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Isopachic method with unpolarized light
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An isopachic method with unpolarized light using a Mach−Zehnder interferometer is proposed. In the case of

unpolarized light, isopachics are observed not only due to a change in the thickness of the model but also due

to induced birefringence. In contrast to the existing methods, the proposed method allows you to study sections

of three-dimensional models or flat stressed samples with no thickness variation. A brief theoretical consideration

based on the formalism of the coherence matrix is given, as well as the experimentally obtained isopachic field for

a model made from high-modulus material. The method is convenient and simple in technical implementation.
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The photoelastic method is an experimental techniques

for analyzing mechanical stresses and provides information

on the difference and direction of principal stresses. The

main disadvantage of the photoelastic method is the need to

separate stresses using additional techniques such as well-

known methods: extensometry [1,2], interferometry [3],
holographic photoelasticity [4,5], etc. For instance, the

authors of [6] proposed isopachics method via analyse of the

light intensity patterns for unstressed and solving the trans-

port of intensity equation [7]. Also, an original isopachic

method [8] based on the Mach−Zehnder interferometer

optical scheme where the signal shoulder being a circular

polariscope. The azimuths of an output quarter-wave plate

and an analyzer take four discrete values. A numerical

analysis of interference patterns provides an opportunity to

isolate data on the sum of principal stresses.

We also consider Mach−Zehnder interferometer setup in

the present study. The stressed photoelastic model is placed

in the signal shoulder (Fig. 1, a) unpolarized light is fed to

the input. A fringe pattern observed at the interferometer

output is governed by the Pancharatnam phase [9], which is

used to obtain a sum of principal stresses (σ1 + σ2).

The coherence matrix formalism [10] provides a conve-

nient way to characterize transmission through the inter-

ferometer. The relation between input M0 and output M

coherence matrices is given by

M = TM0T
∗, T = Ts + Tr , (1)

where M0 = I2 is a 2× 2 unity matrix characterizing

unpolarized light and Ts ,r are 2× 2 transmission matrices

for signal and reference interferometer arms. In the

reference arm with no model, Tr = I2. Transmission matrix

Ts of the signal arm may be written as

Ts = t1d̂1 ⊗ d̂∗1 + t2d̂2 ⊗ d̂∗2 , (2)

where optical axes (eigen vectors) for a plane elastic

problem

d̂1 = x̂ cos9d + ŷ sin9d, d̂2 = ẑ× d̂1 (3)

are related to unit vectors x̂, ŷ of the laboratory reference

frame in the model plane via angle 9d (Fig. 1, b). Two-

dimensional distribution d̂1,2 is commonly called the isocline

field. The expressions for transmission coefficients t1,2 may

be approximated as [9]

t1,2 ≈ exp(i81,2), 81,2 = kn1,2D, (4)

where 81,2 are absolute phase delays; n1,2 are refraction

indices for waves polarized linearly in directions σ1,2;

k = 2π
λ

is the wave number; λ is the wavelength of used

light in vacuum; and D is the geometric thickness of the

model.

Let us rewrite expression (1) in an expanded form:

M = Mr + Ms + Mi , Mi = TsM0T
∗

r + TrM0T
∗

s , (5)

where Mr = TrM0T
∗

r = M0 is the coherence matrix of the

reference beam, Ms = TsM0T
∗

s is the coherence matrix

of the beam transmitted through the photoelastic model,

and Mi is the interference term. If light at the input is

unpolarized and the input matrix is proportional to a unity

one (M0 = I0
2
I2), output matrix (5) takes the form

M

I0
=

m0

2
I2 +

mp

2

(

cos 29d sin 29d

sin 29d − cos 29d

)

, (6)

I
I0

≡ m0 = 1 +
|t1|2 + |t2|2

2
+ Re

[

e−i80(t1 + t2)
]

≈ 2
{

1 + cos
(

8− 80

)

cos
(

18
)

}

, (7)

mp =
|t1|2 − |t2|2

2
+ Re

[

e−i80(t1 − t2)
]

≈ −2 sin
(

8− 80

)

sin
(

18
)

, (8)
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where arguments

8 =
81 + 82

2
, 18 =

81 − 82

2
(9)

are mean averaged phase shift 8 and phase difference 18;

80 is the phase of a wave propagating through the reference

interferometer arm; and I0 is the output light intensity.

The relation between principal stresses and refraction

indices (4) for a plane stress state is characterized by

Maxwell−Neumann equations

n1 − n0 = C1σ1 + C2σ2, n2 − n0 = C1σ2 + C2σ1, (10)

where C1, C2 are optical constants of the model material

and n0 is the refraction index of the unstressed model.

Expression (7) for the output intensity is independent of

angle 9d and contains data both on isochromes 18 and

isopachic 8 fields (the locus of points with the same mean

phase delay and the same sum of principal stresses). The

concept of
”
visibility“ of fringes

V =
Imax − Imin

Imax + Imin

, (11)

where Imax,min are the maximum and minimum intensities

of the interference pattern, is convenient for analysis of the

interference pattern. It follows from (7) that, depending

on the interferometer adjustment (bright-field or dark-

field), isopachics should correspond to maxima or minima

of the output intensity pattern. The visibility of these

fringes is V = 1. The visibility at those points where

the phase difference is a multiple of an odd number

of half-waves (18 = π{2N + 1}, N = 0, 1, 2, . . . ) will be

zero regardless of the value of mean phase 8. These

points will be isochrome fringes with a half-tone intensity.

Figure 2, a shows the theoretically calculated example of

a moire fringe pattern for a ring that is made of a low-

modulus photoelastic material (C1 6= C2) and subjected to

diametral compression. The pattern is free from isoclines

characterized by expressions (3).
If a high-modulus material (C1 ≈ C2), such as mineral or

organic glass, is used to fabricate the model, expression (7)
takes the form

I
I0

≈ 2
{

1 + cos
(

8− 80

)}

. (12)

Only the isopachic field is observed for such materials. Note

that both thickness variation 1d = µD(σ1 + σ2)/E (µ is the

Poisson’s ratio and E is the modulus of elasticity of the

material) and the induced birefringence (see formulae (10))
contribute to mean phase 8. As a distinct advantage

of the proposed method, it is able to analyze stressed

models or slices subjected to smoothing and polishing (i.e.,
with the same thickness). It is indeed sufficient in this

case to determine material constants C1,2 for calibration

models with the surface smoothed after stressing. Figure 2

presents the theoretical and experimental isopachic patterns

for an acrylic glass ring subjected to diametral compression.
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Figure 1. a — Mach−Zehnder interferometer used to obtain

isopachics. L — unpolarized He−Ne laser (λ = 632.8 nm); L1,
L2 — lenses; PH — pinhole; D — aperture; m — mirror; Md —
stressed photoelastic model; BS — beam splitter; P — polarizer

(optional); L3 — telecentric lens; Sc — screen. The incidence

angles do not exceed 2◦ so as to suppress the polarizing effect of

mirrors. b — Directions of vectors d̂1,2 in the laboratory reference

frame.

Figure 3, a shows the same ring after smoothing and

polishing. It can be seen that the fringe value increased

(the fringe order decreased).
Unpolarized radiation transmitted through the photoelas-

tic model remains unpolarized and is characterized by a

matrix proportional to a unity one. The difference between
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Figure 2. a — Theoretically calculated moire fringe patterns,

which are formed by isopachics and isochromes, for a stressed

ring made of a low-modulus material with C1 = 18.1 · 10−11 Pa−1,

C2 = 87.6 · 10−12 Pa−1 (left) and a high-modulus material with

C1 = 60.3 · 10−12 Pa−1, C2 = 58.4 · 10−12 Pa−1 (right). The inner

and outer radii of the ring are 7.5 and 15mm, and the thickness is

5mm. The ring is stressed by a pressure of 39.2MPa applied at two

diametrically positioned 4◦ sectors. The calculation was performed

in accordance with [11]. b — Isopachic pattern for this ring (made

from acrylic) observed experimentally in the interferometer. The

relative phase difference fell within the 0 < 18 6 8.4◦ range.

output matrix M and a unity one arises due to interference

term Mi only. Owing to it, two effects are observed at

the interferometer output: (1) light intensity modulation

specified by formula (7); (2) the output light field is partially

polarized with polarization degree

P = |mp|/m0. (13)

Partial polarization, which is induced by the interference of

signal and reference beams, gives rise to the dependence of

the intensity of light transmitted through a linear polarizer

at the interferometer output on polarizer azimuth 9p :

I p(9p)/I0 =
[

m0 + mp cos(29d − 29p)
]

/2. (14)

Analyzing this expression, one finds that, depending on 18,

isopachic fringes may shift by up to π (i.e., an interference

maximum is changed to a minimum) when a polarizer

is rotated by π/2. Figure 3, b presents the experimental

isopachic patterns for two orthogonal polarizer azimuths

(the value of 18 remains roughly the same throughout the

entire area of the model). It is notable that points retaining

their intensity under 9p variations turn out to be isotropic

with P = 0.

To conclude, we note that the discussed method for stress

separation does not require measurements to be performed

twice (before and after stressing). In comparison with

holographic interferometry techniques, this method offers

0° 90°
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Figure 3. a — Photographic image of isopachics for the ring from

Fig. 2 after smoothing and polishing. b — Photographic image of

isopachics from Fig. 2, b obtained with a polarizer with azimuth

9p = 0◦ (left) and 90◦ (right) mounted at the interferometer

output.
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an important advantage, as one can examine stresses directly

on optically transparent parts and slices with
”
freeze stresses

method“.
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