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Anisotropic photoconductivity at a difference frequency, excited in a semiconductor by linearly polarized two-

frequency optical radiation, is considered. The anisotropy of the photoconductivity arises due to the optical

alignment of photoexcited electrons momenta and dependence of their effective mass and momentum relaxation

time on energy. It is shown that the contribution of the anisotropic photoconductivity to the photocurrent at

the difference frequency lying in the terahertz frequency range can be comparable with that of the isotropic

photoconductivity. This effect can manifest itself in photoconductive antennae, devices used to generate terahertz

radiation.

Keywords: Anisotropic photoconductivity, photomixing, terahertz radiation, photoconductive antenna.

DOI: 10.21883/TPL.2022.11.54881.19313

One of the methods for generating continuous terahertz

(THz) radiation is the use of the photomixing effect under

interband optical excitation of a semiconductor by two

light beams, the frequency difference of which lies in

the THz region [1,2]. The photomixing effect arises due

to the nonlinear nature of photoconductivity and in the

presence of a constant bias leads to the generation of a

photocurrent at the beat frequency. THz-emitter based on

the photomixing effect, called a photoconductive antenna,

is a photosensitive semiconductor layer, on the surface

of which a system of metal electrodes is formed, which

plays the role of a radiating antenna, and also serves to

supply a bias voltage. For the effective operation of the

photoconductive antenna as a THz emitter, it is necessary

that the lifetime of nonequilibrium charge carriers, which

determines the photoresponse time of the semiconductor,

be less than 1 ps. Therefore, in photoantennas used to

generate THz radiation, it is necessary to use specially

grown semiconductor layers with subpicosecond lifetimes

of nonequilibrium current carriers [1,2].

In this paper we review the anisotropic photoconductivity

in the semiconductor excited by two-frequency optical

radiation, as well as its contribution to the photocurrent

at the beat frequency corresponding to the THz region.

The anisotropic photoconductivity for interband optical

transitions is due to the anisotropy of the momenta

distribution of electrons excited by polarized light and

the dependence of their momentum relaxation time and

effective mass on energy [3–5]. The response time of

anisotropic photoconductivity is determined by the electron

momentum relaxation time, which is usually 200−300 fs.

Consider a cubic semiconductor excited by

two-frequency linearly polarized optical radiation

E(t) = E1 cosω+t + E2 cosω−t with close frequencies

ω± = ω ±�/2 > εg/~ (εg is semiconductor band gap).
A constant electric field F applied to the semiconductor

is directed along the z axis, the vectors E1 and E2 are

parallel to each other and lie in the xz plane at an angle γ

to the z axis. The concentration of photoexcited electrons

and holes is proportional to the intensity of the incident

optical radiation and includes two terms, one of which is

time independent, and the second varies at the difference

frequency �, which is assumed lying in the THz-range.

Here we are interested in the photocurrent component

at the beat frequency, since this component excites THz

radiation in the photoconductive antenna.

The kinetic equation for the component of the distribution

function f p of photoexcited electrons over momenta p at

the difference frequency in the constant electric field has

the form

i� f p − eF
∂ f p

∂p
= Gp(t) −

f 0(εp)

τ0
+ Ic( f p), (1)

Gp(t) =
αIδ(ε0 − εp)

~ωg(εp)

(

1− P2(cos β)
)

, (2)

where τ0 is recombination time of non-equilibrium electrons,

Ic( f p) is collision integral, f 0(εp) is momentum-symmetric

part of the photoelectron distribution function, P2(x) is

second-order Legendre polynomial, β is angle between

direction of electron momentum and polarization vector of

optical radiation, δ(x) is delta function, I is intensity ampli-

tude of exciting radiation at frequency �, g(εp) is electron

states density in the conduction band, vp = ∂εp/∂p is speed
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of electron with energy εp, α is coefficient of interband light

absorption. Expression (2) describes the generation of non-

equilibrium electrons during interband transitions from the

heavy hole subband of the valence band (the contribution of

transitions from the light hole subband is neglected) [3]. The
energy of the photoexcited electron ε0 is determined from

the relation εp + εv,p = ~ω − εg (εv,p is dispersion law for

heavy holes).
Kinetic equation (1) will be solved in the linear approxi-

mation over the field F and in the quadratic approximation

over the light wave field, using the standard procedure [6]
of the electron distribution function expansion by spherical

functions Ylm

f p = f 0(εp) +
∑

l=1,2

+l
∑

m=−l

f l,m(εp)Ylm(θ, ϕ), (3)

where θ and ϕ are the polar and azimuth angles of the

vector p in the spherical coordinate system. For the case of

quasi-elastic scattering considered here, the collision integral

can be represented as

Ic( f p) = −
1

τ1(εp)

+1
∑

m=−1

f 1,m(εp)Y1m(θ, ϕ)

−
1

τ2(εp)

+2
∑

m=−2

f 2,m(εp)Y2m(θ, ϕ), (4)

where τ1 and τ2 are the relaxation times of the first and

second spherical harmonics of the distribution function.

Using the addition theorem for spherical functions, we write

P2(cos β) =
4π

5

+2
∑

m=−2

Y2m(θ, ϕ)Y ∗

2m(γ, 0). (5)

Substituting expressions (2)−(5) into (1), we obtain the

equation for the coefficients of the spherical function

expansion of the distribution function. Multiplying it by

Y ∗
lm(θ, ϕ) and integrating over the angles, we find a chain of

equations for the coefficients f l,m . In a linear approximation

over constant electric field, from this system of equations

we obtain expressions for the expansion coefficients that

determine the photocurrent:

f 1,0=2

√

π

3

αI
~ω

eFτ1vp

1+i�τ1

[

τ0

1+i�τ0

d
dεp

(

δ(ε0 − εp)

g(εp)

)

−
2

5
P2(cos γ)U(εp)

]

, (6)

f 1,±1 = ±
√
6π

10

αI sin 2γ
~ω

eFτ1vp

1 + i�τ1
U(εp), (7)

U(εp) =
d

dεp

[

τ2

1 + i�τ2

δ(ε0 − εp)

g(εp)

]

+ 3
τ2

1 + i�τ2

δ(ε0 − εp)

pg(εp)vp

. (8)

After substituting (6) and (7) into the expression for the

current, and integrating over momenta for the longitudi-

nal j z and transverse jx components of the photocurrent,

we obtain

j z =
e2F
3π2

αI
~4ωg(ε0)

{

τ0

1 + i�τ0

d
dεp

(

p2vp

τ1

1 + i�τ1

)

−
2

5
P2(cos γ)

τ2

1 + i�τ2
V (εp)

}
∣

∣

∣

∣

∣

εp=ε0

, (9)

jx = −
e2F
10π2

αI sin 2γ
~4ωg(ε0)

τ2

1 + i�τ2
V (εp)

∣

∣

∣

∣

∣

εp=ε0

, (10)

V (εp) = p3 d
dεp

(

vp

p
τ1

1 + i�τ1

)

=
τ1

1 + i�τ1
p3 d

dεp

(

vp

p

)

+ p2vp

d
dεp

(

τ1

1 + i�τ1

)

. (11)

The first term in expression (9), containing the lifetime

of non-equilibrium electrons τ0, describes isotropic photo-

conductivity. The anisotropy of the photoexcited electrons

distribution over momenta leads to the appearance of the

second term in (9), which depends on the angle γ , as well

as of the transverse component of the photocurrent (10)
perpendicular to the pulling field F. Note that expressions

(9)−(11) were obtained neglecting energy relaxation and,

therefore, are valid under the condition �τε ≫ 1 (τε is

energy relaxation time of electrons).
The anisotropic part of the photoconductivity is deter-

mined by the function V (εp), which is nonzero only when

the effective mass and (or) the momentum relaxation time

of the electrons depend on the energy. The first term in (11)
describes the contribution to the anisotropic photoconduc-

tivity due to the nonparabolicity of the electronic spectrum,

and the second term due to the energy dependence of the

momentum relaxation time.

The function V (εp) is determined by the energy deriva-

tives of the effective mass and momentum relaxation

time of electrons. Therefore, in the case of a threshold

dependence of these parameters on energy, for example,

when the energy of the photoelectron lies near the threshold

of intervalley transitions or the threshold of the optical

phonon emission, one can expect the anisotropic component

of photoconductivity increasing. In the paper [7] the

spectral dependence of the anisotropic photoconductivity

was investigated by the Monte-Carlo method, and it was

shown that the anisotropic photoconductivity reaches its

maximum when the energy of the photoexcited electron

lies near the threshold of intervalley transitions. In typical

semiconductors, the relation τ0 ≫ τ1, τ2 is usually satisfied.

In the low-frequency region (�τ0 ≪ 1) the anisotropic

addition to photoconductivity at the difference frequency

is small, since its relation to ordinary photoconductivity is

characterized by the parameter τ2(ε0)/τ0 ≪ 1. However,

in the THz-frequency region �τ0 ≫ 1, the ratio of the
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anisotropic part of the photoconductivity to the isotropic

part is determined by the parameter �τ2(ε0), the value

of which may be about unity. So, at the terahertz

difference frequency the anisotropic component of the pho-

toconductivity can be comparable with the usual isotropic

one. This conclusion is also valid for semiconductor

layers specially grown by molecular beam epitaxy and used

in photoconductive antennas, since for them in the THz

frequency range τ0 ∼ �−1.
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