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Field emission in nanotubes with the length of several nanometers
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We consider the problem of field emission based on carbon nanotubes (CNT), which length differs from several

nanometers up to dozens of nanometers. The particle transmission function is obtained, considering the difference

of potentials on the ends of CNT to be U = 2−3.5V. The value of the emission current is calculated according

to the obtained transmission function. We establish the dependence of the Nordheim function on the length of

nanoparticles. We consider the limiting transition for the transmission coefficient for field emission from the cathode

surface in the absence of nanoparticles on it. Linear dependence of the electrical current envelopes I on the field

strength W is obtained.
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In the case of field emission large electric field strengths

(about E = 109−1010 V/m) are required, which leads to

the appearance of strong mechanical stresses. Therefore,

in the case of field emission, the needle material must be

mechanically strong in order to remain intact. As such

mechanically strong materials, one can consider elongated

carbines [1–4], two-dimensional structures: nanotubes and

nanoribbons [5–7], where the transverse dimensions of

elongated carbines can be by three to four orders of

magnitude smaller than the longitudinal ones. This leads

to small values of the depolarization factor along the

nanoparticles (to a high aspect ratio — the ratio of the

length L to the nanotube diameter 2R), which in turn leads

to the fact that the electric field near the tip of carbon

nanotubes (CNTs) by β ≈ L/(2R) times exceed the mean

value of the field [8]. When studying field emission, bundles

of single-walled CNTs [9,10] are used. Modern theories

of field electron emission originate in the study of Fowler

and Nordheim (FN) 1928 [11,12]. Today, the FN theory

is described by a whole family of different forms of the

Fowler−Nordheim [13] equations.

In this paper, based on the electron transmission function

obtained on the basis of theoretical results and the results

of numerical calculations, we calculated the current through

a single CNT with a metallic type of conductivity (corre-
sponding to the case of loosely packed CNTs). A linear

dependence of the current I on the field strength W , as

well as a linear dependence of the envelopes of the function

I/W 2 on the inverse value of the field strength 1/W are

established.

To determine the current during field emission from

the tip of nanoparticles, based on the Landauer formula,

it is necessary to know the functions of particle passage

from the anode to the cathode. The transmission function

was obtained on the basis of theoretical results (Fig. 1, a)

and the results of numerical calculations (Fig. 1, b) under

the assumption that a nanotube of length L1 is on the

surface of a metal cathode with a Fermi level U = U1 = EF

(for more details see [14]). In the calculations shown

in Fig. 1, the solid curves correspond to CNTs of length

L1 = 3.5 (1), 3.0 (2), 2.5 (3), 2.0 nm (4) at field strength

W = 109 V/m; dashed curves correspond to CNTs of length

L1 = 7 (5), 6 (6), 5 (7), 4 nm ( 8) at field strength

W = 0.5 · 109 V/m; dotted curves correspond to CNTs of

length L1 = 14 (9), 12 (10), 10 (11), 8 nm (12) at field

strength of W = 0.25 · 109 V/m (the voltages at the ends

of the nanotubes were equal to U = W L1 = 3.5, 3.0, 2.5,

2.0V). When changing the length of nanotubes in the

interval 2 6 L1 6 14 nm, the aspect number in the case of

nanotubes (m, 0) of the
”
zigzag“type, where m = 7, will lie

in the interval 3.65 6 β 6 25.5. Neglecting the presence of

mirror image forces, we assume that the potential energy

U(z ) in the presence of electric field W 6= 0 in the region

z > L1 will have the form Uext = −|e|W z , and inside the

nanotube (0 6 z 6 L1) the potential energy (inside the

shallow potential well) is approximated by a rectangular

shape (for more details see [14])

U(z ) =











U1, z < 0,

U2a , 0 6 z 6 L1,

−|e|W z , z > L1.

(1)

It was assumed in the calculations that U1 = −4 eV,

U2 = −6.4 eV. Based on the potential (1), we write the

solution of the Schr’dinger equation

ψ(z ) =











A1e
ik1z + B1e

−ik1z , z < 0,

A2e
ik2z + B2e

−ik2z , 0 6 z 6 L1,

Cχ(z ), z > L1,

(2)
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Figure 1. Transmission function vs. electron energy E .
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Figure 2. Airy function χ vs. variable ξ .

where k1 =
√

2m|E −U1|/~, k2 =
√

2m|E −U2a |/~. The

Airy function χ(z) is a solution to the equation

∂2ψ/∂ξ2 − ξψ = 0, where ξ = (2m|e|W/~2)1/3(L2 − z ),
L2 = −E/(|e|W ) , E — particle energy.

The transmission function shown in Fig. 1, a was calcu-

lated when the Airy function (curve 1in Fig. 2) was obtained
analytically (by the saddle-point method [15], the condition

|ξ | ≫ 1 must be satisfied)

χ1(ξ) =















−i
2
√
π|ξ |1/4 exp

[

i

(

2

3
|ξ |3/2 +

π

4

)]

, ξ < 0,

−i
2
√
πξ1/4

exp

(

2

3
ξ3/2

)

, ξ > 0.

(3)

Taking into account the Airy function (3), we obtain the

expression for the transmission function depending on the

energy of the particle, and from the continuity condition

for the function ψ(z ), and the derivative of the function

∂ψ/∂z from (2) (continuity condition for current density

j = i~(ψ∂ψ∗/∂z − ψ∗∂ψ/∂z )/(2m)) at the discontinuity

points z = 0, z = L1 (for more details see [14])

τ =

∣

∣

∣

∣

C
A1

∣

∣

∣

∣

2
1

k1

(

|χ|2 dη
dz

)
∣

∣

∣

∣

z>L2

=
2κk2

k2 + k2
2

2k1k2

k2
1 + (k2

2 − k2
1) sin

2(k2L1 − ϕ0)
D(y),
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Figure 3. Currents through CNTs at different voltages U at the ends of nanotubes.

D = exp

[

−4
√

2m|E|3
3~

1

|e|W 2(y)

]

,

2(y) = (1− y)3/2, y =
L1

L2

,

η =
2

3
|ξ |2/3, ϕ0 = arctan(κ/k2),

κ =

√

2m|e|W (L2 − L1)

~

∣

∣

∣

∣

∣

1− 1

4ξ3/2|z=L1

∣

∣

∣

∣

∣

. (4)

In the paper [14] when obtaining the expression for the

transmission function, the value κ, in contrast to (4), was
equal to κ =

√

2m|e|W (L2 − L1)/~, which led to the fact

that in the paper [14] the transmission coefficient was

greater than one. The presence of the term 1/4ξ3/2|z=L1

in the variable κ from (4) is explained by the fact that

in the system of equations when calculating the variable

(∂χ/∂z )|z=L1
the influence of the pre-exponential part of

the variable χ from (3) was not taken into account. The

quantities k1, k2, ξ are defined after expression (2). In (4)
the quantity C/A1 is calculated according to Cramer’s

method [15] for a system of linear equations from unknowns

B1, A2, B2, C
A1 + B1 = A2 + B2,

A1k1 − B1k1 = A2k2 − B2k2,

A2e
ik2L1 + B2e

−ik2L1 = Cχ(L1),

iA2k2eik2L1 − iB2k2e
−ik2L1 = C

(

∂χ

∂z

)∣

∣

∣

∣

z=L1

, (5)

where, when obtaining the transmission function

from equality (4), it was taken into account that

|χ|2
∣

∣

z>L2
= 4π|ξ |1/2 .

The transmission function shown in Fig. 1, b was

calculated when as solution of Schredinger equation

∂2ψ/∂ξ2 − ξψ = 0 we used a linear combination of Airy

functions of the first Ai(ξ) and second Bi(ξ) kind ([15],

p. 116) (curve 2 in Fig. 2), obtained numerically using the

MATLAB software package.

In this paper, the current during field emission from

the tip of nanoparticles was calculated by the Landauer

formula [16,17] (for details, see [14]) using the function of

particle passage from the anode to the cathode (Fig. 1).
Fig. 3 shows the dependence of the envelopes of the

current I in a single CNT on the field strength W at

a constant voltage U at the ends of the CNT, where

5 · 107 6 W 6 109 V/m, U = W L1, L1 — nanotube length.

In Fig. 3, the solid curves correspond to the case when the

transmission function was approximated by the asymptotic

solution (3), and the dashed curves correspond to the case

when the solution of the Airy function corresponds to the

curve 2 in Fig. 1. Curves 1a, 1b, 2a, 2b in Fig. 3 correspond

to the voltage U = 3.5V at the ends of the nanotubes, and

the curves 3a, 3b, 4a, 4b — voltage U = 3.0V. The insert

shows a similar dependence of the current on the field

strength in the interval 108 6 W 6 1.1 · 108 V/m, curves

1−4 correspond to the envelopes (1a, 1b)−(4a, 4b). The

range of field strength 5 · 107 6 W 6 109 V/m means that at

voltage U = 3.5V at the ends of the nanotubes, their length

changed in the range 3.5 6 L 6 70 nm, and at U = 3.0V

the nanotube length changed in the range 2.0 6 L 6 40 nm.

It can be seen from Fig. 3 that the currents corresponding

to the dashed curves are larger than the currents correspond-

ing to the solid curves. This is explained by the fact that

in the case of solid curves, when calculating the current

value using the Landauer formula [16,17], integration is

not carried out over ξ in the interval |ξ | < 1 (in this

interval in Fig. 2 the curve 1of the Airy function χ(ξ)
from (3) is not defined), i. e. the region of integration

decreases.

The Table shows the dependence of the Nordheim

function θ(y) [11] and the function 2(y), where the

argument y for the function 2(y) is calculated according

to formula (4). The function 2(y), which enters the

expression (4) for the transparency function D, performs
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Dependence on y of the Nordheim function θ(y) and the function 2(y)

Function
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ(y) 1 0.98 0.94 0.87 0.79 0.68 0.58 0.45 0.31 0.16 0

2(y) 1 0.85 0.72 0.59 0.46 0.35 0.25 0.16 0.09 0.03 0

a role similar to the Nordheim function θ(y), and for

2(y) the function argument y = L1/L2 = |e|W L1/|E| de-

pends both on the energy of the charged particle and

on the nanotube length and field strength. It follows

from the Table that the value of the 2(y) function in

the interval 0 < y < 1 is much less than that of the

Nordheim function. This pattern partially compensates

for the low aspect number of nanotubes considered in

this paper. The dependence of the transparency function

D on the function 2(y) should lead to a significant

increase in the current during field emission compared

to the case of field emission from the metal surface

under other things being equal. The results on field

emission can be obtained using a more accurate model

of two-point and four-point elementary cells (k p-type
continuum model [18–20], where for

”
zigzag“ type CNTs

and nanoribbons with
”
armchair“ edges the electron wave

functions can be expressed in terms of Hermite func-

tions [18,19].

It follows from the calculation results that in the case of

field emission in nanotubes with a length ranging from sev-

eral nanometers to one hundred nanometers, there is a linear

dependence of the current envelopes on the field strength

W in the range 0.5 · 108 6 W 6 0.5 · 109 V/m, which cor-

responds to the functional dependence I = AW [1 + f (W )],
where W = U1/L1. A linear dependence also exists in

the case of the current dependence on the field strength

in the Fowler−Nordheim coordinates and in the case

of I/W 2 dependence on the value 1/W in the interval

10−9 6 1/W 6 10−8 m/V, where U1 = const was used in

the calculations for the voltage at the ends of the CNT.

This regularity is explained by the fact that the CNT length

is L1 < 1µm, when the ballistic mechanism is not fulfilled

during electron transport in nanomaterials.
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