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Based on the solution of the equation of motion of a charge in an electromagnetic field, the classical theory
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a static component of the magnetic field is constructed. Solutions obtained by Kopytov G.F. and Pogorelov A.V.,

were used to study the spectral-angular characteristics of the radiation of a charged particle in a combination of the

field of a plane monochromatic electromagnetic wave and a constant magnetic field, the so-called Redmond field.

According to the calculated formulas for the radiation intensity of particles in the Redmond field, graphs of the

dependence on the magnitude of the magnetic field, phase and phase-angular distributions are plotted. The Fourier
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in the case of linear polarization of the wave is obtained.
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Introduction

In [1] spectral-angular radiation characteristics of a charge

accelerated by high-intensity electromagnetic radiation were

obtained. The theory of charged particles acceleration in

plasma using laser radiation was suggested as early as

1979 [2] and is refining up to now [3]. Currently the

highest intensities achievable in the focus of laser beam

are ∼ 1023 W/cm2 [4]. These strong electric fields become

achievable with the emergence and development of laser

plants that allow generating pulses in optical range with a

duration of a few femtoseconds (10−15 s). However, as it

is known from the Lawson−Woodward theorem, a particle

in the unlimited vacuum space without static component

of electric or magnetic field can not absorb the energy

from laser pulse, no matter how strong is the pulse [5].
The issue of particle oscillation in a combination of a plane

electromagnetic wave (EMW) field and a constant magnetic

field was investigated for the first time in [6] and remains

in the focus of researchers up to now in the point of

view of classical and quantum theories [7–16]. Results of

these studies are of special interests, because the problem

formulated in them corresponds to real technical systems.

In [17] a technique was developed to determine spectral-

angular and polarization characteristics for a beam of

relativistic charged particles in undulator.

In this study the authors made an attempt to investigate

the issue of spectral-angular radiation characteristics of a

charged particle in the Redmond field (a combination of

a plane EMW field and a constant magnetic field) based

on the results obtained in [14], where on the basis of the

classical equation of charge motion in electromagnetic field

the energy characteristics of a charged particle accelerated

by laser radiation in a constant magnetic field were calcu-

lated without taking into account the radiative friction. It

is known from [18], that energy loss of electron for the

hard radiation are achieved at an energy of 1GeV, which

corresponds a laser field intensity of ∼ 1022 W/cm2. In this

study all the characteristics were calculated at an intensity

of 1019 W/cm2. However, in the case of prolongated

interaction between the wave and the particle, even a small

parameter of radiative friction can significantly contribute

to the particle?s dynamics, therefore it is assumed that the

monochrome electromagnetic wave in the study represents

an ultrashort laser pulse. The characteristics of interest are

the intensity of charge radiation and its angular and phase-

angular distribution, as well as the Fourier-image of electric

field strength of the particle radiation and evaluation of its

spectral density modulus for linear and circular polarization

of the electromagnetic wave.

Formulation of the problem

The classical equation of particle motion with a charge q
and a mass m is as follows:

dp
dt

= qE +
q
c

[v×H6] , (1)
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where H6 = H + H0; H0 = kH0; H — vector of magnetic

field strength of the electromagnetic wave, H0 — vector of

the external magnetic field strength.

Let us supplement equation (1) with initial conditions for

velocity and coordinates of the charged particle:

v(0) = v0, r(0) = r0.

The relativistic factor γ is related to the intensity of

electromagnetic field I as follows: γ =
√
1 + I/I rel as

well as equal to γ = mc(1− vz0)/
√

1− v20/c2, where the

relativistic intensity I rel (W/cm2) is defined as follows:

I rel =
m2c3ω2

8πq2
=

1.37 · 1018
λ2

,

where λ — wavelength, c — speed of light in vacuum.

Let us select the direction of electromagnetic wave along

axis z , in this case components of vectors of electric and

magnetic fields are defined by the following system:











Ex = Hy = bx cos8,

Ey = −Hx = f by sin8,

Ez = Hz = 0,

(2)

where axes x and y coincide with directions of semi-

axes of the wave polarization ellipse bx and by , and

bx ≥ by ≥ 0; 8 = ωξ + ϕ0; ξ = t − z/c ; ω — carrier fre-

quency; f = ±1 — polarization parameter, with superscript

for right-hand polarization Ey and subscript for left-hand

polarization.

Effect of constant magnetic field on
the radiation intensity of a charged
particle in a field of plane monochrome
electromagnetic wave

By applying vector multiplication to equation (1) and

vector H we get the Umov−Poynting vector in the following

form:

S =
c
4π

[E×H] =
c

4πq
[F×H] − 1

4π

[

[v×H6] ×H
]

,

(3)
where F = dp/dt .
By writing vector products in equation (3), we can obtain

components of the Umov−Poynting vector:

Sx (t) =
1

4π
Hy

[

(vx Hy − vy Hx ) −
c
q

Fz

]

, (4)

Sy(t) = − 1

4π
Hx

[

(vx Hy − vy Hx) −
c
q

Fz

]

, (5)

Sz (t) =
1

4π

[

vx(H
2
x + H2

y) +
c
q

(Ex Fx + Ey Fy)

]

. (6)

The Lorentz force acting on the particle in the Redmond

field in a component form can be written as follows:

Fx =
1

1 + g

{

q

[

bx +
η(bxη ∓ by )

1− η2

]

cos8+
Rω2

c

c
γ cos8c

}

,

(7)

Fy =
1

1 + g

{

q

[

±by −
η(bx ∓ ηby )

1− η2

]

sin8+
Rω2

c

c
γ sin8c

}

,

(8)

Fz =
γω

1 + g

[

q2(b2
x − b2

y)

2γ2ω2(1− η2)2
sin 28

+
q(bx ∓ by )

2γω

Rωc

c
1 + η

1− η
sin(8+ 8c)

− q(bx ± by )

2γω

Rωc

c
1 + η

1− η
sin(8− 8c)

]

, (9)

where 8c = ωcξ + ψ0.

As can be seen from (9), in the Redmond field in the

initial moment of time t = 0 the longitudinal component

of pulse is d p‖/dt 6= 0, which means that in this case the

Lawson−Woodward theorem is not fulfilled.

Let us use the formula for the longitudinal component of

the particle momentum with correction for the relativistic

factor γ from [14]

g = h − q2

4γ2ω2

b2
x − b2

y

1− η2
cos 28− Rωc

c
q

2γω

×

(bx ± by )(1− η) cos(8− 8c)−
−(bx ∓ by )(1 + η) cos(8+ 8c)

1− η2
,

where h — constant part of the longitudinal component

of particle velocity defined by the initial conditions and

parameters of the accelerating field, respectively, equal to:

h =
1

2

[

m2c2

γ2
− 1 +

R2ω2
c

c2
+

1

2

q2

γ2ω2

× (bx − f ηby )
2 + (ηbx − f by )

2

(1− η2)2

]

,

where ωc = qH0/γ — cyclotron frequency, η = ωc/ω, R —
constant defined by initial conditions [14].
By substituting (7)–(9) and velocity values from [14]

to formulae (4)−(6), we get components of the

Umov−Poynting vector in the following form:

Sx(t) =
1

8π

cbx

1 + g
Rωc

c

[

(bx ± by )

(

1− 1− η

1 + η

)

× sin(8−8c)−(bx ∓ by )

(

1− 1 + η

1− η

)

sin(8+8c)

]

cos8,
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Sy(t) = ± 1

8π

cby

1 + g
Rωc

c

[

(bx ± by )

(

1− 1− η

1 + η

)

× sin(8−8c)−(bx ∓ by )

(

1− 1 + η

1− η

)

sin(8+8c)

]

sin8,

Sz (t) =
1

8π

c
1 + g

〈{

(b2
x − b2

y )

[

(1 + g) +
η2

1− η2

]

× cos 28+(b2
x +b2

y)

[

(1 + g)+
1

1− η2

(

η2 ∓ 2ηbx by

b2
x b2

y

)]

}

+
Rωc

c

(

q
γω

)−1

η[(bx ± by) cos(8− 8c)

+ (bx ∓ by ) cos(8+ 8c)]

〉

.

For the case of circularly polarized electromagnetic wave

bx = by = b/
√
2, we get modulus of the vector in the

following form:

|S(t)| =
√

S2
x (t) + S2

y (t) + S2
z (t), (10)

where Icir = cb2/8π, µ = q2b2/γ2ω2 = I lin/2I rel = Icir/I rel.

With presence of a constant magnetic field, oscillation of

the particle takes place with two periods T̃ = 2π(1 + h)/ω
and T̃c = 2π/ωc . Since the particle motion is a superposi-

tion of two types of periodic motions with frequencies ω

and ωc , the intensity will be averaged using the following

formula [14]:

f (t) =
1

2π

8(t)+2π
∫

8(t)

1

T̃

8c (t)+2π
∫

8c (t)

f (t′)
1 + g
ω

d8′d8′
c.

Now let us evaluate the radiation intensity averaged over

the period of particles oscillation in the field of electromag-

netic wave with circular polarization in the presence of a

constant magnetic field

Icirrad =
Icir

1 + µ

4

[

(

1− f η
1+ f η

)2

+
(

1
1+ f η

)2
]

×

√

√

√

√

√

√

√

√

{

1 + µ

4

[

(

1− f η
1+ f η

)2

+
(

1
1+ f η

)2
]

− f η
1+ f η

}2

+

+ µ

2

(

1− f η
1+ f η

)2
[

(

1− 1− f η
1+ f η

)2

+ η2

µ

] .

(11)

With magnetic field switched off formulae (10), (11)
becomes equivalent to formulae derived in [1].

For the case of linearly polarized electromagnetic wave

bx = b, by = 0, the intensity of wave is:

|S(t)| =
1

2

I lin
1 + g

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

1

2

R2ω2
c

c2

[

(

1− 1− η

1 + η

)

sin(8− 8c)

−
(

1− 1− η

1 + η

)

sin(8− 8c)

]2

× (1 + cos 28)

+

{

[

(1 + g) +
η2

1− η2

]

(1 + cos 28)

+ 2
Rωc

c

(

qb
γω

)−1

η cos8 cos8c

}2

,

(12)

where I lin = cb2/4π.

Now let us evaluate the radiation intensity averaged over

the period of particles oscillation in the field of electro-

magnetic wave with linear polarization in the presence of a

constant magnetic field provided that at the initial moment

of time the particle was in rest:

I linearrad =
1

2

I lin
1 + h

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

1

4

R2ω2
c

c2

[

(

1− 1−η
1+η

)2

+

(

1− 1− η

1 + η

)2

+
3µ(1 + η2)

(1− η2)2
+
4η2

µ

]

+
7µ2

128

1

(1− η2)2

+
3

2

[

(1 + h)2+
η4

(1− η2)2

]

+
1

2

η2

1− η2

×
[

6(1 + h) − µ

1− η2

]

,

(13)

where values of R2ω2
c/c2 and h are equal to, respectively:

R2ω2
c

c2
= µ

[

sin2 80

1− η2
+

η2

(1− η2)2

]

and

h =
µ

4

{

1 + η2

(1− η2)2
+ 2

[

sin2 80

1− η2
+

η2

(1− η2)2

]}

,

where 80 = ωξ0 + ϕ0, ξ0 = −z/c .

Thus, the minimum radiation intensity corresponds to the

phase of 80 = 0 and 80 = π and is defined by the following
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formula:

I linearmin =
I lin

2 + µ

2
1+3η2

(1−η2)2

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

µ

4

η2

(1− η2)2

[

(

1− 1− η

1 + η

)2

+

(

1− 1 + η

1− η

)2

+
4η2

µ

]

+
7µ2

128

× 1

(1− η2)2
+

3µ2

4

η2(1 + η2)

(1− η2)4

+
3

2

{

[

1+
µ

4

1 + 3η2

(1− η2)2

]2

+
η4

(1− η2)2

}

+
1

2

η2

1− η2

×
{

6

[

1 +
µ

4

1 + 3η2

(1− η2)2

]

− µ

1− η2

}

.

The maximum radiation intensity corresponds to the

phase of 80 = π/2 and 80 = 3π/2 and is defined by the

following formula:

I linearmin =
I lin

2 + µ

2
3+η2

(1−η2)2

×

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

µ

4

1

(1− η2)2

[

(

1− 1− η

1 + η

)2

+

(

1− 1 + η

1− η

)2

+
4η2

µ

]

+
7µ2

128

1

(1− η2)2
+

3µ2

4

(1 + η2)

(1− η2)4
+

3

2

×
{[

1 +
µ

4

3 + η2

(1− η2)2

]2

+
η4

(1− η2)2

}

+
1

2

η2

1− η2

×
{

6

[

1 +
µ

4

3 + η2

(1− η2)2

]

− µ

1− η2

}

.

The average radiation intensity of a charged particle in the

Redmond field can be determined by the following formula:

f (t) = sup lim
t→∞

1

t

t
∫

0

f (t)dt.

Thus, the radiation intensity of charged particles in the

Redmond field averaged by initial phase 80 is as follows:

I linearrad =
I lin
2

×

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

2µ(1− η2)2[µ(1− 10η2 + η4) + 4(1− η4)(1 − η2)]
{

√

µ(3 + η2) + 4(1 − η2)2×
×
√

µ[4− 3(1− η2)] + 4(1− η2)2

}3

×
[

(

1− 1−η
1+η

)2

+

(

1− 1+η

1−η

)2

+
4η2

µ
+
3µ(1 + η2)

(1− η2)2

]

+
7µ2(1− η2)[µ(1 + η2) + 2(1− η2)2]

4

{
√

µ(3 + η2) + 4(1− η2)2×
×
√

µ[4− 3(1− η2)] + 4(1− η2)2

}3

+
3

2

〈

1+
32η4[µ(1− η4)(1− η2) + 2(1− η2)4]
{

√

µ(3 + η2) + 4(1− η2)2×
×
√

µ[4− 3(1 − η2)] + 4(1 − η2)2

}3

〉

+ 12η2(1− η2)

×
〈

[µ(3 + η2) + 4(1− η2)2]×
×[4µ − 3µ(1 − η2) + 4(1 − η2)2]

{
√

µ(3 + η2) + 4(1− η2)2×
×
√

µ[4− 3(1− η2)] + 4(1 − η2)2

}3

〉

− 16η2(1− η2)

×
〈

µ[µ(1 + η4) + 2(1− η2)3]
{

√

µ(3 + η2) + 4(1− η2)2×
×
√

µ[4− 3(1− η2)] + 4(1 − η2)2

}3

〉

.

(14)

Formulae (11) and (14) can be used to plot the change

in radiation intensity of a particle in the Redmond field as a

function of magnetic field strength (Fig. 1).

It can be seen from the figure that up to the level of

η = 2.5 the constant magnetic field results in a little increase

in the particle radiation intensity if the electromagnetic wave

is circularly polarized, while the intensity for the linearly

polarized wave decreases.

By differentiating relationship (11) with respect to 80, we

get the phase distribution of radiation intensity:

dI linearrad

d80

=
I lin
2

×

〈

1 + µ

4

{

1+η2

(1−η2)2
+ 2

[

sin2 80

1−η2
+ η2

(1−η2)2

]}〉

κ−µ

2
sin 280

1−η2
θ

〈

1 + µ

4

{

1+η2

(1−η2)2
+ 2

[

sin2 80

1−η2
+ η2

(1−η2)2

]}〉2
,

(15)
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Figure 1. Radiation intensity of a particle as a function of

magnetic field strength (1 - circular right-hand, 2 — circular left-

hand, 3 — linear).

where θ and κ, respectively, are:

θ =

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

µ

4

[

sin2 80

1− η2
+

η2

(1− η2)2

][

(

1− 1− η

1 + η

)2

+

(

1− 1 + η

1− η

)2

+
3µ(1 + η2)

(1− η2)2
+

4η2

µ

]

+
7µ2

128

1

(1− η2)2
+

3

2

〈

1 +
µ

4

{

1 + η2

(1− η2)2

+ 2

[

sin2 80

1− η2
+

η2

(1− η2)2

]}〉2

+
3η4

2(1 − η2)2
+

3η2

1− η2

〈

1 +
µ

4

{

1 + η2

(1− η2)2

+ 2

[

sin2 80

1− η2
+

η2

(1− η2)2

]}〉

− µη2

2(1− η2)2

.

κ =
dθ

d80

=
1

2θ

〈

µ

4

sin 280

1− η2

[

(

1− 1− η

1 + η

)2

+

(

1− 1 + η

1− η

)2

+
3µ(1 + η2)

(1− η2)2
+

4η2

µ

]

+
3µ

2

〈

1 +
µ

4

×
{

1 + η2

(1− η2)2
+ 2

[

sin2 80

1− η2
+

η2

(1− η2)2

]}〉

sin 280

1− η2

+
3µ

2

η2

(1− η2)2
sin 280

〉

.

Formula (15) can be used to plot the phase distribution

of radiation intensity of a charged particle in the Redmond

field with an intensity of I lin = 1019 W/cm2 on the phase

plane (along the axis of abscissa sin80 and along the axis of

ordinate dI linearrad /d80) for different magnetic field strengths

(Fig. 2).
In can be seen from Fig. 2, that with increase

in the magnetic field strength the maximum of ra-

diation intensity of charged particle shifts towards

80 = π/2,−π/2, . . . ,±π/2 + 2πn.
Instantaneous angular distribution of radiation intensity of

charged particles will be as follows:

dI linearrad

d�
=

I lin
4π

×

〈

1 + µ

4

{

1+η2

(1−η2)2 + 2
[

sin2 80

1−η2
+ η2

(1−η2)2

]}〉

κ − µ

2
sin 280

1−η2
θ

〈

1 + µ

4

{

1+η2

(1−η2)2
+ 2

[

sin2 80

1−η2
+ η2

(1−η2)2

]}〉2

cos80

.

(16)
By differentiating distribution (16) with respect to 80, we

get the phase-angular distribution of radiation intensity as a

function of initial phase of the electromagnetic wave:

d2I linearrad

d80d�
=

I lin
4π

×
〈

Ŵ

1 + µ

4

{

1+η2

(1−η2)2
+ 2

[

sin2 80

1−η2
+ η2

(1−η2)2

]}

−

µ

〈

2κ sin80+θ cos θ80−
µθ

1−η2
sin 280 sin80

1+µ

4

{

1+η2

(1−η2)2
+2

[

sin2 80

1−η2
+ η2

(1−η2)2

]}

〉

(1− η2)

〈

1 + µ

4

{

1+η2

(1−η2)2 + 2
[

sin2 80

1−η2
+ η2

(1−η2)2

]}

〉2

〉

,

(17)
where

Ŵ =
cos80

2θ

〈

µ

2(1− η2)

[

1−
(

1− 1− η

1 + η

)2

+

(

1− 1 + η

1− η

)2

+
3µ(1 + η2)

(1− η2)2
+

4η2

µ

]

+
3µ

1− η2

×
〈

1 +
µ

4

{

1 + η2

(1− η2)2
+ 2

[

3
sin280

1− η2
+

η2

(1− η2)2

]}

+
η2

1− η2

〉

− 2

(

γ

cos80

)2
〉

.

Formula (17) can be used to plot the phase-angular

distribution of radiation intensity of a charged particle for

the radiation intensity of I lin = 1019 W/cm2 on the phase

plane (along the axis of abscissa sin80 and along the axis

of ordinate d2I linearrad /d80d�) for different magnetic field

strengths (Fig. 3).
Also, it can be seen in Fig. 3, that the maximum of

intensity shifts towards 80 = π/2,−π/2, . . . ,±π/2 + 2πn,

Optics and Spectroscopy, 2022, Vol. 130, No. 11



1402 D.I. Kudryavtsev, G.F. Kopytov, A.E. Suhanov

–1 0. – 50. 0 0.5 1 0.

0

2 ·1018

4 ·1018

–4 ·1018

–2 ·1018

h = 0

–1 0. – 50. 0 0.5 1 0.

h = 0.5

–1 0. – 50. 0 0.5 1 0.

h » 1

–1 0. – 50. 0 0.5 1 0.

h = 1.5

0

5 ·1017

1 ·1018

–1 ·1018

–5 ·1017

0

2 ·1012

3 ·1012

–3 ·1012

–2 ·1012

0

5 ·1017

1 ·1018

–1 ·1018

–5 ·1017

–1 ·1012

1 ·1012

sin F0 sin F0

sin F0 sin F0

d
I

d
ra

d
li

n
e
a
r

0
/

F
d
I

d
ra

d
li

n
e
a
r

0
/

F

d
I

d
ra

d
li

n
e
a
r

0
/

F
d
I

d
ra

d
li

n
e
a
r

0
/

F

Figure 2. Phase distribution of radiation intensity of particles at various magnetic field strengths.

and in conditions close to the resonance the phase-angular

distribution has the form of ellipse.

Fourier-image of electric field strength
in the Redmond field

E(r, t) =
ω=∞
∑

ω=−∞

Eω(r) exp(−i8). (18)

The Fourier-image can be represented in the form of a

periodic function:

Eω(r) =
1

T̃

t̃
∫

t

E(r, t) exp(−i8)dt. (19)

Let us express E(r, t) from equation (1) and substitute

it to function (19), then proceed from time integration to

integration over phases 8 and 8c , which yields the following

expressions for real and imaginary parts of Eω(r):

Re
(

Eω(r)
)

=
1

2π

8c(t̃)
∫

8c(t)

1

T̃

8(t̃)
∫

8(t)

(

1

q
dp
dt

− 1

c
[v×H6]

)

× cos8
1 + g
ω

d8d8c.

Im
(

Eω(r)
)

=
1

2π

8c (t̃)
∫

8c(t)

1

T̃

8(t̃)
∫

8(t)

(

1

q
dp
dt

− 1

c
[v×H6]

)

× sin8
1 + g
ω

d8d8c. (20)

Components of transformation of Fourier-function (20)
will be as follows:

Re(Eω,x ) =
bx

2(1 + h)

(

1 + h −
q2(b2

x − b2
y)

8γ2ω2(1− η2)

)

;
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Figure 3. Phase-angular distribution of radiation intensity of particles at various magnetic field strengths.

Im(Eω,x ) = 0;

Re(Eω,y ) = 0;

Im(Eω,y ) = ± by

2(1 + h)

(

1 + h +
q2(b2

x − b2
y)

8γ2ω2(1− η2)

)

;

Re(Eω,z ) = Im(Eω,z ) = 0. (21)

Let us consider cases of circular and linear polarization.

Circular polarization. In [1] it was found out that in the

case of circular polarization only amplitude information is

kept, while phase information is lost completely, therefore

in this case of wave polarization the external magnetic field

will not make any contribution.

Linear polarization. In this case from (21) we get the

following for the Fourier-image:

Re(Eω) =
b
〈

1 + µ

8

{

1+3η2

(1−η2)2 + 4
[

sin2 80

1−η2
+ η2

(1−η2)2

]}〉

2 + µ

2

{

1+η2

(1−η2)2
+ 2

[

sin2 80

1−η2
+ η2

(1−η2)2

]} .

(22)

By substituting (22) into formula (18), we get the radiation

spectrum of the particle at the initial moment of time:

Re
(

(Eω(r, t0)
)

= b

×
ω=∞
∑

ω=−∞

1 + µ

8

{

1+3η2

(1−η2)2
+ 4

[

sin2 80

1−η2
+ η2

(1−η2)2

]}

2 + µ

2

{

1+η2

(1−η2)2 + 2
[

sin2 80

1−η2
+ η2

(1−η2)2

]} cos80.

(23)
The radiation spectrum has the following phase distribution:

Re

(
∣

∣

∣

∣

dE(r, t0)
d80

∣

∣

∣

∣

)

= b

×
∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

(

1− 2A
B

)

µ sin80 cos
2 80

B(1− η2)
− A

B
sin80

∣

∣

∣

∣

∣

, (24)

where

A = 1 +
µ

8

{

1 + 3η2

(1− η2)2
+ 4

[

sin2 80

1− η2
+

η2

(1− η2)2

]}

;
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Figure 4. Phase-angular distribution of spectral density at various magnetic field strengths.

B = 2 +
µ

2

{

1 + η2

(1− η2)2
+ 2

[

sin2 80

1− η2
+

η2

(1− η2)2

]}

.

The radiation spectrum of a charge in a unit solid angle

is defined by the following formula:

Re

(∣

∣

∣

∣

dE(r, t0)
d�

∣

∣

∣

∣

)

=
b
2π

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

(

1− 2A
B

)

× µ sin 280

B(1− η2)
− A

B
tg80

∣

∣

∣

∣

∣

, (25)

The phase-angular distribution of this radiation spectrum is

as follows:

Re

(∣

∣

∣

∣

d2E(r, t0)
d80d�

∣

∣

∣

∣

)

=
b
2π

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

1− 2 A
B

B
µ

1− η2

(1− 3 sin2 80) −
A
B
sec280

∣

∣

∣

∣

∣

. (26)

Let us represent the function that characterize spectral

density of the radiation:

Re
(

S(ω)
)

= Re
(

|E(r, t0)|2
)

= b2

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

A2

B2
cos2(ωξ0)

∣

∣

∣

∣

∣

. (27)

The phase distribution of pre-defined density of spectral

radiation is expressed by the following formula:

dS(ω)

d80

= b2

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

{[

1

A
− 2

1

B

]

µ

1− η2
cos280 − 1

}

× A2

B2
sin 280

∣

∣

∣

∣

∣

.

(28)
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The spectral density of radiation per unit solid angle is

defined by the following expression:

dS(ω)

d�
=

b2

π

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

{[

1

A
− 2

1

B

]

µ

1− η2
cos280 − 1

}

× A2

B2
sin80

∣

∣

∣

∣

∣

.

(29)

By differentiating relationship (29) with respect to 80, we

get the phase-angular distribution:

d2S(ω)

d80d�
=

b2

π

×
∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

{

[(

1

A
− 2

1

B

)

µ

1− η2
cos280 − 1

]

×

×
[

1 +

(

1

A
− 2

1

B

)

µ

1− η2
sin2 80

]

−

− 2µ

1− η2

[

1 +

(

1

2A
− 1

B

)

µ

1− η2
×

× cos2 80

](

1

A
− 2

1

B

)

sin2 80

}

× A2

B2
cos80

∣

∣

∣

∣

∣

.

(30)

Formula (30) can be used to plot the phase-angular

distribution of radiation intensity of a charged particle for

the radiation intensity of I lin = 1019 W/cm2 on the phase

plane (along the axis of abscissa sin80 and along the axis

of ordinate d2S(ω)/d80d�) for different magnetic field

strengths (Fig. 4).

It can be seen from Fig. 4, that with increase in

magnetic field the spectral density maximum shifts towards

80 = π,−π, . . . ,±πn.

Conclusion

The issue of spectral-angular radiation characteristics of

a charged particle in the Redmond field is investigated.

Expressions are obtained for the radiation intensity of a

relativistic charge in case of circularly and linearly polarized

electromagnetic wave in this field configuration. Phase

and phase-angular distributions of radiation intensity are

obtained for a particle moving in an electromagnetic wave

with an intensity of 1019 W/cm2 in the presence of magnetic

field of different strengths. The Fourier-image E of particle

radiation in the Redmond field with linearly polarized

electromagnetic wave is calculated. Results of this study can

be used for the mathematical interpretation of experiments

on the interaction of laser radiation with magnetoplasma.
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