Фронтальный контакт к GaSb-фотопреобразователям: свойства и температурная стабильность

© С.В. Сорокина, Ф.Ю. Солдатенков, Н.С. Потапович, В.П. Хвостиков

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: svsorokina@mail.ioffe.ru

Поступила в Редакцию 16 мая 2022 г. В окончательной редакции 12 июля 2022 г. Принята к публикации 10 августа 2022 г.

Рассмотрены вопросы термической стабильности фронтальных контактов на основе Cr–Au и Cr–Au–Ag–Au к фотоэлектрическим преобразователям на основе GaSb в рабочих (температура на элементе $T \sim 50^{\circ}$ C) и стандартных для квалификационных испытаний условиях (~ 80° C), а также при форсированной тепловой деградации (~ $125 \text{ u} \sim 200^{\circ}$ C). Показано, что фотоэлектрический преобразователь с серебросодержащим контактом обладает лучшими характеристиками по стабильности контактного сопротивления, фоточувствительности, *FF*, *V*_{oc} и, соответственно, по кпд. Определен срок службы преобразователей при рабочих и повышенных температурах.

Ключевые слова: контакт, деградация, фотоэлектрический преобразователь, GaSb.

DOI: 10.21883/FTP.2023.01.54928.3692

1. Введение

Важнейшим параметром солнечных батарей является срок службы и стабильность электрических характеристик, которые зависят от выбора материалов, приборной структуры и конструктивного оформления фотоэлектрических преобразователей (ФЭП), качества изготовления и строгости соблюдения особенностей технологических процессов, степени согласования отдельных компонентов модуля, а также от реальных климатических воздействий, в которых они эксплуатируются.

Для фотоэлектрических преобразователей и модулей на их основе разработаны общие последовательности технических квалификационных испытаний, которые проводят в соответствии с требованиями стандартов (например, ГОСТ Р 56980-2016 для наземных кремниевых батарей [1] или ГОСТ Р 56983-2016 для концентраторных модулей [2]). Квалификационное испытание обычно применяется для оценки качества фотоэлементов и модулей при их постановке на производство [3], а также в процессе производства для неразрушающего контроля и отбраковки готовой продукции и проверки соблюдения принятого технологического цикла их изготовления. Согласно [1], тестирование на устойчивость к длительному воздействию агрессивной среды проводят при температуре 85°С и относительной влажности 85% (продолжительность испытаний 1000 ч). Дополнительно изучаются термоциклирование в диапазоне температур $-40-+85^{\circ}$ С (до 110°С в концентраторных модулях), стойкость к локальному перегреву. Кроме того, определяется способность модуля противостоять ультрафиолетовому излучению, механическим (т.е. ветровым, снежным, ледовым) нагрузкам, воздействию града и другие проверки.

При разработке новых типов фотоэлектрических преобразователей задачи тестирования иные и сводятся к оценке недостатков конструкции и резервов повышения качества, надежности и срока службы фотоэлементов, к выявлению наиболее перспективных материалов и т.д. Выбор контактной системы является важнейшей составляющей проектирования/отработки технологии изготовления ФЭП, так как качество контакта существенным образом влияет не только на его параметры, но и на безотказность и долговечность работы. Штатные испытания в этом случае не будут достаточно результативны, окажутся неоправданно долгими и трудоемкими. Стандартная процедура выходного контроля может быть упрощена и сведена, например, к тестированию на устойчивость к длительному воздействию температуры.

Изучению стабильности золото- и серебросодержащих контактных композиций к p-GaSb посвящена работа [4]. В ней отмечалось, что в условиях экстремального (200°С) нагрева ФЭП деградация проявлялась в проплавлении металлизацией тонкого *p*-*n*-перехода, а также в ухудшении состояния поверхности и частичном осыпании слоев контакта. В данной работе представлены результаты исследований термически инициированной деградации фронтальных контактов ФЭП при нагреве до ~ 80 и 120°С. Тестирование при $T \sim 80°$ С приближено к рекомендациям стандарта [1] и условиям работы ФЭП, нагрев которого, как правило, не превышает 50-70°С и зависит от способа его эксплуатации в солнечных батареях [5-9], термофотоэлектрических генераторах [10-12], при преобразовании лазерного излучения. Температура 120°C выбрана как еще один режим форсированной деградации. Работоспособность преобразователей при $T \sim 50^{\circ} \mathrm{C}$ в силу длительности эксперимента оценена теоретически с использованием экспериментальных данных для $T \sim 200, 120$ и 80° C (см. далее разд. 2.6).

Цель данного исследования заключалась в сравнении стабильности и срока службы двух контактных систем: традиционной для ФЭП на основе GaSb композиции Cr-Au и ее модификации на основе серебра Cr-Au-Ag-Au.

При выборе золото- или серебросодержащих контактных композиций и способов их формирования особое значение должно уделяться величине контактного сопротивления. В литературе содержится достаточно мало сведений о температурно-временной стабильности металлизации к GaSb. В работе [13] исследовались контакты на основе золота (без подслоя хрома), изначально вожженные в течение 60 с при температуре 200°C в атмосфере водорода и азота (forming gas). При повторном вжигании в течение 60 с при $T = 250^{\circ}$ C значения удельного контактного сопротивления ухудшались от $\rho_c \sim 5 \cdot 10^{-8}$ Ом · см² до $\rho_c \sim 10^{-6}$ Ом · см². При более низких температурах (100°C) контакты оставались стабильными по величине $\rho_c > 10$ ч.

В работе [14] осаждались золотосодержащие контакты Au (100 Å)–Zn (100 Å)–Au (800 Å) и измерялись значения удельных контактных сопротивлений в зависимости от температуры их вжигания в атмосфере 92% N₂ + 8% H₂. Минимальные значения $\rho_c \sim 1 \cdot 10^{-5}$ Ом · см² достигались при $T = 300^{\circ}$ С и времени отжига 15 мин. Исследование оже-профилей и спектров обратного рассеяния Резерфорда подтвердило диффузию золота в GaSb, а также обратную диффузию Ga и диффузию Zn. Эти факторы будут влиять на предрасположенность такого золотосодержащего контакта к деградации.

В работе [15] исследовалась температурно-временная стабильность Au-, Ag- и Al-контактов к p-GaSb (с $p = 10^{18} \text{ см}^{-3}$ и $p = 10^{19} \text{ см}^{-3}$). Установлено, что контакты на основе серебра оставались стабильными по значениям переходного контактного сопротивления при температурной выдержке 350°С в атмосфере водорода и азота (forming gas) в течение 100 ч. Поэтому можно ожидать, что при длительной эксплуатации приборов (несколько тысяч часов и более) при более низких рабочих температурах указанные контактные системы также будут оставаться стабильными. Контакты на основе алюминия наименее устойчивы и отличались резким ростом ρ_c уже при температурах ~ 100°С. Для контактов на основе золота наблюдался рост переходного контактного сопротивления после 30-часового прогрева при $T = 250^{\circ}$ С. Следовательно, серебросодержащие контакты более стабильны по сравнению с золотосодержащими за счет того, что образование интерметаллических соединений Ag с Ga и Sb происходит при более высоких температурах, чем аналогичные соединения с Аи. Вывод авторов работы [15] о стабильности серебросодержащих контактов в целом подтверждается результатами текущей работы (см. далее разд. 2.2).

2. Экспериментальные результаты

2.1. Особенности изготовления фотоэлектрических преобразователей

Фотоэлектрические преобразователи на основе антимонида галлия изготавливались метолом двухстадийной диффузии цинка из газовой фазы в подложку n-GaSb [16,17]. Полосковые контакты на основе композиций Cr (10-40 нм)-Au (1.0-1.5 мкм) и Cr(10-40 нм)-Au(100 нм)-Ag(0.9-1.4 мкм)-Au(50 нм) формировались к фронтальной (лицевой) поверхности p-GaSb $(p \sim 10^{20} \, \mathrm{cm}^{-3})$ методом резистивного термического испарения в вакууме при давлении остаточных газов в камере ~ 10^{-6} мм рт. ст. Перед напылением область под контактной сеткой подвергалась ионно-плазменной обработке. Изготовление контактов на основе Cr-Au заключалось в предварительном напылении "тонкого" ($d \sim 0.3$ мкм) контакта с последующим гальваническим осаждением токопроводящего слоя золота до общей толщины 1.0-1.5 мкм. Для формирования многослойного контакта Cr-Au-Ag-Au с $d \sim 1.0-1.5$ мкм, наносимого в ходе единого процесса напыления, применялась двухслойная литография с использованием LOR резистов (lift-off resist). Особенностям изготовления указанных контактов к ФЭП на основе GaSb посвящена работа [18].

Тыльная металлизация на основе AuGe-Ni-Au формировалась до напыления и отжига фронтальной контактной сетки. Вжигание тыльного и фронтального контактов проводилось в атмосфере водорода при температуре 200–230 и 170°С соответственно. Продолжительность отжига составляла $\sim (15-60)\,c.$

Эксперименты по термической деградации ФЭП проводились на воздухе с использованием термостата.

2.2. Температурно-временная стабильность контактного сопротивления

Причиной ухудшения свойств контактов под воздействием температуры может стать значительный рост удельного сопротивления ρ_c . Наши данные об удельном переходном сопротивлении золото- и серебросодержащих контактов разных типов к $p\text{-GaSb}~(p\sim 10^{20}\,\mathrm{cm^{-3}})$ при кратковременном вжигании в атмосфере водорода представлены в работе [18]. Изменения ρ_c при длительном прогреве предварительно вожженных ($T = 225^{\circ}$ C) контактов Cr-Au и Cr-Au-Ag-Au показаны на рис. 1. Многочасовой отжиг на воздухе проводился при температуре $\sim 80^{\circ}$ С ($t \le 6000$ ч), близкой к стандартной температуре тестирования фотоэлектрических преобразователей. Продолжение экспериментов осуществлялось в ускоренном режиме при $T \sim 120^{\circ}$ С (t > 6000 ч, рис. 1, a). Аналогичные зависимости изменения контактного сопротивления при предельно высокой для фотоэлемента температуре $\sim 200^{\circ}$ С показаны на рис. 1, b.

Рис. 1. Изменение контактного сопротивления после прогрева структур: a — при $T \sim 80$ и 120° C; b — при $T \sim 200^{\circ}$ C. 1 — Cr-Au, 2 — Cr-Au-Ag-Au.

Измерение контактного сопротивления проводилось методом LTML (linear transmission line model, метод линии передачи с линейной геометрией контактных площадок). Полученные данные свидетельствуют о постепенном росте ρ_c и лучшей температурно-временной стабильности исследованных серебросодержащих контактов по сравнению с золотосодержащим аналогом. Зависимости $\rho_c(T)$ для контактов с разными толщинами хрома (открытые и закрашенные круглые символы на рис. 1, *а* и *b*) представлены общей кривой *1*. Незначительные отличия в значениях ρ_c находятся в пределах погрешности метода.

2.3. Изменение поверхности контакта под воздействием температуры

Термическое воздействие может не только влиять на параметры фотоэлектрических преобразователей, но и изменять внешний вид контактов, вызывая, например, окисление поверхности, растрескивание, осыпание и отслаивание металлических пленок. Внешний вид LTLMструктур на момент окончания их прогрева на воздухе при 200°С (2300 ч) показан на рис. 2. Образцы сфотографированы с многократным увеличением через объектив оптического микроскопа. На снимках различимы прямоугольные контактные площадки, расположенные на расстоянии 20, 40, 80 и 100 мкм друг от друга. Изменение цвета контакта Cr-Au-Ag-Au после длительного отжига (рис. 2, с) свидетельствует о том, что толщина верхнего слоя золота в 50 нм оказывается недостаточной для защиты поверхности от содержащихся в воздухе кислорода и серы. Для предотвращения данного нежелательного эффекта, по-видимому, ее следует увеличить или ввести между верхним защитным слоем золота и слоем серебра барьерный слой хрома, никеля или платины. Для композиции Cr-Au повышение толщины адгезионного слоя хрома от 100 до 400 нм способствует улучшению морфологии поверхности контакта (рис. 2, *a* и *b*).

2.4. Тепловая деградация контактов при $T \sim 80^{\circ} { m C}$

Визуальный контроль изготовленных ФЭП, осуществляемый с использованием оптических микроскопов, показал, что при длительном прогреве при 80°С контакт Cr-Au имел однородную структуру, в то время как для Cr-Au-Ag-Au также наблюдалось постепенное изменение цвета металлизации как в узких полоска́х, так и в широких токосборных шинах по периферии ФЭП. Выраженного ухудшения просветляющих покрытий не наблюдалось. При этом падение напряжения холостого хода V_{oc} и фактора заполнения *FF* (рис. 3) происходило для Cr-Au уже на начальном этапе экспериментов, а фотоэлементы с контактной сеткой на основе серебра имели значительно более стабильные электрические характеристики. Существенных изменений Voc в этом случае не отмечено (рис. 3, b). Разброс значений FF для $\Phi \ni \Pi$ с Cr-Au-Ag-Au на рис. 3, *a*, возможно, связан с ухудшением поверхности контакта.

2.5. Форсированная деградация при $T \sim 120^{\circ}$ С

Результаты экспериментов по форсированной деградации ФЭП при $T \sim 120^{\circ}$ С приведены на рис. 4. Указанное значение T заметно превышает усредненный рабочий температурный диапазон [5–12] как для солнечных батарей, так и для термофотоэлектрических преобразователей. Однако поведение ФЭП при таких нештатных условиях тоже может быть интересно с практической точки зрения: в термофотоэлектрических генераторах преобразователь должен быть максимально (до 1–3 см) приближен к нагреваемому эмиттеру, при этом его перегрев будет сильно возрастать. В реализованных на

Рис. 2. Морфология поверхности контактов в LTLM-структурах (прогрев при 200°С, 2280 ч): *a* — Cr (100 нм)–Au; *b* — Cr (400 нм)–Au; *c* — Cr–Au–Ag–Au.

Рис. 3. Изменение FF и V_{oc} (нормированные значения) после прогрева фотоэлементов при $T \sim 80^{\circ}$ С.

Рис. 4. Изменение FF и V_{oc} (нормированные значения) фотоэлементов с разными контактными системами после прогрева при $T \sim 120^{\circ}$ С, $J_{sc} = 1$ А/см².

Рис. 5. Изменение мощности в фотоэлементах с разными контактными системами после прогрева при температурах 80° C (*a*) и 120° C (*b*). Данные приведены для условий засветки, соответствующей плотности фототока 1 А/см².

Таблица 1.	Фототок	преобразователей	после	прогрева	при
температуре	120°C				

Тип контактов	Время воздействия	Плотность фототока, мА/см ²		
	при $T \sim 120^{\circ}$ С, ч	AM0	AM1.5G	
Cr-Au-Ag-Au	0	41.1	31.6	
	5500	41.1	31.6	
Cr–Au	0	41.1	31.6	
	5500	40.5	31.2	

практике термофотоэлектрических системах расстояние эмиттер— Φ ЭП, как правило, заведомо больше минимального, что связано с опасностью ухудшения V_{oc} преобразователей под влиянием температуры и сокращением срока их службы в экстремально неблагоприятных условиях.

Отсутствие заметной деградации спектральной фоточувствительности ФЭП под воздействием прогрева на воздухе подтверждают результаты табл. 1. Представлены данные для засветки преобразователей космическим (AMO) и наземным (AM1.5G) солнечным излучением.

2.6. Оценка времени деградации фотоэлектрического преобразователя

В качестве параметра, определяющего работоспособность фотоэлемента и сохранность контакта, был выбран период времени, в течение которого падение выходной мощности не превышало 15% от исходного значения (см. рис. 5). Этот период менее продолжителен, чем физический срок службы фотоэлектрического преобразователя, когда прибор продолжает функционировать, но в силу эффекта старения и деградации работает неэффективно. В строгом понимании это время не является сроком службы преобразователя и потому, что учитывает лишь термическую нагрузку на прибор без его засветки.

Время устойчивости ФЭП к деградации при различной (80, 120, 200°С) температуре, определенное на основании представленных данных и результатов работы [4], суммировано в табл. 2.

Полученные экспериментальные результаты падения выходной мощности при повышенных температурах позволяют оценить время деградации преобразователей в рабочих режимах эксплуатации. Использовалась методика определения надежности приборов, изложенная в работах [18–20]. По результатам испытаний для $T_A = 120^{\circ}$ C и $T_B = 200^{\circ}$ C оценивалась энергия активации деградационного процесса Еа и коэффициент ускорения деградации K_a относительно температуры эксплуатации ФЭП ($T_N = 50^{\circ}$ C):

$$E_a = k \, \frac{\ln(t_A/t_B)}{(1/T_A) - (1/T_B)},\tag{1}$$

$$K_a = \frac{\exp(E_a/kT_N)}{\exp(E_akT_F)},\tag{2}$$

где k — постоянная Больцмана, t_A и t_B — время деградации преобразователя при T_A и T_B соответственно

Таблица 2. Время устойчивости к деградации в условиях повышенной температурной нагрузки (эксперимент)

	Тип контактной	Температура прогрева ФЭП, °С			
	системы	200	120	80	
Время устойчивости к деградации, час	Cr–Au Cr–Au–Ag–Au	0.1 6	30 9900	$1050 \\ \sim 17600^{*}$	

Примечание. * Аппроксимация экспериментальных результатов рис. 5.

Контакт	<i>Е</i> _{<i>a</i>} , эВ	Ka	Время деградации ФЭП при 50°С, ч
Cr–Au Cr–Au–Ag–Au	1.13 1.58	$\begin{array}{c} 1.2\cdot 10^3 \\ 2.4\cdot 10^4 \end{array}$	$\begin{array}{c} 4.2\cdot10^5\\ 3\cdot10^8\end{array}$

Таблица 3. Параметры деградации контактов. Значения K_a приведены для форсированного режима при $T_F = 120^{\circ}$ C

(табл. 2), T_N и T_F — температура в нормальном и форсированном режимах.

Из данных рис. 5, b определялось время форсированной деградации τ_F :

$$\tau_F = \frac{t_1 - t_2}{\ln(P_2/P_1)},$$
(3)

где t_1 и t_2 — значения времени на линейном участке зависимости и соответствующие им значения мощности P_1 и P_2 .

Время деградации преобразователей τ для номинального режима работы получали умножением постоянной времени τ_F на коэффициент ускорения K_a :

$$\tau = \tau_F \cdot K_a. \tag{4}$$

Результаты расчетов для времени деградации при температуре 50°С представлены в табл. 3.

3. Заключение

ФЭП с серебросодержащим фронтальным контактом Сг-Au-Ag-Au имеет преимущество перед аналогом с Сг-Au по временной стабильности большинства фотоэлектрических параметров (фоточувствительности, *FF*, V_{oc} , кпд) и сроку службы как в рабочих для фотопреобразователей условиях, так и при экстремально высоких температурах. В агрессивных условиях эксплуатации (в частности, в условиях значительного теплового нагрева) толщина защитного слоя золота в композиции Сг-Au-Ag-Au должна превышать 50 нм. Расчеты для времени деградации ФЭП при температуре 50°С показали, что спрогнозированный срок службы металлизации в отсутствие других разрушающих воздействий составляет не менее 48 лет.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 Национальный стандарт РФ "Модули фотоэлектрические из кремния наземные. Методы испытаний", ГОСТ Р 56980-2016 (МЭК 61215:2005) IEC 61215. Crystalline silicon terrestrial photovoltaic (PV) modules — Design qualification and type approval: International Electro technical commission, 2005.

- [2] Национальный стандарт РФ "Устройства фотоэлектрические с концентраторами. Методы испытаний", ГОСТ Р 56983-2016 (МЭК 62108:2007) IEC 62108. Concentrator photovoltaic (CPV) modules and assembles — Design qualification and type approval, 2007.
- [3] A. Vogt, G. Peharz, J. Jaus, A. Bösch, A.W. Bett. Proc. 21st Eur. Photovoltaic Solar Energy Conf. (Dresden, Germany, 2006) p. 2225.
- [4] В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, Ф.Ю. Солдатенков, Н.Х. Тимошина. ФТП, 48 (9), 1280 (2014). http://journals.ioffe.ru/articles/40822 [V.P. Khvostikov, S.V. Sorokina, N.S. Potapovich, F.Yu. Soldatenkov, N.Kh. Timoshina. Semiconductors, 48 (9), 1248 (2014). DOI: 10.1134/S1063782614090115]
- [5] Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, K. Araki, N.J. Ekins-Daukes, T. Sakakibara. *Proc.* 19th EU PVSEC (Paris, France, 2004).
- [6] K. Araki, H. Uozumi, M. Yamaguchi. Proc. 29th IEEE Photovoltaic Specialists Conf. (New Orleans, LA, USA, 2002) p. 1568. DOI: 10.1109/PVSC.2002.1190913
- [7] J. Jaus, G. Peharz, A. Gombert, J. Rodriguez, F. Dimroth, F. Eltermann, O. Wolf, M. Passig, G. Siefer, A. Hakenjos, S.V. Riesen, A.W. Bett. *Proc. 34th IEEE*. Photovoltaic Specialists Conf. (Philadelphia, Pennsylvania, USA, 2009) p. 001931.
- [8] Ya. Ota, H. Nagai, K. Araki, K. Nishioka. Proc. 8th Int. Conf. on Concentrating Photovoltaic Systems (CPV-8) (Toledo, Spain, 2012).
- [9] O.I. Chosta, V.A. Grilikhes, A.A. Soluyanov, M.Z. Shvarts. Proc. 20th Eur. Photovoltaic Solar Energy Conf. (Barcelona, Spain, 2005) p. 519.
- [10] В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, О.А. Хвостикова, А.В. Малевская, А.С. Власов, М.З. Шварц, Н.Х. Тимошина, В.М. Андреев. ФТП, 44 (2), 270 (2010). http://journals.ioffe.ru/articles/7062 [V.P. Khvostikov, S.V. Sorokina, N.S. Potapovich, O.A. Khvostikova, A.V. Malievskaya, A.S. Vlasov, M.Z. Shvarts, N.K. Timoshina, V.M. Andreev. Semiconductors, 44 (2), 255 (2010). DOI: 10.1134/S1063782610020223]
- [11] А.С. Власов, В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, В.С. Калиновский, Е.П. Ракова, В.М. Андреев, А.В. Бобыль, Г.Ф. Терещенко. ФТП, 44 (9), 1284 (2010). http://journals.ioffe.ru/articles/7233
- [12] Z. Utlu. Int. J. Low-Carbon Technologies, 15 (2), 277 (2020). https://doi.org/10.1093/ijlct/ctz049
- [13] B. Tadayon, C.S. Kyono, M. Fatemi, S. Tadayon, J.A. Mittereder. J. Vac. Sci. Technol. B, **13** (1), 1 (1995). DOI: 10.1116/1.587979
- [14] J.B. Oliveira, C.A. Olivieri, J.C. Galzerani, A.A. Pasa,
 F.C. de Prince. J. Appl. Phys., 66 (11), 5484 (1989).
 DOI: 10.1063/1.343699
- [15] A.G. Milnes, M. Ye, M. Stam. Solid State Electron., 37 (1), 37 (1994). DOI: 10.1016/0038-1101(94)90101-5
- [16] В.М. Андреев, С.В. Сорокина, Н.Х. Тимошина, В.П. Хвостиков, М.З. Шварц. ФТП, 43 (5), 695 (2009).
 http://journals.ioffe.ru/articles/6851 [V.M. Andreev, S.V. Sorokina, N.Kh. Timoshina, V.P. Khvostikov, M.Z. Shvarts. Semiconductors, 43 (5) 668 (2009).
 DOI: 10.1134/S1063782609050236]

- [17] V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, S.V. Sorokina, V.I. Vasil'ev. Proc. 4th NREL Conf. on Thermophotovoltaic Generation of Electricity (Denver, CO, 1998) p. 384. DOI: 10.1063/1.57818
- [18] Ф.Ю. Солдатенков, С.В. Сорокина, Н.Х. Тимошина, В.П. Хвостиков, Ю.М. Задиранов, М.Г. Растегаева, А.А. Усикова. ФТП, 45 (9), 1266 (2011). http://journals.ioffe.ru/articles/7520 [F.Y. Soldatenkov, S.V. Sorokina, N.Kh. Timoshina, V.P. Khvostikov, Y.M. Zadiranov, M.G. Rastegaeva, A.A. Usikova. Semiconductors, 45 (9), 1219 (2011). DOI: 10.1134/S1063782611090193]
- [19] И.М. Викулин, В.И. Ирха, Б.В. Коробицын, В.Э. Горбачев. ТКЕА, **2**, 55 (2004). http://www.tkea.com.ua/tkea/2004/ 2_2004/st_14.htm [I.M. Vikulin, V.I. Irkha, B.V. Korobitsyn, V.E. Gorbachev. TKEA, **2**, 55 (2004)].
- [20] М.И. Черных, Г.А. Велигура, В.А. Буслов, В.А. Кожевников, А.Н. Цоцорин. Электрон. техн., сер. 2. Полупроводниковые приборы. 3 (234), 35 (2014). https://www.niiet.ru/wp-content/uploads/pub13.pdf

Редактор А.Н. Смирнов

Front contact to the GaSb-photovoltaic converter: Properties and thermal stability

S.V. Sorokina, F.Yu. Soldatenkov, N.S. Potapovich, V.P. Khvostikov

loffe Institute, 194021 St. Petersburg, Russia

Abstract Issues related to the thermal stability of front contacts, based on Cr–Au and Cr–Au–Ag–Au, to GaSb-based photovoltaic cells have been considered at the operational (the cell temperature is 50°C) and standard conditions as well as at the forced thermal degradation (at 125 and 200°C). It is shown that the photovoltaic converter with the silver-containing contact is preferable in terms of the stability of contact resistivity, external quantum yield, *FF*, *V*_{OC}, and therefore, the cell efficiency and lifetime. The durability of the cells is determined at operational and elevated temperatures.