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Exact two-dimensional solution for magnetic compression of a thin

axisymmetric shell and neck formation in an X-pinch
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Exact two-dimensional solutions are constructed that describe the dynamics of magnetic compression of a hollow

shell, which is a one-sheeted hyperboloid of revolution. The solutions are applicable for interpreting the results

of experiments on the formation of necks in X -pinches. In particular, they make it possible to relate the main

parameters of the problem: the axial scale of the neck, the time of its formation, and the geometric characteristics

of the system.
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A
”
hot spot“ of the X -pinch is a powerful X-ray

source [1]. In the initial state the X -pinch consists of two

or more crossed thin wires (Fig. 1). When a current pulse

is applied with an amplitude from tens of kiloamperes to

megaamperes, a dense high-temperature plasma is formed

in the crossing region, which is a source of X-ray radiation.

The small size of the
”
hot spot“ (units of micrometers)

and the short duration of the radiation pulse (units of

nanoseconds) are attractive for the implementation of pulsed

probing in the soft X-ray spectral range [2]. Compared

to other methods of creating soft X-ray microsources (for
example, using femtosecond lasers [3]), the X -pinch has

the advantages of relatively simple driver and efficiency of

radiation generation. Four stages can be distinguished in

the X -pinch dynamics: electrical explosion of wires, plasma
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Figure 1. Schematic image of the X -pinch plasma at the time of

generation of the radiation pulse and the model shape of the thin

shell. The designations are explained in the text.

expansion and neck formation, neck implosion, and
”
hot

spot“ formation. The first and fourth stages take up to a

few nanoseconds, while the total duration of the process

is hundreds of nanoseconds. In paper [4] a model of

neck formation and implosion is developed, based on the

assumption that the neck length is independent of other

parameters, which agrees satisfactorily with experimental

data. At the same time, the reasons for the constant length

of the neck remain not exactly clear.

A specific feature of the X -pinch dynamics is its funda-

mental non-one-dimensionality: the plasma can flow from

the neck region in the axial direction. Since the neck size

significantly (by more than an order of magnitude) exceeds

the diameter of the wires, its formation can be considered

within the framework of a two-dimensional model of a

thin hollow shell of the Ott model type [5,6] (see also the

related model [7]). The purpose of the present paper is

to construct exact two-dimensional solutions describing the

magnetic compression of a thin axisymmetric shell and use

them to interpret the results of experiments with X -pinches.

Let us define the shell geometry (it is shown schemat-

ically in Fig. 1) by a pair of functions that determine

its radius and longitudinal coordinate: r = R(ξ, t) and

z = Z(ξ, t). Here ξ is the Lagrangian coordinate, which

is conveniently chosen so that it determines the mass

distribution over the shell: ξ =
z
∫

0

ρl(z , t)dz (ρl is linear

density, or linear mass). The motion of ring shell element of

mass 1ξ with radial and axial dimensions 1R and 1Z under

the action of external pressure P is described by Newtonian

equations

1ξ
d2R
dt2

= −1sP cosα, 1ξ
d2Z
dt2

= 1sP sinα,

where α = arctan(1R/1Z) is angle of inclination of the

surface element to the axis z , 1s = 2πR1Z
√

1 + tan2 α is
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its surface area. The magnetic pressure when electric

current I flows through the shell is P = µ0I2/(8π2R2),
where µ0 is the vacuum magnetic permeability. Under X -

pinch conditions [4], the neck is formed, as a rule, at the

front of the current pulse, when we can take I ∝ t . After

passing to partial derivatives, we obtain

∂2R
∂t2

= −Ct2

R
∂Z
∂ξ

,
∂2Z
∂t2

=
Ct2

R
∂R
∂ξ

, (1)

where C = µ0(dI/dt)2/4π is a constant. Model (1) is a

generalization of the Ott model [5,6].
A non-trivial family of particular solutions of model (1)

can be found by separation of variables. Let us perform

the substitute R = f (t)F(ξ) and Z = g(t)G(ξ), where f ,
g , F , G are unknown functions. We obtain four equations

connected through auxiliary constants s and q. The first

pair — with respect to the variable t, and the second pair —
with respect to ξ :

d2 f
dt2

= −Cst2
g
f
,

d2g
dt2

= Cqt2, (2)

dF
dξ

= qFG,
dG
dξ

= sF2. (3)

The solution of differential equations (3) gives in the interval

|ξ√hq| < π/2

F =
√

h/s cos−1
(

ξ
√

hq
)

, G =
√

h/q tan
(

ξ
√

hq
)

, (4)

where h is the integration constant (we assume that s > 0,

q > 0, h > 0). Eliminating the Lagrangian coordinate ξ

from (4), we find that the shell is a one-sheeted hyperboloid

of revolution (Fig. 1) with parameters varying with time:

(

r
Rmin(t)

)2

−
(

z tanα0ρmax(t)
R0ρ0

)2

= 1. (5)

The closeness of the hyperboloidal shell to the geometry of

the X -pinch will allow us in the future to use the resulting

solutions to describe the formation of necks. The solution

corresponds to the following linear density distribution

along z:

ρl ≡
(

∂Z
∂ξ

)

−1

=
R2
0ρ

2
0ρmax(t)

R2
0ρ

2
0 + tan2 α0ρ2

max(t)z 2
. (6)

In expressions (5), (6) the following notations are intro-

duced: Rmin(t) = f (t)
√

h/s is shell radius in the section

plane z = 0, where it is minimal, and R0 = Rmin(0) is its

initial value; ρmax(t) = 1/
(

hg(t)
)

is linear density in the

section plane, where it is maximum, and ρ0 = ρmax(0);
α0 = arctan

(√
qhR0ρ0

)

is initial angle of inclination of the

shell to the axis z at |z | → ∞ (the geometric parameters R0

and α0 are illustrated in Fig. 1). Linear density distribution

(6) is bell-shaped. The width of the distribution (the
axial size of the region in which ρl > kρmax; k is the

coefficient, which we take equal to 0.8) is characterized

by the combination

L(t) = 2
√

k−1 − 1R0ρ0/
(

tanα0ρmax(t)
)

. (7)

Let us now consider equations (2). It is convenient to

rewrite them using Rmin and ρmax functions:

d2Rmin

dt2
= − Ct2

Rminρmax

,

d2ρ−1
max

dt2
=

Ct2 tan2 α0

R2
0ρ

2
0

. (8)

Initial conditions: Rmin|t=0 = R0, ρ−1
max|t=0 = ρ−1

0 ,

(dRmin/dt)|t=0 = (dρ−1
max/dt)|t=0 = 0. For α0 = 0, the

problem reduces to the trivial case of one-dimensional

compression of a cylindrical shell (Z-pinch geometry). The
second equation of system (8) is easily integrated. We find

ρ−1
max(t) = ρ−1

0 + Ct4 tan2 α0/(12R2
0ρ

2
0).

This shows that the linear density in the section z = 0

decreases with time due to the mass displacement from the

region of the formed neck. As a result, system (8) reduces

to a single equation with initial conditions x |τ =0 = 1 and

(dx/dτ )|τ =0 = 0:

d2x
dτ 2

= − τ 2

x

(

1 +
tan2 α0

12
τ 4

)

, (9)

where we introduced dimensionless variables x = Rmin/R0

and τ = t/(R2
0ρ0C

−1)1/4. According to (9), the neck radius

decreases to zero in a finite time τc (see insert in Fig. 2): the
shell collapses. The calculated dependence τc on the angle

α0 is shown in Fig. 2. In the one-dimensional case (α0 = 0),
the time is maximum and amounts to τ0 ≈ 1.728. As α0

increases, it decreases monotonically, which is explained by
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Figure 2. Dimensionless collapse time τc vs. angle α0. Points —
calculation, line — approximation (10). In the insert — dynamics

of the neck radius at α0 = 0.
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Figure 3. Dimensionless neck length lc vs. angle α0 for k = 0.8.

the more efficient mass displacement from the neck region.

The following approximation is valid:

τc(α0) ≈ τ0(1 + 0.08α2
0 + 0.009α4

0) cos
1/4 α0,

0 6 α0 < π/2. (10)

According to the obtained solution, by the time

Tc = (R2
0ρ0/C)1/4τc(α0), a radial collapse of the shell occurs

along its entire length. We have R|t=Tc = 0 for any ξ ,

despite the fact that that initially (for t = 0) the shell radius

is the larger the greater the distance |z |. This is due to

the heterogeneity of the linear density distribution (6). It

decreases at the periphery as 1/z 2, which allows the light

”
wings“ of the shell to collapse in the same time as the

heavy shell region close to the axis z near the section z = 0.

Let us consider how the obtained results can be used

in relation to the problem of the neck formation in the

X -pinch. It is clear that the pinch is characterized by an

initially uniform distribution of the linear density: at the

time t = 0, we can take ρl = Nρw/ cosα0 = const, where

ρw is linear mass of one wire, N is their number, α0 is

angle of inclination (we identify it with the angle of the

hyperboloidal shell). In such a situation, the collapse

will not occur simultaneously along the entire axis of the

system, but only in a
”
narrow“ place where the wires cross.

Let us ask ourselves what will happen to the solutions

obtained above if, other things being equal, we take the

initially homogeneous distribution of the linear density:

ρl(z , 0) = ρ0. The answer is obvious: weighted
”
wings“

cannot collapse in Tc time. The shell collapses only in the

vicinity of the section z = 0, in which the linear density

(6) was close to ρ0. The corresponding scale is determined

by the width (7) of the linear density distribution, i.e. the

experimental value of the neck length Lexp can be identified

with the value Lc = L(Tc):

Lc = lcR0, lc =
2
√

k−1 − 1

tanα0

(

1 +
τ 4

c (α0) tan
2 α0

12

)

.

(11)

Fig. 3 shows the dimensionless neck length lc ≡ Lc/R0

dependence on the angle α0. It is nonmonotonic. The

limit α0 → 0 corresponds to the one-dimensional case —
to the collapse of the cylindrical shell; as a consequence,

we have Lc → ∞. At α0 ≈ 62◦ the minimum is reached:

Lmin ≈ 1.51R0 . Further, as α0 increases, the neck length

begins to increase, reaching the value of 1.83R0 at α0 = 90◦ .

The expansion of the neck region at large α0 can be related

to the axial displacement of the mass. Note that for

the angle α0 = 32◦ characteristic for the experiments [4],
Lc ≈ 2.04R0.

The neck formation time as applied to the X -pinch

is found by substituting ρ0 = Nρw/ cosα0. We get

Tc = (R2
0Nρw/C cosα0)

1/4τc(α0). Eliminating the value R0

using (11), we find the relationship between the main

parameters of the problem:

µ0T 4
c

4πNρwL2
c

(

dI
dt

)2

≈
µ0T 2

ex pI2ex p

64πNρwL2
ex p

≈ τ 4
c (α0)

l2c (α0) cosα0

. (12)

Here we took into account that the length Lex p, the time of

generation of the X-ray pulse Tex p, and the corresponding

current Iex p ≈ (dI/dt)Tex p are the parameters recorded in

the experiments. According to estimates [4], we can assume

Tex p ≈ 2Tc (the durations of the neck formation and its

subsequent compression with the formation of
”
hot spot“

are comparable). Note that for α0 = 32◦ the value of the

right-hand side (12) is ∼ 2.38.

The analysis of the experimental data [4] shows that the

relation (12) is met with acceptable accuracy for a wide

range of parameters (Iex p ≈ 70−200 kA, Tex p ≈ 60−220 ns,

ρ0 ≈ 30−550 µg/cm). As in [4], the dependence of the

neck length on the linear density is rather weak: with mass

increasing by 20 times, the neck length increases by 2 times

only. Unlike the model [4], where the neck length was

external parameter, in our model it was calculated and, as it

was found, is related to the radius R0 as Lc = (1.5−2.1)R0

at experimentally realized angles α0 . In experiments, the

radius R0 is the radius at which the radial expansion of

the plasma stops, and its compression begins [8]. The

weakness of the R0 dependence on the pinch parameters

is not obvious and will be the subject of further studies,

including those using magnetohydrodynamic simulation.
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