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Electroacoustic waves in a PT-symmetric piezoelectric structure near the

exceptional point
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The spectral properties of gap electroacoustic waves in PT -symmetric piezoelectric structures of symmetry class

6 are investigated theoretically. It was found out that, at a certain level of loss and gain in piezoelectrics, the

symmetric and antisymmetric modes intersect. The intersection point defines an exceptional point of the PT -
symmetric structure. It was shown that the frequency dependence of the amplitude at the exceptional point has

an extremely narrow resonance peak, which opens up the possibility of creating supersensitive sensors based on

PT -symmetric physical structures.
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Energy of the collective modes of electroacoustic−waves

can be transferred between coupled piezoelectric waveg-

uides [1,2]. Thus, it is possible to affect the propagation

of acoustic waves by varying the waveguide intrinsic

loss. A particular case, when intrinsic loss in one

waveguide is compensated by anti−damping in another

one (balanced electroacoustic loss and gain), is just the

parity−time−symmetric (PT ) system. The idea of the PT -
symmetry emerged in 1998 [3]. The PT -symmetry concept

attracted a great interest and was developed for various

physical systems in optics [4,5], electronics [6], acoustics [7]
and magnetism [8,9].

Planar PT -symmetric piezoelectric waveguides have not

been studied yet. They may have a form of simpler

structures consisting of two (or more) piezoelectric dielec-

tric films obtained from one and the same sample (and,
thus, having identical parameters). At present, investigation
of dispersive properties of electroacoustic gap waves in

such structures ignoring the PT -symmetry are focused on

revealing peculiar features associated with accounting for di-

electric characteristics of the material of the layer located in

the gap free of acoustic contact. Along with this, differences

in material parameters and crystallographic symmetries of

piezoelectrics were taken into account, influence of the

transverse dimension of one of piezoelectrics forming the

gap structure was considered, and the effect of electric fields

delay was assessed [1,2]. Besides the above-listed aspects,

paper [10] discussed, in connection with the requirements of

rapidly developing mechatronics [11], the effect of relative

longitudinal displacement of piezoelectrics of class 4 mm

(6mm, ∞m) separated by an extremely thin gap on the

behavior of electroacoustic gap waves. This paper considers

for the first time the propagation of electroacoustic waves

in a PT -symmetric structure with a gap formed by a pair of

identical piezoelectrics of class 6 (4, 6mm, 4mm, ∞m).

In the geometry of the problem presented in Fig. 1

implies that both crystals belong to the symmetry class 6

and have identical orientations of crystallographic axes 6

perpendicular to the figure plane. In addition, in order to

reveal whether this structure can exhibit the PT -symmetry

properties [5], we took into account that electroacoustic

waves get gained in one crystal and lost in another one. To

account for the loss and gain, let us add complex parameter

α to wave number k . The longitudinal (in the direction of

propagation) wave number to be used in initial equations is
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Figure 1. The geometry of the problem. Letters A, S designate

the antisymmetric and symmetric modes.
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defined as

k( j) = k ± iα, (1)

where sign
”
minus“ is for the upper crystal (wave gain),

j = 1, while sign
”
plus“ is for the lower crystal (wave loss),

j = 2 (Fig. 1) at the given electroacoustic wave dependence

on coordinate x ∼ exp(ik( j)x). The fact that representation

of the wave number in the complex form (1) leads to the

acoustic system PT -symmetry may be easily proved by

comparing the structure of the Schrodingerś equation and

Helmholtz equation for acoustic waves [5]. Assume that the

crystallographic setting of a ferroelectric of class 6 (4, 6mm,

4mm, ∞m) is such that the sixth-order symmetry axis is

parallel to axis z , where z is the axis of the laboratory

reference system x0yz . Initial equations for shear waves

at the given crystal symmetry type may be written as

follows [12,13]:

ρ
∂2uz

∂t2
= c44

(

∂2uz

∂x2
+

∂2uz

∂y2

)

+ e1,5

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

,

4πe1,5

(

∂2uz

∂x2
+

∂2uz

∂y2

)

= ε

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

, (2)

where c44 is the element of the crystal elastic modulus

tensor. Equation set (2) describes horizontally polarized

waves: u ‖ z . In the case of the class 6 crystals, adding

of moduli e1,4 = − e2,5 to the piezo−modulus matrix will

not change the piezo−acoustic equations [14]. The presence
of these piezo−moduli will manifest itself as introduction

of extra terms to the piezo−effect equations [14] and will

be finally exhibited as shear stresses and normal electric

induction components involved in the boundary conditions.

Equations (2) may be represented as follows:

[

1

c( j)∗

44

∂2

∂t2
−∇2

]

u j = 0, ∇28 j = 0. (3)

In equations (3), c( j)∗
44 = c( j)

44 + 4πe( j)2
15 /ε j ,

∇̃2 = ∂2/∂x2 + ∂2/∂y2, 8 j is a part of total potential ϕ j

in the j-th crystal, which is an electric field induced from

domain boundaries by piezo−polarization charges [15].
Let us search for solution of equations (3) in the

form of waves propagating along the structure boundaries

y = ±h. In view of this, assume that u j , 8 j and

80 ∼ exp[i(k( j)x − ωt)], where k( j) is the wave number de-

fined by expressions (3) and (1), ω is the circular frequency

of the gap electroacoustic wave in the laboratory reference

system. Taking into account requirements of limited shear

displacements and potentials of crystals electric fields, obtain

based on (1) and (3)
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,

ϕ = kx − ωt. (4)

Parameters s1,2 have the meaning of coefficients of decrease

in the shear displacement magnitude in the relevant crystal

with increasing distance from its boundary.

Assume that material parameters of the media are

identical. This is one of the conditions for the media

PT -symmetry. Since on non-metallized crystal bound-

aries y = ±h there should be met requirements of the

continuity of potentials and normal components of the

electric induction vectors Dy , as well as of the absence

of shear stresses Tyz , substitution of relations (4) into the

boundary conditions results in obtaining six homogeneous

algebraic equations in amplitudes U1,2, F1,2, A and B . The

requirement for solvability expressed as the equality to

zero of the determinant of the set of obtained equations

with accounting for the α = αcoeff k substitution (where

constant αcoeff = α/k ≪ 1) provides the desired dispersion

relationship for the gap electroacoustic waves in the layered

structure of the class 6 piezoelectrics separated by a vacuum

gap.

Fig. 2 presents numerical calculations via the dispersion

equation at different values of coefficient αcoeff . The

material whose spectrum is shown in Fig. 2 is lithium

iodate (LiIO3) of the symmetry class 6 (non-zero transverse

piezo−activity) with parameters K2 = 0.25, K2
⊥

= 0.005,
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Figure 2. A spectrum of the gap electroacoustic

waves (identical piezocrystals of class 6) with accounting

for gain and loss. h = 10−6 cm, K2 = 0.25, K2
⊥ = 0.025,

ε = 8. Digits designate the spectra of the symmetric (S)
and antisymmetric (A) modes at different gain and loss

levels: 1(S, A) − αcoeff = 10−6, 2(S, A) − αcoeff = 9.62 · 10−5,

3(S, A) − αcoeff = 10−3, 4(S, A) − αcoeff = 10−1. The wave num-

ber marked with a triangle is equal to that defining the exceptional

point for αcoeff = 9.62 · 10−5 .

Technical Physics Letters, 2022, Vol. 48, No. 12



76 E.A. Vilkov, O.A. Byshevski-Konopko, O.S. Temnaya, D.V. Kalyabin, S.A. Nikitov

k, 10 cm5 –1

0.5

0.8

0.7

0.75 1.050.900.70 0.950.85
0.4

0.9

0.6

1.0

|
|, 

a.
 u

.
F

0

n, GHz

0.5

0.8

0.7

4 863 75
0.4

0.9

0.6

1.0

|
|, 

a.
 u

.
F

0

0.80 1.00

a

b

Figure 3. Dependences of amplitude of the symmetric−mode

electric potential at y = 0 (gap center) on the wave number (a)
and frequency (b) at αcoeff = 9.62 · 10−5 .

ε = 8 [16]. Here quantities K2
⊥

= 4πe21,4/(c
∗

44ε),

K2 = 4πe21,5/(c
∗

44ε) are the squared coefficients of the

crystal electromechanical coupling for the transverse and

longitudinal piezoelectric effects, respectively. In calculating

the spectrum for this material, we used, for the sake of

clarity, parameter K2
⊥

= 0.025 that is 5 times higher than

the reference one. Generally, this substitution does not

strongly change the spectrum shape but allows distinguish-

ing the point of the symmetric mode origin from the zero

on the wavenumber axis. The dashed straight lines represent

linear spectra of the electroacoustic wave on the metallized

(s = kK2) and non-metallized (s = k(K2 − εK2
⊥

)/(1 + ε))
boundaries of the piezoelectric crystal [14]. Thin dashed

curves represent the spectrum of the gap electroacoustic

wave modes in the absence of loss and gain. We can

see that accounting for loss and gain in the neighboring

piezoelectrics results in the fact that the higher is αcoeff , the

larger is steepness of the symmetric mode curve. The curves

of the symmetric and antisymmetric modes move opposite

each other so that they intersect at certain values of αcoeff

(at αcoeff > 10−6). When αcoeff > 10−3, the symmetric

mode curve becomes straight and lies higher over the s1
values of the antisymmetric mode curve. It is possible to

assume that, similarly to optical and magnetic systems [14],
violation of the purely symmetric (antisymmetric) field

distribution over the structure thickness takes place behind

the mode intersection point of the structure with a gap.

The intersection point itself has been named in literature as

an exceptional point which possesses in the PT -symmetric

structures a number of interesting properties. An essential

characteristic of the exceptional points is that not only

eigenvalues but also relevant eigenvectors get degenerated

at them [12]. In Hermitian systems, the eigenvalue space

topology is of the double-cone type with degeneration points

in the cone apexes. On the contrary, the eigenvalue space in

non-Hermitian systems has the form of Riemann sheets with

the centers near the exceptional points [17]. This unique

characteristics make it possible to create supersensitive

sensors based on PT -symmetric physical structures [18].
These structures indeed have an extremely narrow reso-

nance curve. Let us demonstrate this by calculations of

the amplitude dependence on frequency.

Figs. 3, a, b present the dependences of the

symmetric−mode electric potential amplitude at y = 0

(gap center) on the wave number (a) and frequency (b)
at αcoeff = 9.62 · 10−5. Expectedly, k = 83 000 cm−1

(νR = 4.15GHz) at the exceptional point. This dependence

has the form of a narrow resonance curve. The resonance

line width of the PT -symmetric structure is about 0.35 of

resonance frequency νR = 4.15GHz. As mentioned above,

this characteristic feature of exceptional points enables

creating supersensitive sensors based on PT -symmetric

physical structures [18].
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