Контроль наносекундных сгустков протонов в магнитоизолированном ионном диоде по резонансным ядерным реакциям радиационного захвата протонов

© В.А. Рыжков, А.В. Степанов

12.1

Национальный исследовательский Томский политехнический университет, Томск, Россия E-mail: ryzhkov@tpu.ru

Поступило в Редакцию 28 декабря 2022 г. В окончательной редакции 19 января 2023 г. Принято к публикации 19 января 2023 г.

Для калибровки эффективности регистрации пластикового сцинтиллятора, регистрирующего мгновенные гамма-кванты из резонансной реакции ¹⁹F(p, $\alpha\gamma$)¹⁶O радиационного захвата протонов и используемого для контроля динамики поступления на фторопластовую мишень (C_2F_4)_n протонов с энергией около 340 keV, ускоряемых магнитоизолированным импульсным ионным диодом, впервые предложено изменение полярности электродов диода на обратную, при которой в геометрии диода Люса ускоряются электронные сгустки, формирующие виртуальные катоды. Виртуальные катоды в диоде Люса коллективно ускоряли протоны до энергии около 500 keV, значение которой определялось по скорости дрейфа этих виртуальных катодов, тогда как число таких протонов определялось по активности радионуклида ¹³N, наведенного по резонансу 457 keV реакции ¹²C(p, γ)¹³N.

Ключевые слова: мощный импульсный ионный пучок, органический сцинтиллятор, мгновенная гаммаспектрометрия.

DOI: 10.21883/PJTF.2023.07.54917.19470

Магнитоизолированные ионные диоды (МИД) с геометрической фокусировкой ионного пучка [1] используются для получения мощных ионных пучков (МИП) с токами до сотен килоампер для модификации металлических [2] и керамических [3] покрытий, поверхности металлических сплавов [4-6], нанесения покрытий из абляционной плазмы, генерируемой МИП [7], формирования наноструктур [8] и др. Для успешного осуществления этих приложений нужно надежно контролировать динамику поступления на мишень основной ионной компоненты МИП, протонов, для чего широко используется времяпролетная (time-of-flight) спектрометрия ионных компонентов МИП с измерением плотности тока ионного пучка в фокальной плоскости диода с помощью смещенного ионного коллектора (biased ion collector) коллимированного цилиндра Фарадея (КЦФ) с магнитной отсечкой электронов [9,10]. Неизбежное ускорение многозарядных ионов ${}^{12}C^{n+}$, составляющих в сумме 20-30% ионов МИП, существенно усложняет интерпретацию времяпролетных спектров.

В работе [11] показано, что спектрометрия мгновенных γ -квантов, испускаемых в резонансных реакциях радиационного захвата протонов ${}^{10}B(p, \alpha \gamma)^7 Be$ и ${}^{11}B(p, \gamma){}^{12}C$, дает возможность избирательной диагностики протонов при энергии протонов от 200 keV при суммировании сигналов γ -квантов для серий по 25 выстрелов магнитоизолированного диода ТЕМП-4М. Выход γ -квантов Y пропорционален максимуму сечения реакции в резонансе σ_R и его ширине Γ и определяется с помощью аналитического выражения

$$Y = \frac{cN_0}{2A} \frac{\sigma_R \Gamma}{dE/dx} \left(\frac{\pi}{2} + \tan^{-1} \frac{E - E_R}{\Gamma/2} \right), \tag{1}$$

где N_0 — число Авогадро, A — молекулярная масса, c — концентрация элемента в мишени, dE/dx — потери энергии протонами в мишени при их энергии около резонанса ($\sim E_R$) согласно данным [12].

Расчет показывает, что резонанс ядерной реакции ¹⁹ $F(p, \alpha \gamma)^{16}$ О при энергии протонов 340.5 keV характеризуется большим сечением ($\sigma_R = 102 \,\mathrm{mb}$) и небольшой шириной ($\Gamma = 2.4 \, \text{keV}$), что обеспечивает выход высокоэнергетического у-излучения с энергиями 6.13, 6.92 и 7.12 MeV, достаточный для обнаружения 1013 протонов с энергией не менее 340.5 keV, что перспективно для определения числа протонов в сгустках и их разброса по энергии, а также для калибровки делителей напряжения для измерения напряжения на диоде не менее 345 kV. Задачей настоящей работы является калибровка у-сигнала пластикового детектора по количеству протонов с такой энергией за счет изменения полярности и геометрии электродов ионного диода на геометрию электродов диода Люса, в которой возможно ускорение электронных сгустков, формирующих виртуальные катоды, коллективно ускоряющие протоны до энергии 450-700 keV с числом $10^{13} - 10^{14}$ за выстрел, где энергия протонов определяется с хорошей точностью в каждом выстреле по дрейфовой скорости виртуального катода [13].

Экспериментальные схемы мгновенной диагностики протонных сгустков ускорителя ТЕМП-4М в обоих ре-

Рис. 1. Временны́е сигналы для серий, полученных при Z = 19 и 33 ст.

жимах (МИД и диоде Люса) подробно описаны в работах [11] и [13] соответственно. Ускоряющее напряжение на МИД при прямом ускорении ионов устанавливалось равным 345 kV, что было предельным значением для ускорителя ТЕМП-4М и представлялось достаточным для генерации максимального выхода у-квантов в толстых мишенях из фторопласта $(C_2F_4)_n$ по резонансу 340.5 keV. При коллективном ускорении протонов в режиме диода Люса напряжение на диоде устанавливалось около 240 kV. Один пластиковый сцинтилляционный детектор типа SP101 (Hangzhou Shalom Electro-Optics Technology Co., Ltd, Китай) размером $Ø30 \times 60 \text{ mm}$ "просматривал" через слой свинца 3-сантиметровую фторопластовую мишень с расстояния 35 ст под телесным углом Ω₁, равным 0.0058 (телесный угол приведен в виде безразмерной величины), а аналогичный детектор через слой свинца толщиной 1 cm регистрировал генерируемое в катоде тормозное излучение с максимальной энергией до 380 keV. Временное разрешение детекторов в сочетании с фотоумножителями ФЭУ87 (PEU87) было 2.5 ns на полувысоте для одиночных у-квантов. Пучок ионов в основном поглощался фторопластовой пластиной размером $4 \times 8 \times 0.4$ сm, закрывающей лицевую сторону КЦФ и расположенной на расстоянии 19, 26 и 33 ст от катода в трех сериях экспериментов. Для проникновения части протонного пучка во входное отверстие КЦФ диаметром 0.18 cm соосно с ним по центру фторопластовой пластины было высверлено сквозное отверстие диаметром 0.5 ст. При этом по сравнению с моментом возбуждения ядерных реакций в мишени, расположенной на передней поверхности КЦФ, ионы дрейфуют до коллектора дополнительные 2.5 cm.

На рис. 1 представлены разрешенные во времени сигналы напряжения (U19, U33) на диоде, плотности тока (*j*19, *j*33) на коллекторе КЦФ, тормозного излучения (B33) катода и γ -квантов (G19 и G33) на

мишенях, усредненные для двух серий по 20 выстрелов в каждой. Пик сигнала тормозного излучения катода МИД отмечает начало процесса ускорения ионов (и совпадает с первым пиком напряжения на диоде), поэтому по временны́м сдвигам между пиком тормозного излучения и пиками γ -сигналов, составившим 24, 31 и 39.7 ns, энергии самых быстрых протонов, достигших фторопластовой мишени, были оценены как 329, 369 и 363 keV для Z = 19, 26 и 33 ст соответственно (или в среднем 354 ± 22 keV).

Заметного банчирования сгустков протонов на мишенях обнаружено не было. Как и в работе [11], средний заряд протонов, собранный на коллекторе КЦФ, составил 75% от общего заряда ионов, а в сигналах плотности тока было выделено по три протонных и три углеродных ионных компоненты, при этом первая протонная компонента для всех трех серий в среднем составляла $15 \pm 7\%$, вторая — $79 \pm 9\%$, а третья — $6 \pm 5\%$. По сигналу высокоэнергетических *у*-квантов видно, что протоны с энергией не менее 340.5 keV присутствуют только в самой первой компоненте протонов и не обнаруживаются во второй и третьей протонных компонентах. Временной сдвиг между максимумами у-пиков для серий, полученных на расстояниях 19 и 26 ст, 26 и 33 ст, составил около 8.7 ± 0.2 ns, что при смещении фторопластовой мишени на 7 ст в обоих случаях дает среднюю скорость протонов 0.805 cm/ns, эквивалентную энергии протонов 340 ± 25 keV, что на 5 keV меньше ожидаемой по сигналу делителя напряжения $(U = 345 \, \text{kV}).$

Несмотря на то что напряжение в каждом выстреле всех трех серий устанавливалось одинаковым (345 kV), развиваемое на МИД ускоряющее напряжение изменялось по нормальному распределению в интервале от 318 до 377 kV при среднем значении 345 \pm 10 kV и ширине гауссиана на полувысоте ~ 8.2 keV. На рис. 2 представ-

Рис. 2. Зависимости выхода *у*-квантов от напряжения на диоде.

Номер выстрела/серии				V . a u			$a 10^{11}$ motons/ am^2		
				$I_{\gamma i}$, a.u.			φ_i , 10 protons/cm		
	19 cm	26 cm	33 cm	19 cm	26 cm	33 cm	19 cm	26 cm	33 cm
1	344	318	347	1.61	0.003	0.65	5.75	8.75	5.13
2	344	345	325	1.65	1.52	0.24	6.25	9.5	5.38
3	347	332	350	1.65	0.31	1.65	5	9.38	5
4	347	344	344	3.36	0.28	1.97	6.38	6.63	5.25
5	347	344	344	2.1	0.68	1.34	6.38	8	4.75
6	347	339	344	1.83	0.15	2.02	5.75	8.88	4.88
7	346	344	346	3.41	1.19	1.52	5.38	7.25	5
8	346	339	346	2.61	1.19	2.15	5.5	7.88	4.63
9	347	350	346	1.92	0.99	2.09	6	8.5	5.13
10	347	347	347	2.64	1.76	1.71	5.63	7.5	5.25
11	377	347	350	4.47	1.71	1.96	5.75	7.25	5.13
12	341	361	350	2.77	4.47	2.28	6	7.5	4.5
13	347	344	347	2.35	0.98	1.04	5.13	8.13	5.25
14	355	341	322	3.13	2.43	0.35	5.38	7.25	5.25
15	364	339	350	3.97	2.28	1.29	5.38	7.13	5
16	322	344	322	0.49	3.29	0.21	4.38	7.13	5
17	341	355	344	2.23	2.51	1.81	5.13	6.75	5
18	350	347	347	3.8	2.97	1.61	5	7.88	5
19	352	346	341	3.83	3	1.61	5.13	7	5.5
20	350	348	344	2.35	3.1	1.42	4.88	6.88	4.5
Среднее	348	343.7	342.8	2.61	1.74	1.45	5.51	7.76	5.03
\pm S.D.	10.2	8.6	8.9	0.99	1.23	0.64	0.53	0.86	0.27

Основные параметры выстрелов

лены зависимости выхода *γ*-квантов от напряжения на диоде для всех 60 выстрелов этих трех серий.

Выход у-квантов соответствует выражению (1), аппроксимация которого при разбросе напряжения, эквивалентном $\Gamma = 2.4 \, \text{keV}$ (сплошная кривая), указывает на достижение резонанса при напряжении $U_R = 345 \, \text{kV}$, тогда как метод наименьших квадратов указывает на минимальную ошибку аппроксимации кривой вида (1) при разбросе напряжения 20 kV (штриховая кривая), что на порядок выше истинной ширины резонанса $(\Gamma = 2.4 \text{ keV})$ реакции ¹⁹ $F(p, \alpha \gamma)^{16}$ О при $E_R = 340.5 \text{ keV}.$ Таким образом, энергетический разброс в этом самом первом и быстром сгустке протонов оценен как ± 20 keV. Сдвиг напряжения на +4.5 kV от ожидаемого резонансного значения 340.5 kV означает систематическое завышение напряжения на диоде на +4.5 kV при его измерении по сигналу делителя напряжения. Обнаруженная необходимость коррекции этого коэффициента свидетельствует в пользу применения предложенного метода для измерения напряжения на диоде с большей точностью.

В таблице представлены напряжения на диодах U_i , γ -выходы $Y_{\gamma i}$ и флюенсы протонов φ_i на коллекторе КЦФ для каждого выстрела трех серий. Выход γ -квантов $Y_{\gamma i}$ приведен в произвольных единицах, эквивалентных 10^{13} протонов за выстрел. Флюенсы протонов φ_i определялись по площадям протонных компонент в сигнале плотности ионного тока на коллекторе КЦФ. Сначала выполнялась серия выстрелов на расстоянии Z = 26 сm, затем серия с Z = 33 cm, последней была серия с Z = 19 cm.

В каждом из 60 выстрелов трех серий был надежно зарегистрирован у-сигнал от самых быстрых протонов, который строго соответствовал средней энергии этих протонов в интервале 318-377 keV и ее разбросу в сгустке ±20 keV. Для трех выстрелов, в которых зарегистрирован максимальный и примерно равный выход у-квантов, а средняя энергия самых быстрых протонов заведомо превышала 360 keV, оказалось возможным надежно определить число протонов в самом первом и самом быстром их сгустке. Такое определение было сделано по результату радиоактивационной калибровки у-спектрометра в геометрии диода Люса, когда энергия протонов в серии из десяти выстрелов была равна 459 ± 54 keV, а среднее число этих протонов составляло $2.1 \cdot 10^{13}$ за выстрел (см. данные в табл. 2 работы [13]). Отношение этого среднего числа коллективно ускоренных протонов к средним мгновенным у-сигналам (с площадью сигнала 129 V · ns) для этих десяти выстрелов с поправкой на возможный 11% вклад резонанса 483.6 keV реакции ${}^{19}F(p, \alpha \gamma){}^{16}O$ давало значение калибровочного коэффициента $1.63 \cdot 10^{11}$ protons/(V · ns). Обнаруженные в трех исследуемых сериях у-сигналы умножались на калибровочный коэффициент для получения числа протонов с энергиями выше 345 keV. Наименьшее измеренное значение У_ν в выстреле № 16 серии, полученной при Z = 33 cm, было эквивалентно $2.1 \cdot 10^{12}$ протонов с энергией \geqslant 345 keV, что дает предел обнаружения для числа протонов с энергией ≥ 345 keV в сгустке отдельного выстрела.

Поскольку самая быстрая протонная компонента в среднем составляла около $15 \pm 7\%$ от всех протонов, с учетом измеренного количества самых быстрых протонов за выстрел, равного 4.5 · 1013, общее количество генерируемых протонов за выстрел оценено как 3 · 10¹⁴, что на порядок выше, чем оценка по плотности тока протонов на КЦФ — $2.7 \cdot 10^{13}$ ((~ 9 · 10¹¹ protons/cm²) · 30 cm²). Таким образом, КЦФ занижает результат определения протонов (из-за сильных градиентов плотности пучка по сечению мишени, включая и коллиматор КЦФ) и обеспечивает лишь качественный анализ динамики прихода ионных компонент на его коллектор и оценку долей отдельных ионных компонент, тогда как мгновенная γ -спектрометрия по реакции ${}^{19}\mathrm{F}(p,\alpha\gamma){}^{16}\mathrm{O}$ позволяет количественно определять самую быструю протонную компоненту, по доле которой можно более точно оценить общее число протонов, поступивших на мишень.

Показано, что протонная компонента с энергией не менее 340.5 keV надежно и напрямую определяется в отдельных выстрелах с помощью спектрометрии мгновенных γ -квантов, испускаемых по ядерной реакции ¹⁹F $(p, \alpha \gamma)^{16}$ О фторопластовой мишенью, а эффективность γ -спектрометра калибруется с использованием того же ускорителя ионов, но переведенного в режим диода Люса, генерирующего электронные сгустки, порождающие виртуальные катоды, которые коллективно ускоряют протоны до энергии 400–500 keV.

Финансирование работы

Исследование проведено в рамках госзадания "Наука" FSWW-2023-0011 и при финансовой поддержке РФФИ и NSFC (проект № 21-53-53013).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Yatsui, A. Tokuchi, H. Tanaka, H. Ishizuka, A. Kawai, E. Sai, K. Masugata, Laser Particle Beams, 3 (2), 119 (1985). DOI: 10.1017/S026303460000135X
- [2] T. Cheng, W. Qin, Y. Lian, X. Liu, J. Tang, G. Cai, Z. Shijian, X. Le, C.Z. Jiang, F. Ren, Nanomaterials, 11 (10), 2663 (2021). DOI: 10.3390/nano11102663
- [3] M. Kaikanov, A. Kozlovskiy, A. Abduvalov, K. Dukenbayev, M.V. Zdorovets, A. Tikhonov, J. Mater. Sci.: Mater. Electron., 30 (16), 15724 (2019). DOI: 10.1007/s10854-019-01958-x
- [4] T.J. Renk, P.P. Provencio, S.V. Prasad, A.S. Shlapakovski,
 A.V. Petrov, K. Yatsui, W. Jiang, H. Suematsu, Proc. IEEE,
 92 (7), 1057 (2004). DOI: 10.1109/JPROC.2004.829024
- Письма в ЖТФ, 2023, том 49, вып. 7

- [5] И.П. Чернов, П.А. Белоглазова, Е.В. Березнеева, И.В. Киреева, Н.С. Пушилина, Г.Е. Ремнёв, Е.Н. Степанова, ЖТФ, 85 (7), 95 (2015). [I.P. Chernov, P.A. Beloglazova, E.V. Berezneeva, I.V. Kireeva, N.S. Pushilina, G.E. Remnev, E.N. Stepanova, Tech. Phys., 60 (7), 1039 (2015). DOI: 10.1134/S1063784215070099].
- [6] J. Piekoszewski, Z. Werner, W. Szymczyk, Vacuum, 63 (4), 475 (2001). DOI: 10.1016/S0042-207X(01)00224-X
- J. Zhang, H. Zhong, J. Shen, X. Yu, S. Yan, X. Le, Surf. Coat. Technol., 388, 125599 (2020).
 DOI: 10.1016/j.surfcoat.2020.125599
- [8] В.С. Ковивчак, Ю.Г. Кряжев, Е.С. Запевалова, Письма в ЖТФ, 42 (3), 84 (2016). [V.S. Kovivchak, Yu.G. Kryazhev, E.S. Zapevalova, Tech. Phys. Lett., 42 (2), 153 (2016). DOI: 10.1134/S1063785016020103].
- [9] G. Gerdin, W. Stygar, F. Venneri, J. Appl. Phys., 52, 3269 (1981). DOI: 10.1063/1.329145
- [10] H. Ito, H. Miyake, K. Masugata, Rev. Sci. Instrum., 79 (10), 103502 (2008). DOI: 10.1063/1.2999904
- [11] V.A. Ryzhkov, A.V. Stepanov, I.N. Pyatkov, G.E. Remnev, Nucl. Instrum. Meth. A, **1013**, 165671 (2021).
 DOI: 10.1016/j.nima.2021.165671
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. B, 268 (11-12), 1818 (2010).
 DOI: 10.1016/j.nimb.2010.02.091
- [13] V.A. Ryzhkov, I.N. Pyatkov, G.E. Remnev, Nucl. Instrum. Meth. A, **1042**, 167436 (2022).
 DOI: 10.1016/j.nima.2022.167436