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Localization of electromagnetic waves in a zigzag lattice of waveguides

with competing cubic and quintic nonlinear responses
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The zigzag waveguide array is considered, where even waveguides are composed of optically linear material,

and their nearest neighbors are characterized by positive cubic nonlinearity and negative fifth-order nonlinearity. In

the continuum (long-wave) approximation the solutions of the system of coupled wave equations are found, which

describe waves localized in the lattice and harmonic propagating waves.
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1. Introduction

The localization of electromagnetic radiation is a funda-

mental problem that has attracted attention for many years.

In linear optics, this purpose is achieved with the help

of resonators (micro- and nanoresonators i.e.photon dots),
waveguides, and excitation of surface waves. Nonlinear

optics provides another way to localize radiation, which

is known as the formation of solitons, or in general,

stable solitary waves. In 1967 the term
”
photonics“ [1]

entered science and later, approximately from the 70s of

the last century, a branch of optics began to form, where

phenomena were studied in which photons play the main

role, similar to that which electrons play in electronics.

Discrete media formed by a periodic distribution of the

permittivity in space have become important in photonics.

Due to the peculiarities of the spectrum of electromagnetic

radiation, which contains bandgaps and allowed bands,

such media are called photonic crystals [2]. Another

example of discrete media is metamaterials [3–5], which

are formed by metallic or dielectric elements of a complex

shape periodically located in a dielectric matrix, having

dimensions comparable to the radiation wavelength. In

a broad sense, metamaterials include arrays of quantum

dots, microresonators, Josephson contacts (SQUIDs), layers
of thin films of metal or graphene, and waveguides. If

these
”
meta-atoms“ are located periodically in space, then

one speaks of photonic lattices of meta-atoms. The

results concerning the nonlinear localization of light in

discrete structures are presented in a large number of

reviews and books, among which it is enough to men-

tion [4,6].

In recent years, publications have appeared on the

results of studying the optical properties of photonic lattices

formed from one-dimensional and two-dimensional arrays

of waveguides, and the lattice cell contains more than two

waveguides. It is assumed that radiation can penetrate

into neighboring waveguides only due to interruption of

total internal reflection. This situation is analogous to an

electronic crystal under strong coupling conditions. The

radiation frequency in a photonic lattice depends on the

propagation constant along the waveguide and on a discrete

set of transverse wave numbers. Thus, the dispersion

curves form surfaces above the Brillouin zone, similar to

the allowed bands of electrons in a crystal. The curvature of

the zones characterizes the diffraction of light on a photonic

lattice, which is referred to as discrete diffraction [6,7].

In addition to photonic lattices with two or more atoms

in the lattice cell, zigzag lattices [11], binary lattices [8–10]

and zigzag binary lattices [12,13] were studied. In the linear

case, radiation is not localized in such photonic lattices.

The Kerr-type nonlinearity effect can lead to the formation

of a discrete soliton [6,14,15]. At present, interest in

binary photonic lattices has again arisen in connection with

research in the field of non-Hermitian photonics [16,17]. In

a lattice cell, one waveguide is an absorber, and the second

waveguide is an amplifier.

In most cases, lattices of dielectric waveguides were con-

sidered, the nonlinear properties of which are described by

the Kerr nonlinearity. But a weaker quadratic nonlinearity

can lead to the formation of discrete solitons [6,18–20].

The effect of nonlinearity saturation on the formation of

discrete solitons has been studied for simple lattices (i.e.,

with one
”
atom“ in the lattice cell) [21–23]. Here one

will consider a model of discrete photonics, which is a

generalization of a binary zigzag lattice (Figure) for the case

of competing nonlinearities of the third and fifth orders. The

system of equations of coupled waves can be solved in the

continuum (or long-wavelength) approximation, which leads

to localized distributions of electromagnetic wave intensities

along the lattice waveguides.
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Waveguide configuration corresponding to a one-dimensional

zigzag lattice. The dashed line marks the lattice cell. Integers

n enumerate lattice cells.

2. Main equations of the model

The propagation of electromagnetic radiation in a line of

waveguides is usually described on the basis of the coupled

wave theory [24]. An electromagnetic wave is represented

by a linear superposition of quasi-harmonic waves localized

in the n-th waveguide. Using the approximation of slowly

varying amplitudes, a differential−difference equation is

derived from the wave equation for the amplitudes of

coupled waves in the n-th waveguide [25–29].

For a zigzag lattice shown schematically in the Figure, the

slowly varying amplitudes of the electric fields An and Bn

are determined by a system of equations of the following

form

i

(

∂

∂τ
+

∂

∂ζ

)

An + eiδbζ (Bn + Bn−1)

+ c2(An+1 + An−1) + G1[An]An = 0, (1)

i

(

∂

∂τ
+ σ

∂

∂ζ

)

Bn + e−iδa ζ (An+1 + An)

+ c2(Bn+1 + Bn−1) + G2[Bn]Bn = 0, (2)

where ζ is spatial coordinate, measured in units of coupling

length Lc , τ is time, measured in units of tc = Lc/vg , vg is

group velocity of electromagnetic wave in a waveguide.

In the model under consideration, it is assumed that the

group velocities are the same for all waveguides. The

parameter δa = (βb − βa)Lc is the difference between the

propagation constants βb and βa of waves localized in

neighboring type B and A waveguides, respectively. The

terms G1[An] and G2[Bn] describe the local nonlinear

properties of the waveguides. Parameter c2 is the ratio of

coupling constants between waveguides following nearest

neighbors and nearest neighbors. The symbol σ = ±1 takes

into account the fact that type B waveguides can be made

of a material with positive (σ = 1) or negative (σ = −1)
refraction.

Here, a model will be considered in which only type A

waveguides are nonlinear, and their nonlinear properties are

described by terms in equations (1) and (2) of the following

form:

G1[An] = µ(| An |2 −̺ | An |4), G2[Bn] = 0.

In the work [13] the case of Kerr nonlinearity was

considered: G1[An] = µ | An |2. It is considered that the

phase-matching condition is fulfilled: δa = 0.

If we restrict ourselves to the case of continuous radia-

tion and make the replacement of variables An = (−1)nÃn

and Bn = (−1)nB̃n, then equations (1) and (2) take the

following form:

i
∂

∂ζ
Ãn + (B̃n − B̃n−1) − c2(Ãn+1 + Ãn−1)

+ µ(| An |2 −̺ | An |4)Ãn = 0, (3)

iσ
∂

∂ζ
B̃n + (Ãn − Ãn+1) − c2(B̃n+1 + B̃n−1) = 0. (4)

3. Nonlinear waves in the continuum
approximation

Let the radiation propagates along the waveguides

as a harmonic wave with the wave number kζ = β .

Then one can make the replacement Ãn(ζ ) = eiβζ an and

B̃n(ζ ) = eiβζ bn, which reduces the system of differential-

difference equations to the system of difference equations:

−βan + (bn − bn−1) − c2(an+1 + an−1)

+ µ
(

| an |2 −̺ | an |4
)

an = 0, (5)

−σβbn + (an − an+1) − c2(bn+1 + bn−1) = 0. (6)

All the amplitudes in these equations can be considered as

real quantities, since there are no complex numbers in (5)
and (6).
In the continuum approximation, this system of equations

reduces to the following system:

∂b
∂ξ

− (2c2 + β)a + µ
(

a3 − ̺a5
)

= 0, (7)

∂a
∂ξ

+ (2c2 + σβ)b = 0. (8)

The system of equations (7) and (8) can be reduced to

one equation for the field a(ξ):

∂2a
∂ξ2

+ (2c2 + σβ)(2c2 + β)a

− µ(2c2 + σβ)
(

a3 − ̺a5
)

= 0.

Let σ = −1. In this case, the resulting equation can be

written in the following form:

∂2a
∂ξ2

= p2a − κ(a3 − ̺a5), (9)

where p2 = β2 − 4c2
2 and κ = µ(β − 2c2). In the case

when β2 < 4c2
2, equation (9) has no bounded solutions

with zero asymptotics at infinity. However, if β2 > 4c2
2,
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then bounded solutions exist. Thus, the interaction with the

next after nearest neighbors leads to the appearance of a

gap (bandgap) for propagation constants β .

Equation (9) can be understood as the equation of motion

of mass particle in a given potential. This equation has a first

integral (which is obtained in the standard way):

(

∂a
∂ξ

)2

− p2a2 +
κ

2

(

a4 − 2̺

3
a5

)

= I1.

For the boundary conditions corresponding to localized

waves, the I1 integral is equal to zero1.

If replace a = a0u−1/2, then for the new dependent

variable u(ξ), one can get the equation

(

1

2

∂u
∂ξ

)2

= p2u2 − κa2
0

2
u +

κ̺a4
0

3
.

Having defined a new independent variable τ = 2pξ and a

normalization parameter a2
0 = 4p2/ | κ |, one can write the

equation obtained above in a simple form:

(

∂u
∂τ

)2

= νu2 − 2u + θ = (u − 1)2 − (1− θ),

where θ = (16/3)̺p2/κ, ν = κ/ | κ |. In what follows,

it will be assumed that κ > 0 is a third-order focusing

nonlinearity.

The obvious replacement is u − 1 = 1w , where the

parameter 1 is arbitrary, leads to the equation

12

(

dw
dτ

)2

= 12w2 − (1− θ). (10)

In the value range θ: 0 < θ < 1, one can define 12 = 1− θ.

In this case, the solution of equation (10) is written as

w(τ ) = cosh(τ − τ0), where τ0 is the integration constant.

Therefore, u = 1 + 1 cosh(τ − τ0), and in the original

variables this solution has the form

a2(τ ) =
a2
0

1 + 1 cosh(τ − τ0)
. (11)

In the region θ > 1, the parameter 12 is chosen as

12 = θ − 1 > 0, and the equation for w takes the following

form:
(

dw
dτ

)2

= w2 + 1.

Its solution is w(τ ) = sinh(τ − τ0). Therefore,

a2(τ ) =
a2
0

1 + 1 sinh(τ − τ0)
. (12)

The right side of this expression vanishes at some point on

the τ axis and changes the sign, therefore, this solution has

no physical meaning.

1 It is enough that the amplitude a and its derivative would turn to zero

at one of the lattice boundaries

At the point θ = 1, the parameter 1 turns to zero. The

function satisfies the equation

(

dw
dτ

)2

= w2, (13)

or dw/dτ = ±w . This implies two solutions:

w(±) = exp[±(τ − τ0)]. Therefore,

a (±)2(τ ) =
a2
0

1 + exp[±(τ − τ0)]
. (14)

Using this result, one can write it in another form

a (±)2(τ ) =
a2
0 exp[∓(τ − τ0)/2]

2 cosh[(τ − τ0)/2]
. (15)

These solutions describe domain walls similar to those

found in the case of a rhombic lattice [30]. But such a

wave is not localized in type A waveguides.

When there is no competing nonlinearity, the medium

has only third-order nonlinearity, and θ = 0. In this limiting

case, it follows from (10) that

a2(τ ) =
a2
0

1 + cosh(τ − τ0)
=

2a2
0

cosh2[(τ − τ0)/2]
.

This yields the solution for the case of the Kerr nonlinearity:

a(τ ) =

√
2a0

cosh[(τ − τ0)/2]
.

To obtain the distribution of fields in type B waveguides,

one must refer to equation (8), from which it follows that

(2c2 − β)b(ξ) = −da
dξ

= −2p
da
dτ

.

Because

a(τ ) =
a0

(1 + 1 cosh τ )1/2
,

the derivative with respect to τ of the field amplitude a is

da
dτ

=
(−1/2)a0

(1 + 1 cosh τ )3/2
1 sinh τ .

Remembering that p =
√

β2 − 4c2
2, one can get the final

formula for the amplitude b:

b(ξ) = −
√

β + 2c2

β − 2c2

a01 sinh τ

(1 + 1 cosh τ )3/2
, τ = 2pξ. (16)

Comparing the obtained expressions for a(ξ) and b(ξ),
one can see that the distribution of fields a(ξ) is symmetric,

and distribution of fields b(ξ) is antisymmetric. This is

reflected in equation (8) and is its consequence. Accounting

for higher order derivatives can change this result.

The solution in the form of a domain wall is found

similarly. By setting (where s = ±1)

a (s)(τ ) =
a0 exp[−sτ /4]√
2 cosh1/2(τ /2)

,
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the derivative can be calculated

da (s)

dτ
=

a0 exp[−sτ /4]√
2 cosh1/2(τ /2)

(

− s
4

)

+
a0 exp[−sτ /4]√
2 cosh3/2(τ /2)

(

−1

4
sinh(τ /2)

)

=

= − a0 exp[−sτ /4]

4
√
2 cosh1/2(τ /2)

[s + tanh(τ /2)] .

The final formula for the field b(ξ) will have the following

form:

b(±)(ξ) = −
√

β + 2c2

β − 2c2

a0e∓τ /4

2
√
2 cosh1/2(τ /2)

[tanh(τ /2) ± 1] ,

τ = 2pξ. (17)

4. Conclusion

In this paper we consider one of the models of discrete

photonics, namely a model in which two waveguide lines

are shifted relative to each other, which allows interaction,

in addition to nearest neighbors, also with waveguides

following the nearest neighbors. Such a zigzag lattice was

considered earlier in [11,12]. If the lattice cell contains two

types of waveguides, one waveguide is linear, and the other

is characterized by Kerr nonlinearity, then radiation can be

localized in such a lattice if a certain threshold condition is

met [13]. But this localization takes place in the direction

of the axis of the waveguides. Localization in the transverse

direction, when the radiation is concentrated in only a few

waveguides, has not been investigated. If assume that the

field strength changes little from site to site of the lattice,

one can use the continuum approximation and pass from

difference equations to differential ones. The solution of the

equations obtained in this way demonstrates the existence

of localized distributions of the amplitudes (or intensities)
of the electromagnetic field along the waveguides. The

parameters of the localized intensity distributions depend

on the ratio of the interaction constants between the nearest

waveguides and the waveguides following the nearest

ones. This parameter can change when the geometric

characteristics of the zigzag lattice change.

In addition to localized distributions of amplitudes over

waveguides, there are distributions in the form of domain

walls. It should be noted that the presence of competing

nonlinearities ensured the existence of a solution for the

domain wall type. For a rhombic lattice, the same

solution took place, taking into account the competing cubic

and quintic nonlinearities [30]. The same solution was

obtained when considering the problem on the propagation

of extremely short pulses in a medium described by

the Duffing model [31]. It can be concluded that the

formation of a distribution of field strengths (or intensities)

of electromagnetic waves in the form of domain walls is

inherent in waveguide lattices with non-Kerr nonlinearity.

The model considered here can be generalized in order to

study the possibility of the existence of completely localized

distributions in waveguides, both in the transverse and in the

longitudinal directions.
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Phys. Rev. Lett., 88, 093901 (2002).
[27] G. Staron, E. Weinert-Raczka, P. Urban. Opto-Electronics

Review., 13 (1), 93 (2005).
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