05.4

© И.В. Киреева, Ю.И. Чумляков, З.В. Победенная, Е.С. Марченко

Национальный исследовательский Томский государственный университет, Томск, Россия E-mail: kireeva@spti.tsu.ru

Поступило в Редакцию 6 октября 2022 г. В окончательной редакции 27 декабря 2022 г. Принято к публикации 1 февраля 2023 г.

На монокристаллах сплава Ti-40Ni-10Cu (at.%) ориентаций [001] и [$\overline{1}23$] впервые показано, что старение в мартенсите при 250 MPa приводит к сильной ориентационной зависимости предела текучести *B2*-фазы при растяжении. Эта зависимость слабо проявляется в исходных кристаллах. Максимальное увеличение предела текучести *B2*-фазы на 350 MPa по сравнению с таковым в исходном состоянии обнаружено в кристаллах ориентации [001]. При внешних растягивающих напряжениях 100 MPa эффект памяти формы в кристаллах ориентации [001] составил 4.0 \pm 0.2% в исходном состоянии и увеличился до 5.0 \pm 0.2% после старения в мартенсите, а в ориентации [$\overline{1}23$], напротив, уменьшился от 8.7 \pm 0.2 до 5.4 \pm 0.2%.

Ключевые слова: монокристаллы, старение в мартенсите, В2-фаза, эффект памяти формы, растяжение.

DOI: 10.21883/PJTF.2023.07.54919.19386

Сплавы Ti-Ni широко известны благодаря своим уникальным свойствам: эффекту памяти формы (ЭПФ) и сверхэластичности [1,2]. Высокая стабильность сверхэластичности и ЭПФ при циклических испытаниях, которая необходима для приложений в медицине и технике, в этих сплавах достигается за счет высокого уровня напряжений высокотемпературной В2-фазы на пределе текучести $\sigma_{0,1}(B2)$ [1]. Предел текучести B2-фазы в сплавах Ti-Ni повышают различными способами: за счет дисперсионного твердения, предварительной деформации в высокотемпературной фазе (ausforming) или мартенсите (marforming) с последующим низкотемпературным отжигом, легирования атомами Zr, Hf, Pd, Au, Co, Cu и т.д. [1-5]. В настоящей работе на монокристаллах сплава Ti-40Ni-10Cu (at.%) двух ориентаций [001] и [123] проведено исследование влияния старения в мартенсите под растягивающей нагрузкой 250 МРа на уровень напряжений $\sigma_{0.1}(B2)$ и величину ЭПФ при растяжении. Сплав Ti-40Ni-10Cu характеризуется двухстадийным мартенситным превращением (МП) В2-В19-В19' [1]. При растяжении в ориентации [001] под нагрузкой реализуется только МП В2-В19 с величиной деформации решетки $\varepsilon_0 = 3.49\%$, тогда как в ориентации [123] реализуется МП В2-В19-В19' с $\varepsilon_0 = 7.22\%$ [6].

Монокристаллы сплава Ti-40Ni-10Cu были выращены методом Бриджмена в атмосфере гелия. Ориентация определялась на дифрактометре ДРОН-3M с использованием FeK_{α}-излучения. Образцы в форме двойной лопатки размером 2 × 1.5 × 15 mm вырезались на электроискровом станке. Образцы гомогенизировались в атмосфере гелия при 1073 K в течение 14 h и затем закаливались в воду. После закалки кристаллы имели следующие температуры МП: для первого перехода В2-В19 $M_s^1 = 312 \,\mathrm{K}, \; M_f^1 = 289 \,\mathrm{K}, \; A_s^1 = 300 \,\mathrm{K}, \; A_f^1 = 322 \,\mathrm{K}; \;$ для второго перехода B19-B19' $M_s^2 = 263$ K, $M_f^2 = 175$ K, $A_s^2 = 219 \,\mathrm{K}, \ A_f^2 = 270 \,\mathrm{K} \ (M_s, M_f - \text{cootBetterBehho})$ температуры начала и конца прямого МП при охлаждении, а A_s, A_f — соответственно температуры начала и конца обратного МП при нагреве). Температурная зависимость напряжений $\sigma_{0.1}(T)$ исследовалась на испытательной машине Instron 5969 при скорости деформации $4 \cdot 10^{-4} \, \text{s}^{-1}$. ЭПФ и старение в мартенсите под нагрузкой изучались на дилатометре при охлаждении и нагреве в интервале температур от 77 до 400 К при постоянных растягивающих напряжениях в цикле и скорости нагрева/охлаждения 10 К/min. Электронно-микроскопические исследования проводились на электронном микроскопе Jeol 2010 при ускоряющем напряжении 200 kV.

Старение в мартенсите под растягивающим напряжением 250 МРа монокристаллов ориентаций [001] и [123] представлено на рис. 1, а и b. Под нагрузкой образец охлаждался до 77 К до полного завершения превращения. Затем проводился нагрев до температуры, при которой начинался обратный переход В19-В2 и *В*19'-*В*19-*В*2 в кристаллах [001] и [123] соответственно (температура выдержки показана темным кружком на кривых). При этой температуре образец под нагрузкой выдерживался в течение 2 h. Затем нагрузка снималась и измерялась остаточная деформация при 296 К. Из рис. 1, а и в видно, что при охлаждении под нагрузкой деформация превращения *ε*_{tr} составила 6.5 ± 0.2 и $8.5 \pm 0.2\%$ для кристаллов ориентаций [001] и [123] соответственно. Экспериментальные значения ε_{tr} оказались больше, чем теоретические значения ε_0 для

Рис. 1. Старение в мартенсите при внешних растягивающих напряжениях 250 МРа монокристаллов сплава Ti-40Ni-10Cu. a — ориентация [001], b — ориентация [$\overline{1}23$]. Горизонтальная штриховая линия показывает значение теоретической величины деформации превращения ε_0 при МП B2-B19 и B2-B19-B19' в ориентациях [001] и [$\overline{1}23$] соответственно. На вставках показана микроструктура после старения в мартенсите для соответствующей ориентации монокристаллов сплава Ti-40Ni-10Cu.

соответствующей ориентации, а именно в ориентации [001] величина $\varepsilon_{tr} = 6.5 \pm 0.2\%$ практически в 2 раза превысила теоретическое значение $\varepsilon_0 = 3.49\%$ для МП *B2–B19* в этой ориентации, а в ориентации [123] только на 1.28 \pm 0.2% относительно $\varepsilon_0 = 7.22\%$ для МП В2-В19-В19' [6]. Превышение экспериментальными значениями ε_{tr} теоретической величины ε_0 обусловлено развитием двойникования (011) $\{110\}_{B19}$ в B19мартенсите под нагрузкой, которое является обратимым при нагреве [7]. При снятии напряжений после выдержки в течение 2 h остаточная деформация составила 0.2 и 2% для кристаллов ориентаций [001] и [123] соответственно. Температура начала первого перехода В2-В19 при охлаждении после старения в мартенсите $M_s = 313 \, {\rm K}$ не изменилась по сравнению с таковой в исходном состоянии. Электронно-микроскопические исследования микроструктуры после старения в мартенсите в ориентации [001] обнаружили B19-мартенсит с $\{110\}_{B19}$ двойниками (вставка на рис. 1, *a*), а в ориентации $[\bar{1}23]$ наблюдались В19-мартенсит с {110}_{В19}-двойниками и высокая плотность дислокаций (вставка на рис. 1, b). Такое различие в дефектной структуре и величине необратимой деформации обусловлено легкостью развития локальной пластической деформации скольжением при развитии МП под нагрузкой при высоких напряжениях в кристаллах ориентации [123] и его затруднением в кристаллах ориентации [001]. Кристаллы ориентации [123] характеризуются большим фактором Шмида $m_{sl} = 0.46$ для систем скольжения $a(100)\{001\}$ в *B*2-сплавах по

сравнению с кристаллами ориентации [001], где $m_{sl} = 0$ и скольжение в *B*2-фазе подавлено [6].

Температурная зависимость $\sigma_{0.1}(T)$ в кристаллах сплава Ti-40Ni-10Cu двух ориентаций после закалки и старения в мартенсите при 250 МРа имеет вид, характерный для сплавов, испытывающих МП под нагрузкой [1] (рис. 2). Минимум на зависимости $\sigma_{0.1}(T)$ наблюдается при температуре M_s , которая совпадает с температурой M_s , определенной по температурной зависимости электросопротивления $\rho(T)$. Максимум на зависимости и отемпературе M_d , при которой напряжения $\sigma_{0.1}$ для начала МП под нагрузкой $\sigma_{0.1}$ (SIM) равны напряжениям $\sigma_{0.1}$ для начала пластического течения B2-фазы $\sigma_{0.1}(B2)$. В температурном интервале $M_s < T < M_d$ наблюдается стадия, близкая к линейной, которая связана с развитием МП под нагрузкой и описывается соотношением Клапейрона–Клаузиуса[1]:

$$\frac{d\sigma_{0.1}(\text{SIM})}{dT} = -\frac{\Delta S}{\varepsilon_{tr}} = -\frac{\Delta H}{\varepsilon_{tr}T_0}.$$
 (1)

Здесь ΔS , ΔH — изменение энтропии и энтальпии при МП соответственно, T_0 — температура химического равновесия фаз, ε_{tr} — деформация превращения. Из рис. 2 видно, что, во-первых, старение в мартенсите при 250 МРа при низкой температуре 280–300 К не влияет на величину $\alpha = d\sigma_{0.1}(\text{SIM})/dT$ в кристаллах одной ориентации. Во-вторых, величина α зависит от ориентации, и ее ориентационная зависимость сохраняется после старения в мартенсите при 250 МРа. Так,

Рис. 2. Температурная зависимость напряжений $\sigma_{0.1}$ на пределе текучести монокристаллов сплава Ti-40Ni-10Cu при растяжении. a — ориентация [001], b — ориентация [$\overline{1}23$]. Указаны температурные интервалы, в которых определяются напряжения $\sigma_{0.1}$ для начала образования мартенсита под нагрузкой (SIM) и для начала пластической деформации высокотемпературной B2-фазы.

в ориентации [001] величина $\alpha = 6.18$ МРа/К, а в ориентации [$\bar{1}23$] величина $\alpha = 4.5$ МРа/К. Ориентационная зависимость величины α пропорциональна $1/\varepsilon_{tr}$. Отношение величин $\alpha([001])/\alpha([\bar{1}23]) = 1.4$ оказывается близким к отношению $\varepsilon_{tr}([\bar{1}23])/\varepsilon_{tr}([001]) = 1.3$. При $T > M_d$ зависимость $\sigma_{0.1}(T)$ определяется температурной зависимостью $\sigma_{0.1}(B2)$. Видно, что в исходных кристаллах уровень $\sigma_{0.1}(B2)$ оказывается близким для двух ориентаций. После старения в мартенсите при 250 МРа значения $\sigma_{0.1}(B2)$ увеличились на 50–65 МРа в ориентации [$\bar{1}23$] и на 350 МРа в ориентации [001]. В результате появляется сильная ориентации [001]. В результате появляется сильная ориентационная зависимость $\sigma_{0.1}(B2)$. Сильный эффект упрочнения B2-фазы в ориентации [001] может способствовать улучшению функциональных свойств в сплавах Ti–40Ni–10Cu.

Действительно, в ориентации [001] ЭПФ после старения в мартенсите при $\sigma_{ex} = 5-100$ МРа оказывается больше, чем в исходном состоянии после закалки, на 1% при одном уровне σ_{ex} (рис. 3, *a*). В ориентации [123], где предел текучести В2-фазы после старения в мартенсите увеличивается незначительно относительно величины для закаленных кристаллов, при $\sigma_{ex} = 100 \,\text{MPa}$ ЭПФ после старения в мартенсите становится на $3.3 \pm 0.2\%$ меньше, чем в исходных кристаллах (рис. 3, b), причем величина ЭПФ $5.4 \pm 0.2\%$ оказывается меньше, чем теоретическая величина $\varepsilon_0 = 7.22\%$ для МП B2-B19-B19' в ориентации [123] при растяжении [6]. Можно полагать, что высокая плотность дислокаций после старения в мартенсите затрудняет МП В19-В19'. Это качественно подтверждается, во-первых, величиной ЭПФ $5.4 \pm 0.2\%$ при $\sigma_{ex} = 100 \,\mathrm{MPa}$, близкой к теоретической величине $\varepsilon_0 = 4.9\%$ для МП B2-B19 при растяжении в ориентации $[\bar{1}23]$ [6], а во-вторых, увеличением ЭПФ в ориентации [001] при $\sigma_{ex} = 100 \text{ MPa}$ после старения в мартенсите под нагрузкой относительно величины для исходных кристаллов, когда МП В2-В19 развивается в отсутствие дислокаций.

Рис. 3. Кривые деформация-температура для монокристаллов сплава Ti-40Ni-10Cu при разном уровне растягивающих напряжений. *a* — ориентация [001], *b* — ориентация [123]. Сплошные кривые — исходное состояние после закалки, штриховые кривые — старение в мартенсите при 250 MPa.

Итак, на монокристаллах сплава Ti-40Ni-10Cu, ориентированных вдоль направлений [001] и [123], впервые показано, что старение в мартенсите под нагрузкой при 250 МРа приводит к увеличению предела текучести B2-фазы $\sigma_{0.1}(B2)$ и сильной ориентационной зависимости $\sigma_{0,1}(B2)$ при растяжении, которая в закаленных кристаллах оказывается слабой. Максимальный рост $\sigma_{0.1}(B2)$ на 350 MPa после старения в мартенсите при 250 МРа по сравнению с величиной для исходных кристаллов наблюдается в ориентации [001]. В исходном состоянии после закалки при $\sigma_{ex} = 100 \,\mathrm{MPa}$ ЭПФ был равен 4.0 ± 0.2 и $8.7 \pm 0.2\%$ в кристаллах ориентаций [001] и [123] соответственно. После старения в мартенсите при $\sigma_{ex} = 100 \,\text{MPa}$ ЭПФ стал равным 5.0 ± 0.2 и 5.4 \pm 0.2% в кристаллах ориентаций [001] и [$\bar{1}23$] соответственно.

Финансирование работы

Результаты получены в рамках выполнения государственного задания Минобрнауки России (проект № FSWM-2020-0022).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Otsuka, X. Ren, Prog. Mater. Sci., 50 (5), 135 (2005). DOI: 10.1016/j.pmatsci.2004.10.001
- S. Dubinskiy, S. Prokoshkin, V. Sheremetyev, A. Konopatsky,
 A. Korotitskiy, N. Tabachkova, E. Binova, A. Glezer,
 V. Brilovski, J. Alloys Compd., 858, 157733 (2021).
 DOI: 10.1016/j.jallcom.2020.157733
- [3] E. Hornbogen, V. Mertinger, D. Wurzel, Scripta Mater., 44 (1), 171 (2001). DOI: 10.1016/S1359-6462(00)00543-1
- [4] G.S. Firstov, T.A. Kosorukova, Y.N. Koval, V.V. Odnosum, Mater. Today Proc., 2 (3), S499 (2015).
 DOI: 10.1016/j.matpr.2015.07.335
- [5] G.S. Firstov, T.A. Kosorukova, Y.N. Koval, P.A. Verhovlyuk, Shap. Mem. Superelasticity, 1 (4), 400 (2015).
 DOI: 10.1007/s40830-015-0039-7
- [6] H. Sehitoglu, I. Karaman, X. Zhang, A. Viswanath, Y. Chumlyakov, H.J. Maier, Acta. Mater., 49 (17), 3621 (2001).
 DOI: 10.1016/S1359-6454(01)00192-6
- [7] I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, A.A. Saraeva, Mater. Sci. Eng. A., 832, 142468 (2022).
 DOI: 10.1016/j.msea.2021.142468