, 2, for different models of the field depen-

dence of the critical current density Jc(B) ((10)−(12)) with

the same parameters Bc2 and α. The results are shown in

Fig. 2.

The field of total penetration Hp into the sample (Hp —
is the magnetic field strength when the vortex density

(magnetic flux density B) and shielding supercurrent will

be different from zero in the central area of the sample) was
calculated for a uniformly growing external magnetic field.

Then, at each counting step, the condition B > 0.05µ0Jc0a0

was checked. When it was performed, the external magnetic

field was considered to penetrate into the sample and its

value Hp was fixed. If you reduce the size of the cells, this

condition can be reduced. When the density of cells per unit

length was increased from 15 to 30, the field Hp changed

insignificantly. The figure shows that the curves Hp(H0)
show a monotonic increase with the exit to saturation. The

curves also show, that elongated samples require a smaller

field Hp, and flattened ones — a larger field. From a

comparison of the graphs of Hp(H0) with each other, it

follows that the dependence Jc(B) (11) corresponds to a

large field Hp .

4. Peak effect

The functions approximating the dependence of the

critical current density on the local magnetic field induction

suggest that it decreases monotonically as the field increases,

which agrees with most experiments. However, some

superconductors exhibit an increase in the macroscopic

current density in some area instead of its monotonic

decrease. This effect is reflected as a secondary maxi-

mum on the magnetization loops. There may be many

reasons for this effect, such as reducing the stiffness of

the vortex lattice, the effect of intergranular boundaries,
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Figure 1. Magnetic moment (a, c, e, g) loops, and the dependence of the magnetic field induction at the center (b, d, f, h) of the

superconducting ball for different values of parameter B0 and dependences Jc(B) (from the top down: (10) — a, b, (11) — c, d, (12) —
e, f). Magnetic moment loops for Jc(B) ((11) — g, h) at different values of the maximum field Ha,max of the magnetization cycle. The

values of B0 in the figures are shown in units of µ0Jc0a0 .

the phase transition of the vortex lattice, phase separa-

tion, etc. In order to model this effect, it has been

proposed in [15–18], etc., to modify the function Jc(B)

as follows. An additional term determining the shape of

the secondary maximum is added to the Jc(B) dependence

models:

Jc(B) = Jc0(B)(1 + f peak(B)). (13)

The following functions [15–18] were used as the peak

function f peak in this paper:

f peak(B) = A/

(

1 +
( |B | − B p

Bw

)2
)

, (14)

f peak(B) =
A|B |

B p
exp

(

−
(|B | − B p)

2

2B2
w

)

, (15)

Technical Physics, 2022, Vol. 67, No. 11



March 21, 2023 12:53 1st draft

1400 N.D. Kuzmichev, A.A. Shushpanov, M.A. Vasyutin

0.1 0.50.3 1.10.9
0.4

0.6

1.0

0.7
H J aa c/ ·0 0

0.8

1.2

H
p

J
a

/
·

c
0

0

a

a b0/ = 0.5
/ = 1.0a b0
/ = 2.0a b0

0.1 0.50.3 1.10.9

0.7

0.9
1.1

0.7
H J aa c/ ·0 0

0.8

1.4

H
p

J
a

/
·

c
0

0

b

a b0/ = 0.5
/ = 1.0a b0
/ = 2.0a b0

0.1 0.50.3 1.10.9

0.5

0.6

1.0

0.7
H J aa c/ ·0 0

0.7

H
p

J
a

/
·

c
0

0

c

a b0/ = 0.5
/ = 1.0a b0
/ = 2.0a b0

1.0

1.3
1.2

0.8

0.9

Figure 2. Dependence of the total penetration field Hp on the parameter H0 = B0/µ0 for ellipsoids with different semi-axis ratios

a0/b = 0.5, 1, 2 using different models Jc(B): a — (10), b — (11), c — (12).
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Figure 3. View of the critical current density function

using the peak functions (14)−(16) with parameters A = 0.5,

B p = 2 µ0Jc0a0, Bw = 0.5 µ0Jc0a0 .

f peak(B) = A exp

(

−
( ln |B|

B p
)2

2(Bw

B p
)2

)

. (16)

Here, B p — the field corresponding to the peak maximum;

Bw — the field characterizing the peak width; A — the

peak amplitude.

Fig. 3 shows a comparison of peak functions with

the same parameters. As you can see, all of the features

are quite similar in shape with equal width, height and

position parameters. The advantage of using functions (15)
and (16) is their value at zero field: f peak(0) = 0, which

does not change the maximum critical current density.

In Section 4, the results of modeling the magnetization

hysteresis loop of a spherical sample of radius a0 in

the Kim field dependence model using different peak-

functions (14)−(16) and variation of their parameters will

be presented.

From the analysis of the results shown in Fig. 4, it follows

that all three functions (14)−(16) have no significant effect

on the differences in the magnetic moment hysteresis loops.

In addition, the influence of the parameters determining the

width and position of the peak in the dependences Jc(B)
and m(Ha) is the same.

The current density profiles Jc(B(r, z )) for a ball pellet of
radius a0 in the Kim model (1) with peak function (16) for

three external field values Ha = Jc0a0 were also calculated,

2Jc0a0 and 3Jc0a0, 2Jc0a0 and 3Jc0a0, which are obtained

for the increasing field. The results are shown in Fig. 5 and

6. The figures show that there is a significant difference only

when Ha = Jc0a0 at the poles of the ball.

5. Equilibrium magnetization accounting

In fields H > Hc1 near the superconductor surface,

Abrikosov vortices are formed, which are uniformly dis-

tributed in the superconductor in the absence of the pinning

phenomenon, and the magnetic moment of the sample

is also independent of the prehistory. In the case of

pinning, the vortices formed near the surface are fixed on

inhomogeneities. In the vortex-filled area, according to the

critical state model [1,10], a screening current equal to the

depinning current Ic(B) flows. In this case, the magnetic

moment will depend on the prehistory of the supercon-
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Figure 4. Magnetic moment loops (a, c, e) and magnetic field values in the center of the samples (b, d, f). a, b — data are given for

different peak functions (14)−(16) with the same parameters: A = 0.3, B p = 2 µ0Jc0a0, Bw = 0.5 µ0Jc0a0; c, d — for different widths;

e, f — for different positions of the secondary peak. The values of the changeable parameters are shown in the figures. In other cases, the

values A = 0.3, B p = 2 µ0Jc0a0, Bw = 0.5 µ0Jc0a0 were used, and function (16) was used as peak function on the second and third rows.
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J

r

z

Figure 5. Current density profiles Jc(B(r, z )) for a ball of radius a in the Kim model (10) with peak effect (16) for three external field

values Ha = 1Jc0a0, 2Jc0a0 and 3Jc0a0 . The position of the maximum is B p = 2 µ0Jc0a0 .
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H J aa c= 1 0 · 0  H J aa c= 2 0 · 0  H J aa c= 2 0 · 0 

Figure 6. Current density profiles Jc (B(r, z )) for a ball of radius a in the Kim model with peak effect (16) for three external field values

Ha = 1Jc0a0, 2Jc0a0 and 3Jc0a0 . The position of the maximum is B p = 2 µ0Jc0a0 .
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Figure 7. Magnetic moment loops of a spherical sample considering equilibrium areas of different thicknesses (a, c). The thicknesses of

the equilibrium areas in the figure are given in relative units and indicated by (l0/a0 = 0.1 (a) and l0/a0 = 0.3 (c)). b, d — the magnetic

moments of these equilibrium areas are given. Kim’s model was used (10) with parameters B0 = 0.5 µ0Jc0a0 .

ductor state, and hysteresis will appear. When studying

the magnetization of, for example, low-temperature [11]
and polycrystalline high-temperature superconductors [19],
it was found that their hysteresis loops of magnetization or

magnetic moment have a marked asymmetry relative to the

abscissa axis (magnetic field strength axis). The amount

of asymmetry depends on the temperature. To describe

the asymmetry, the authors [11] proposed to consider the

equilibrium magnetization of the superconducting sample

surface layer of thickness l0 ∼ λ — the London penetration

depth. The magnetization of such a layer does not depend

on the prehistory of its state and will be reversible. The

reasons leading to the asymmetry of the magnetization

hysteresis loop are discussed in works [20–22]. These

include, for example, the Meissner effect, the surface

barrier, etc. This area is called the area of equilibrium

magnetization in contrast to the area of the inner part

filled with vortices, where magnetization will be non-

equilibrium.

When calculating the magnetic properties of supercon-

ducting bodies whose dimensions are much larger than l0
and in large fields (comparable to the field Hp), the

equilibrium area can be neglected, since its contribution

to the total magnetization is negligibly small. However, if

we consider granular superconductors, the value l0 may be

of an order comparable to the size of the granules. This
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Figure 8. Magnetic moment loops of the whole sample (a, b), surface layer (c, d). The data are given for the width of the equilibrium

magnetization zone equal to l0/a0 = 0.1 (a, c), 0. 3 (b, d), peak function (16), Kim model (10), using parameters B0 = 0.5 µ0Jc0a0,

A = 0.3, B p = 2 µ0Jc0a0, Bw = 0.5 µ0Jc0a0 .

leads to a noticeable asymmetry of the magnetization loops,

and the greater the ratio of the depth of the near-surface

area to the size of the sample granules, the stronger it is

expressed [12].

In the present work, we present the calculation of mag-

netization loops, taking into account the equilibrium area on

the basis of the methodology mentioned above. In contrast

to the works [13–16,20–22], in which the calculation

method is valid for samples with zero demagnetizing factor,

the calculation of hysteresis loops of magnetic moment was

performed according to the previously obtained distribution

of the critical current density in the sample on the basis of

equation (6). In this case, the demagnetizing field is taken

into account without additional restrictions.

The calculation was carried out so that the current

distribution in the equilibrium area depended only on the

direction and value of the external magnetic field, but not

on the sign of its rate of change. For this purpose, at the first

stage, when the field increases from zero to its maximum

value by the program, the values of local current densities

in the cells included in the near-surface layer are recorded.

With further modifications, these data are used to calculate

the full magnetic response of the sample. Figure 7 shows

the results of calculating the magnetic moment loops of a

spherical sample of radius a0, as well as the profiles of

the local magnetic field induction for the central section.

Note, that the asymmetry of the magnetic moment loop

with respect to the horizontal level (m = 0, abscissa axis)

increases with increasing values of the near-surface layer

depth.

As indicated in [22], the problem with equilibrium

magnetization becomes more complicated in the presence

of a peak effect in the sample. Since the vortices do not

experience in the near-surface area the same fixation as in

the inner area, the secondary magnetization peak should

not appear there and increase the asymmetry of the loop.

To compensate for this phenomenon, the author of the

aforementioned paper proposes to change the depth of the

equilibrium area, reducing it at the secondary peak. In

the present work, a different approach was used: when

calculating the sample magnetization with allowance for the

peak effect and the equilibrium area, the currents in the

near-surface zone were first determined without considering

the peak effect, and then, the obtained data were used for

full simulation.

The calculation results for the near-surface zone are

shown in Fig. 8. As can be seen, the peak effect does

not affect the equilibrium magnetization area.

Conclusion

Thus, in this work, we have performed numerical

simulations of the magnetic properties of axisymmetric

pellet superconductors of the second kind for a number

of models of dependence of the critical current density on

the magnetic field induction (10)−(12), taking into account

the pick effect and equilibrium magnetization. Different
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variants of the functions (14)−(16) were used as peak

functions. The magnetic moment loops of the samples were

determined directly by integrating over time the integral

equation for current density obtained using the critical

state concept based on the equations of electrodynamics.

Calculation of the magnetic field at each point for each

iteration step allowed us to use different dependences of

the critical current on the local magnetic field induction and

peak functions. The current density profiles Jc(B) in the

Kim model with the logistic peak-function (16) and the

equilibrium magnetic moment of spherical pellets were also

calculated. The method of calculating the magnetic moment

used in this work allows the equilibrium and nonequilibrium

areas of the sample to be taken into account independently.

The results of calculating the hysteresis loops m(Ha)
and B(Ha) show that the dependence Jc(B) (11) leads,

as might be expected, to wider loops due to the slower

decline of the function Jc(B). It is obtained that ellipsoidal

samples stretched along the symmetry axis require a smaller

penetration field Hp, while flattened ones require a larger

one. It should also be noted that all three peak func-

tions (14)−(16) have no significant effect on the magnetic

moment hysteresis loops. The results of the calculation

of the magnetic moment loops of a spherical sample of

radius a0, as well as the local magnetic field induction

profiles for the central section showed that the asymmetry

of the magnetic moment loop relative to the horizontal level

(m = 0, abscissa axis) increases with increasing values of

the near-surface layer width.
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