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Influence of fast dynamics effects on resonant ultrasonic vibrations of

polycrystalline metal rods
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A theoretical model for the formation of ultrasonic signals in metallic microcrystalline rods taking into account

the metastable behavior of their defective states is proposed. The influence of metastable states of the defective

structure of samples on the features of changes in their resonant frequencies in ultrasonic experiments of fast

dynamics is analyzed. The decrease in Young’s modulus in such processes is explained. The correspondence

between theoretical and experimental data is demonstrated for the example of resonant acoustic vibrations of rods

made of aluminum alloy D16.
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In materials with a complex rheological structure, the

dynamic deformation processes, acoustic vibrations, and

propagation of elastic waves are often characterized by the

appearance of special mechanical properties that cannot be

explained by the conventional elasticity theory. One of the

important directions in the study of dynamic mechanical

processes in such materials is successfully developed within

the framework of various relaxation models [1,2]. We

shown [3,4] that consideration of relaxation processes makes

it possible to correctly describe the experimental data

obtained in the study of vibrations of thin aluminum

membranes excited by time-modulated optical radiation.

This approach also made it possible to explain the behavior

of laser ultrasonic signals in stressed samples made of D16

aluminum alloy [5,6].

In the paper [7], the effects of fast and slow dynamics

in metal rods made of D16T microcrystalline aluminum

alloy were studied using methods of nonlinear resonant

ultrasonic spectroscopy. It was shown that in samples

with introduced mechanical stresses, noticeable effects of

fast and slow dynamics occur, they are associated with

the presence in them of metastable states of the defect

structure and leading to their elastic modulus dependence

on the amplitude of elastic vibrations. In the paper [7]
experimental data were obtained confirming the presence of

fast and slow dynamic processes in samples in the D16T

alloy. The detected change in the resonant frequency of

elastic vibrations of the deformed rod was explained by the

change in the effective Young’s modulus of the material,

since its density remained constant. It seems appropriate to

supplement the experimental results of the paper [7] with

a theoretical justification of the Young’s modulus change

in the model proposed by us earlier [3–6] to explain the

behavior features of laser ultrasonic signals from stressed

samples of D16 alloy. At the same time, in the framework

of this study, we limit ourselves by discussion of processes

of fast dynamics only.

The paper [8] shown that the free energy of body

change in the presence of defects in it during deformation

is determined by the value �E1nεkk , where � is defect

activation volume, E is Young’s modulus, 1n is change in

defects concentration upon excitation of elastic vibrations,

εkk is first strain tensor invariant. In the simplest one-

dimensional model the effect of metastable defects on the

longitudinal vibrations of the rod can be described by the

equation of motion

ρ
∂2εe

∂t2
= E

∂2εe

∂x2
+ E�

∂1n
∂x

, (1)

where ρ is density of the rod material, εe is elastic

deformation, t is time, x is coordinate along the rod axis.

In the general case, equation (1) is nonlinear due to

the possible defect concentration dependence on internal

stresses, which in the simplest case is determined by

the Arrhenius law [9,10]. This dependence in linear

approximation allows us to introduce the effective Young’s

modulus.

To determine the nature of the change of internal stresses

and the effective Young’s modulus of the sample, we use the

results of the papers [11,12] taking into account the weak

relaxation of stresses in the absence of external action [13].
In the paper [7] internal stresses were introduced into the

rod based on D16T alloy by twisting one of the ends,

after which the sample was subjected to elastic harmonic

deformation εe = εm sinωt, and its resonant frequency

change was recorded with a change in the amplitude of

elastic oscillations. The experimental diagram of oscillations

excitation is shown in Fig. 1. The dynamics of stress changes
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in the sample under such conditions can be described by the

equation

1

E
∂σ

∂t
= ε̇e − ε̇p = εmω cosωt

− ε̇0 exp

(

−
U −�(σ − σ

(0)
p )

kBT
−

t
τ

)

, (2)

where ε̇p is rate of change of material plastic deformation,

U is activation energy of metastable defects, τ is stress

free relaxation time, σ
(0)
p is internal stress in the sample

at the initial moment of time, the pre-exponential factor

ε̇0 is assumed to be stress-independent, kB is Boltzmann

constant, T is sample temperature.

Equation (2) can be represented as follows

σ (t) = Eεm sinωt + σ (0)
p + 1σp(t), (3)

where

1σp(t) = −
kBT
�

ln

[

1 +
�E
kBT

ε̇

×

t
∫

0

exp

(

�E
kBT

εm sinωt′ −
t′

τ

)

dt′
]

,

ε̇ = ε̇0 exp

(

−
U

kBT

)

.

Expression (3) shows that the rate of internal stresses

decreasing in the sample depends on the external harmonic

effect in accordance with the acoustoplastic effect [11–13].
The presence of relaxation processes in the sample material

affects the nature of stress decreasing.

We will assume that upon elastic vibrations excitation a

quasi-equilibrium concentration of defects has time to be

established in the sample. Then the concentration change of

excited defect centers under the action of external harmonic

excitation on the sample can be estimated from the relation

1n ∼= N

[

exp

(

−
U −�(σ

(0)
p + 1σp + σe)

kBT

)

− exp

(

−
U −�(σ

(0)
p + 1σ

(0)
p + σe)

kBT

)

]

, (4)

where N is value of the order of the atoms concentration in

the sample material, 1σ
(0)
p is change in time of stress in the

sample in the free relaxation mode (εm = 0).
When the condition �E ε̇τ < kBT is met, using equalities

(3) and (4) for the excited defects concentration, we obtain

the expression

1n ∼= N′
�E
kBT

ε̇τ

[

1− exp
(

−
t
τ

)

−
1

τ

t
∫

0

exp

(

�E
kBT

εm sinωt′ −
t′

τ

)

dt′
]

exp

(

�σe

kBT

)

, (5)

where N′ = N exp
(

−(U −�σ
(0)
p
)

/kBT
)

.
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Figure 1. Diagram of excitation and registration of elastic

vibrations of the rod [7]. 1 — sample, 2 — exciting piezoceramic

transducer, 3 — piezoceramic oscillation detection sensor, 4 —
massive base.

The activation volume of the defect is usually commen-

surate with the volume of the crystal lattice of the mate-

rial [14], which for aluminum is 6.6 · 10−29m3. With this

value of the activation volume, the inequality �E ε̇τ < kBT
for the D16T alloy is met for ε̇τ < 10−3 . Estimates show

that for D16T at defects concentration 1n 6 1026 m−3,

the exponent in expression (5) can be expanded into

a series. Under these conditions, at N′� < 10−3 the

inequality N′�(�E)2ε̇τ < (kBT )2 is also satisfied, which, in

the approximation linear in �Eεe/kBT , allows us to reduce

the equation of motion to the form

ρ
∂2εe

∂t2
= Ee f f (t)

∂2εe

∂x2
, (6)

where

Ee f f (t) ∼= E

[

1 + N′�

(

�E
kBT

)2

ε̇τ

(

1− exp

(

−
t
τ

)

−
1

τ

t
∫

0

exp

(

�E
kBT

εm sinωt′ −
t′

τ

)

dt′
)]

.
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Figure 2. Resonant frequency vs. amplitude of longitudinal

deformation. The experimental points are based on the data of the

paper [7]. A straight line is the result of a linear approximation.

Korobov et al. [7] experimentally investigated the nature

of the frequency change of resonant oscillations of D16T

rods in the mode of fast dynamics of relaxation processes. It

was found that long-term exposure to harmonic oscillations

leads to the resonant frequency stabilization of the rods,

and with the oscillation amplitude increasing this frequency

decreases. Calculation of the integral in Ee f f (t) at t → ∞
within the accuracy of terms linear in εm leads to the

expression

Ee f f (t → ∞) ∼= E

[

1− N′�

(

�E
kBT

)3

ε̇τ
ωτ

1 + (ωτ )2
εm

]

.

(7)
In paper [7] the samples were excited in the mode of a

quarter-wave elastic resonator. Its first resonant frequency is

given by f 0 =
√

E/ρ/(4L), where ρ is density, L is sample

length. If we assume that during the experiments the density

and length of the samples did not change, then the influence

of the effects of fast dynamics on the resonant frequency

of the samples can be estimated using this equality at

E = Ee f f . Together with expression (7), it allows one to

determine the shift of the resonant frequency of the samples

at large times in the approximation linear in the oscillation

amplitude εm

1 f m
∼= −

1

8L

√

E
ρ
�N′

(

�E
kBT

)3

ε̇τ
ωτ

1 + (ωτ )2
εm. (8)

Expression (8) shows that the amplitude increasing of

elastic vibrations of rods with defective states leads to

their resonant frequency decreasing. The result obtained

corresponds to the experimental data of paper [7]. Fig. 2

shows the resonant frequency dependence on the amplitude

of the longitudinal deformation of the rod. This dependence

is close to linear with a slope coefficient of −24Hz ·m/µm.

In accordance with the estimates made above and ex-

pression (8), such a change in the resonant frequency of

the rod corresponds to relaxation times 10−5−10−6 s at

ρ = 2700 kg/ m3, L = 140mm, E = 71GPa, N′� ≈ 10−3.

This estimate for the relaxation time correlates well with the

value obtained by us in experiments on laser generation of

ultrasound in stressed samples D16 [3,5,6].
The proposed theoretical model makes it possible to

explain the effects of fast dynamics in metal rods with

defects. It relates the dynamics of the material Young’s

modulus change in time with such characteristics of its

defective subsystem as the concentration of defects, their

relaxation time, and activation volume.
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