09

Спектрофотометрический метод исследования устойчивости комплексов поздних лантаноидов

© Ц.Б. Сумянова, В.Р. Прижилевская, Н.Е. Борисова

Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия e-mail: ts.sumyanova90@gmail.com

Поступило в Редакцию 16 декабря 2022 г. В окончательной редакции 16 декабря 2022 г. Принято к публикации 16 декабря 2022 г.

> Представлены результаты исследования влияния центрального иона металла на устойчивость комплексов гадолиния и гольмия с диамидом 1, 10'-фенантролин-2,9-дикарбоновой кислоты. Полученные значения констант устойчивости комплексов оказались на порядок ниже, чем известные ранее величины для комплексов этих элементов с диамидом 4,7-дихлор-1, 10'-фенантролин-2,9-дикарбоновой кислоты.

Ключевые слова: спектрофотометрия, гадолиний, гольмий, контрастные вещества.

DOI: 10.21883/JTF.2023.04.55038.276-22

Введение

Комплексы лантаноидов находят активное применение в медицине, особенно в диагностике и терапии рака. В качестве контрастного вещества при медицинской визуализации методом магнитно-резонансной томографии (MPT) используются препараты на основе комплексов гадолиния [1–4]. Также известно их бактерицидное действие [5].

Изотоп гольмия-166 излучает высокоэнергетические бета-частицы, которые используют для терапии, кроме этого парамагнитные эффекты и гамма-излучение одновременно можно применять для визуализации и контроля правильного размещения изотопа в месте опухоли [6], что позволяет использовать этот изотоп для тераностики — одновременной терапии и диагностики заболевания.

Одной из важных характеристик комплексов определяющих их потенциальное применение является константа их устойчивости в растворе, которая указывает на прочность возникающих молекул [7–9]. Одним из основных методов определения, которой является спектрофотометрическое титрование при условии поглощения лигандом или комплексом света в УФ или видимом диапазонах.

Настоящая работа посвящена установлению состава и устойчивости комплексов лантаноидов с диамидом 1,10'-фенантролин-2,9-дикарбоновой кислоты (Phen). Ранее нами был исследован диамид 4,7-дихлор-1,10'фенантролин-2,9-дикарбоновой кислоты (Cl-Phen) [10]. Поскольку атом хлора является акцептором электронов, то предполагается, что прочность комплексов с лигандом Cl-Phen будет ниже, чем для незамещенного аналога (Phen).

1. Объекты и методы исследования

Структуры исследуемых соединений представлены на рис. 1 (синтез описан в работе [11]). При проведении титрования использовали ацетонитрил (HPLC–S Gradient Grade, Biosolve BV). Содержание воды в растворителе составляет 40 \pm 5 ppm, оно было определено по методу Карла Фишера (C20, кулонометрический титратор Фишера, Mettler Toledo). Флуориметрически чистые кристаллогидраты нитратов лантаноидов Gd(NO₃)₃ · 6H₂O и Ho(NO₃)₃ · 5H₂O (ИРЕА). Измерение оптического поглощения проведено на спектрофотометре Hitachi U–1900 в диапазоне 200–500 nm с шагом 1 nm при 25 \pm 0.5°C в кварцевой спектрофотометрической кювете 10 mm (Hellma).

Для определения времени установления химического равновесия приготовлены растворы лиганда (Phen), соли нитратов гадолиния и гольмия. Оптическую плотность эквивалентной смеси растворов лиганда и нитрата лантаноида регистрировали в течение 15 min на длине волны поглощения комплекса (310 nm), используя в качестве раствора сравнения ацетонитрил. Время установления равновесия в системе определяется, как момент

Рис. 1. Структура 4,7-диR-N²,N⁹-диэтил-N²,N⁹-дифенил-1,10фенантролин-2,9-дикарбоксамида, где R=Phen, Cl-Phen.

после которого не наблюдалось дальнейшее изменение оптической плотности.

Аналитическая длина волны поглощения комплекса (λ_{an}) для определения его состава измерена по методу Фирордта, как

$$A_x - A_{\rm L} = f(\lambda),$$

где A_x — оптическая плотность смеси растворов лиганда и металла (см. выше), а A_L — оптическая плотность раствора свободного лиганда. За λ_{an} принимали значение длины волны, соответствующее максимуму на построенной кривой $f(\lambda)$.

Для определения состава комплекса использован методом непрерывных изменений (метод изомолярных серий) [12–14]. Метод основан на определении отношения эквимолярных растворов реагирующих веществ, отвечающего максимальному выходу образующегося комплексного соединения $Ln_x L_y$. Если в результате реакции образуется только один комплекс, то кривая зависимости выхода комплекса от состава характеризуется экстремальной точкой, причем только одной. Такая точка отвечает максимально возможной концентрации комплекса $Ln_x L_y$, образующегося по реакции:

$$xLn + yL \leftrightarrow Ln_xL_y$$
,

а ее положение однозначно связано со стехиометрическими коэффициентами *x* и *y*:

$$X = \frac{c_{\mathrm{L}}}{c_{\mathrm{L}} + c_{\mathrm{Ln}}} = \frac{x}{x + y},$$

где c_{Ln} и c_L — начальные концентрации компонентов.

Для этого строили график зависимости $\Delta A = A_{\Sigma} - A_{L}$ от соотношения концентрации на длине волны λ_{an} и определяли положение максимума на кривой: $\Delta A = f\left(\frac{c_{L}}{c_{L}+c_{Ln}}\right).$

Для определения константы равновесия реакции комплексообразования в кювету помещали раствор лиганда $(2 \cdot 10^{-5} \text{ M})$, затем к нему прибавляли аликвоты раствора нитрата металла $(2 \cdot 10^{-3} \text{ M})$ в растворе лиганда. Спектры поглощения регистрировали после каждого прибавления раствора нитрата лантаноида до достижения избытка соли металла в 2 эквивалента.

На основании уравнений материального баланса, закона Бугера–Ламбера–Бера и закона аддитивности оптических плотностей выведены уравнения для расчета равновесных концентраций комплекса, лиганда и металла (заряд иона металла опущен для удобства) (l = 10 mm):

Уравнения материального баланса: $c_{\rm L} = [{\rm L}] + [{\rm LnL}],$

$$egin{aligned} c_{\mathrm{Ln}} &= [\mathrm{Ln}] + [\mathrm{LnL}], \ A &= A_{\mathrm{L}} + A_{\mathrm{ThL}} = arepsilon_{\mathrm{L}} \mathrm{l}[\mathrm{L}] + arepsilon_{\mathrm{Th}} \mathrm{l}[\mathrm{ThL}], \ &[\mathrm{L}] &= c_{\mathrm{L}} - [\mathrm{LnL}], \ A &= arepsilon_{\mathrm{L}} \mathrm{l}(c_{\mathrm{L}} - [\mathrm{LnL}]) + arepsilon_{\mathrm{Ln}} \mathrm{l}[\mathrm{LnL}], \end{aligned}$$

$$\begin{split} A - \varepsilon_{\rm L} l c_{\rm L} &= [{\rm LnL}] l (\varepsilon_{\rm LnL} - \varepsilon_{\rm L}), \\ [{\rm LnL}] &= \frac{A - \varepsilon_{\rm L} l c_{\rm L}}{l (\varepsilon_{\rm LnL} - \varepsilon_{\rm L})}, \\ [{\rm L}] &= c_{\rm L} - [{\rm LnL}], \\ [{\rm Ln}] &= c_{\rm Ln} - [{\rm LnL}], \end{split}$$

где $c_{\rm L}$ — общая концентрация лиганда, $c_{\rm Ln}$ — общая концентрация металла в растворе, $\varepsilon_{\rm L}$ и $\varepsilon_{\rm LnL}$ — молярные коэффициенты поглощения лиганда и комплекса соответственно, A — оптическая плотность раствора.

Константа равновесия *K* рассчитана по уравнению: $K = [LnL][L]^{-1}[Ln]^{-1}$. Полученные спектрофотометрические данные обработаны с использованием программы HypSpec2014 [15]. В данной программе учитываются присутствующие реагенты и константы равновесия *nk*. Целевая функция дается в матричной записи как: $U = r^T W r$, где *r* является вектором остатков, $r = (y^{obtained} - y^{calculated})$, у представляют собой матрицы оптической плотности и *W* представляет собой матрицы весов. Для минимизации целевой функции использован метод Гаусса-Ньютона-Марквардта, обобщенный системой уравнений $(J^T WJ + \lambda D)\Delta p = J^T W r$, где

Рис. 2. Изменение спектров поглощения растворов при образовании комплекса, где сплошной линией обозначен раствор лиганда, а штриховой линией — добавленный избыток соли нитрата металла, *а* — образование комплекса гадолиния с лигандом, *b* — образование комплекса гольмия с лигандом.

Журнал технической физики, 2023, том 93, вып. 4

Рис. 3. Установление состава комплекса фенантролинового лиганда с нитратом гадолиния методами: факторного анализа, где *a* — собственные векторы и *b* — собственные значения, *c* — изомолярных серии, *d* — кривой титрования.

J является якобианом и Δp является вектором сдвигов, которые будут применены к параметрам. D принимается равным диагональным элементам $J^T Wr$ и λ является параметром Марквардта. Элементы якобиана получаются из уравнений закона Бугера–Ламбера–Бера:

$$A_{\lambda} = l\Sigma_{j=l,na}\varepsilon_{i,j}c_{j},$$

$$\frac{\partial A_{\lambda}}{\partial x} = l\Sigma_{j}\varepsilon_{\lambda,j}\frac{\partial c_{j}}{\partial x},$$

$$0 \cdots 0 \qquad 0 \cdots 0 \qquad 0 \cdots 0$$

$$\frac{\partial A_{1}}{\partial \varepsilon_{1,na}} \qquad 0 \cdots 0 \qquad 0 \cdots 0$$

$$0 \cdots 0 \qquad \frac{\partial A_{2}}{\partial \varepsilon_{2,1}} \cdots \frac{\partial A_{2}}{\partial \varepsilon_{2,na}} \qquad \frac{\partial A_{2}}{\partial \varepsilon_{2,na}} \cdots 0$$

$$\vdots \cdots \vdots \qquad \vdots \cdots \vdots \qquad \vdots \cdots \vdots$$

$$0 \cdots 0 \qquad 0 \cdots 0 \qquad 0 \cdots \frac{\partial A_{n1}}{\partial \varepsilon_{nn}}$$

Кроме того, на систему распространяется ограничение на то, что выполняются уравнения материального баланса:

$$T_{\mathrm{Ln}} = [\mathrm{Ln}] + \Sigma_{k=1,nk} p_k \beta_k [\mathrm{Ln}]^{p_k} [\mathrm{L}]^{q_k} [\mathrm{LnL}]^{r_k}$$
$$= [\mathrm{Ln}] + \Sigma p_k c_k.$$

не являются спектрами п этом количество ненулевы

Журнал технической физики, 2023, том 93, вып. 4

Это уравнение для нитрата лантаноида Ln, аналогичные уравнения составляют для L и LnL. Причем общая концентрация TLn получается, исходя из начального количества вещества $n_{\rm Ln}$,

В программе НурЅрес2014 [15] реализована возможность проведения факторного анализа матрицы экспериментальных значений оптических плотностей, позволяющая установить число независимых поглощающих компонентов в растворе [16]. Поскольку каждый поглощающий компонент раствора имеет "единичный спектр", который представляет собой спектр для единичной концентрации и единичной длины оптического пути, и этот спектр вносит вклад в измеренный спектр пропорционально концентрации этого компонента. Собственные векторы представляют собой линейные комбинации единичных спектров таких компонентов, но, к сожалению, коэффициенты линейных комбинаций неизвестны, поэтому собственные векторы, строго говоря, не являются спектрами поглощения компонентов. При этом количество ненулевых собственных значений будет равно количеству независимых поглощающих компонентов химической системы.

Рис. 4. Установление состава комплекса фенантролинового лиганда с нитратом гольмия методами: факторного анализа, где *a* — собственные векторы и *b* — собственные значения, *c* — изомолярных серии, *d* — кривой титрования.

2. Экспериментальные результаты

2.1. Спектры поглощения

Спектры поглощения растворов лиганда и его комплексов с гадолинием и гольмием представлены на рис. 2. Растворы лиганда и его комплексов с нитратами лантаноидов поглощают свет в ультрафиолетовом диапазоне. На спектре поглощения лиганда наблюдается максимум на длине волны 278 nm, отвечающие переходам $\pi \rightarrow n$ пиридиновых колец. Добавление соли нитрата лантаноида к лиганду приводит к батохромному сдвигу этой полосы на 32 nm вне зависимости от ионного радиуса лантаноида. При проведении кинетического эксперимента на длине волны 310 nm установлено, что реакция комплексообразования протекает быстро, и поглощение стабилизируется в течение 2–4 s независимо от исследуемой соли нитрата металла.

2.2. Состав комплекса в растворе

Состав равновесного раствора изучен с помощью метода изомолярных серии, титриметрического метода и факторного анализа. Анализ матрицы оптических плотностей для каждой из исследуемых систем показал, что в растворе в обоих случаях присутствует только по три независимых поглощающих компонента, соответствующих свободному лиганду, свободному металлу и их комплексу (рис. 3, *a*, *b*; 4, *a*, *b*). Следовательно, в растворе образуется только одна комплексная частица. Методом изомолярных серий изучен состав образующихся комплексов (рис. 3, *c*, 4, *c*), который показал, что для двух ионов состав комплексов одинаков и соответствует соотношению лантаноид — лиганд 1 : 1. Это дополнительно подтверждается титриметрическим методом (рис. 3, *d*, 4, *d*), на кривых наблюдается резкий перегиб на одном эквиваленте добавленной соли металла.

2.3. Устойчивость комплексов

Константы устойчивости комплексов солей нитратов гадолиния и гольмия с лигандом (Phen) определены с помощью спектрофотометрического титрования (рис. 5) и обработаны с помощью программы HypSpec2014 [15]. На рис. 6 представлены рассчитанные константы устойчивости комплексов в сравнении с ранее определенными константами для хлор-содержащего лиганда (Cl-Phen). Для этих двух лигандов наблюдается увеличение константы устойчивости комплексов с уменьшением

Рис. 5. Спектрофотометрические данные, где к незамещенному 1,10'-фенантролин-карбоксамидом добавлено по 0.5 эквивалентов металла, и титрование проведено до 2 эквивалентов; *а* — гадолиния (III) и *b* — ион гольмия (III).

Рис. 6. fЗависимость константы устойчивости комплексов от ионного радиуса металла.

ионного радиуса лантаноида. Вопреки нашим ожиданиям константы устойчивости комплексов лантаноидов с незамещенным лигандом (Phen) ниже по сравнению с

Журнал технической физики, 2023, том 93, вып. 4

хлор-содержащим лигандом (Cl-Phen) вне зависимости от ионного радиуса металла.

Заключение

Максимум спектров поглощения комплексов лантаноидов с незамещенным лигандом (Phen) не зависит от ионного радиуса металла. Установлено, что введение двух акцепторных атомов хлора в положения 4 и 7 незамещенного фенантролина приводит к увеличению устойчивости комплексов.

Финансирование работы

Работа выполнена при финансовой поддержке гранта РНФ № 21-73-20138.

Благодарности

Авторы выражают благодарность Панькову Р.О. за синтез исследуемых веществ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H.U. Rashid, M.A.U. Martines, J. Jorge, P.M. de Moraes, H.U. Rehman. Bioorgan. Med. Chem., 4, 5663 (2016). DOI: 10.1016/j.bmc.2016.09.069
- [2] G. Bombieri, R. Artali, S.A. Mason, G.J. McIntyre, A. Mortillaro, S. Aime. Inorg. Chim. Acta, 470, 433 (2018).
 DOI: 10.1016/j.ica.2017.09.021
- [3] A. Babič, V. Vorobiev, C. Xayaphoummine, G. Lapicorey, A.S. Chauvin, L. Helm, E. Allémann. Chem. Eur. J., 24, 1348 (2018). DOI: 10.1002/chem.201703962
- [4] B. Phukan, C. Mukherjee, R. Varshney. Dalton Trans., 47, 135 (2018). DOI: 10.1039/C7DT04150K
- [5] L. Logu, K.R. Kamatchi, H. Rajmohan, S. Monohr, R. Gurusamy, E. Deivanayagam. Appl. Organometal. Chem., 29, 90 (2015). DOI: 10.1002/aoc.3250
- [6] N.J.M. Klaassen, M.J. Arntz, A.G. Arranja, J. Roosen, J.F.W. Nijsen. EJNMMI Radiopharm. Chem., 4, 19 (2019). DOI: 10.1186/s41181-019-0066-3
- [7] М.И. Булатов, И.П. Калинкин. Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа (Химия, Л., 1986)
- [8] Г.Л. Шлефер. Комплексообразование в растворах. Методы определения состава и констант устойчивости в растворах (Химия, Л., 1964)
- [9] Ф. Россотти, Х. Россотти. Определение констант устойчивости и других констант равновесия в растворах (Мир, М., 1965)
- [10] Ts. Sumyanova, N. Borisova, A. Petukhova, A. Kirsanova.
 Proc. SPIE, **12193**, 121930S-1 (2022).
 DOI: 10.1117/12.2623658

- [11] N.E. Borisova, A.A. Kostin, M.D. Reshetova, K.A. Lyssenko, E.V. Belova, B.F. Myasoedov. Inorg. Chim. Acta, 478, 148 (2018). DOI: 10.1016/j.ica.2018.03.042
- [12] I. Ostromisslensky. Mitteilungen Berichte der Deutschen Chemischen Gesellschaft, 44, 268 (1911).
 DOI: 10.1002/cber.19110440141
- [13] R.B. Denison. Trans. Faraday Soc., **8**, 20 (1912). DOI: 10.1039/TF9120800020
- [14] K.A. Connors. Binding Constants: The Measurement of Molecular Complex Stability (Wiley, NY., 1987)
- [15] P. Gans, A. Sabatini, A. Vacca. Talanta, 43, 1739 (1996).
 DOI: 10.1016/0039-9140(96)01958-3
- [16] R. Tauler, A. Smilde, B. Kowalski. J. Chemom., 9, 31 (1995). DOI: 10.1002/cem.1180090105