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In this paper possibilities of distributive s -Gaussian functions to estimate the second-order correlation energy

(MP2) are investigated to the complete basis set limit. In contrast to standard atom-centered, the proposed bases

consist of functions distributed along the molecular axis and off-axis functions. We propose and investigate the

possibilities of one of the models for choosing the alignment of such functions. The model is characterized by

a set of subsets of off-axis s -functions uniformly distributed along circles whose planes are perpendicular to the

molecular axis. The function parameters are determined by minimizing the Hartree-Fock energy (for functions

located along the molecular axis) and minimizing the Hylleraas functional (for off-axis s-functions). The resulting

basis sequences, combined with known extrapolation models, are used to predict the MP2 energy in the complete

basis set limit. The efficiency of the models is demonstrated by calculating the energy MP2 of simple H2 and LiH

molecules.
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Introduction

Modern methods of quantum chemistry have become so

sophisticated, that the main source of errors in calculations

ab initio is considered the incompleteness of single-particle

basis sets. Therefore, the methods aimed at constructing

new basis sets, as well as calculations of molecular prop-

erties in the limit of complete basis sets, have been actual

for a long time. At the same time, the information on

the convergence of non-empirical methods for calculating

the characteristics of a system is extremely important, since

it allows to perform extrapolation and estimate the errors

in calculations of large systems, where the basis sets,

which deliver the results close to the basic limit cannot

be realized. It is known, that the convergence of the

correlation energy with increasing basis set dimension is

slower, than the convergence of the energy in the Hartree-

Fock (HF) approximation. One of the approaches to

speed up convergence uses the basis sets, which explicitly

depend on the interelectronic distance r12, the so-called R12

and F12 [1–3] schemes. Various extrapolation techniques,

which allow to estimate the correlation energy in the

complete basis set limit can be considered as an alternative

approach [4–17]. In this case, for extrapolation it is sufficient

to calculate the correlation energy obtained in two or three

basis sets of various dimensions (depending on the model

used). It should be noted, that one of the important points in

the construction of such basis sets is the generated functions

hierarchy concept, which leads to a systematic improvement

of the results from one level in the hierarchical ladder to

another. An example of such bases, in particular, are the

popular correlation-consistent basis sets aug-cc-pVXZ [18–
20]. In this notation, X corresponds to the angular moment

value and is called the cardinal number. For example,

X = 2 defines a double-zeta basis set, aug-cc-pVDZ, X = 3

corresponds to a triple-zeta basis set, aug-cc-pVTZ and

t. e. The hierarchical structure of the basis set can be

used to build extrapolation models to predict the molecular

characteristics values, in particular the correlation energy, in

the CBS-complete basis set.

The purpose of this work is to evaluate the capabilities of

distributive molecular basis set models for predicting the val-

ues of molecular characteristics in the limit of the complete

basis set. In particular, we consider an attempt to construct

such optimal basis sets consisting of s -functions centered

outside the molecular axis (off-axis functions) to determine

the correlation energy in the second order of M?ller-Plesset

perturbation theory (MP2). The resulting basis sequences,

combined with popular extrapolation models, are used to

predict the MP2 energy within the limit of the complete

basis set. The questions of choosing cardinal numbers for

distributive basis sets are discussed. The efficiency of the

models is demonstrated by the example of calculating the

energy MP2 of simple molecules H2 and LiH.

Extrapolation model

As you know, in the general case, the extrapolation

procedure is the transfer of conclusions made regarding any

part of objects or phenomena to the entire set of these

objects. In respect to our complete basis set problem,
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the extrapolation procedure is as follows: the investigated

property E (for example, energy, bond length and etc.) is

calculated at a given theory level (for example, MP2), using
at least three basis sets (for example, aug-cc-pVDZ, aug-

cc-pVTZ and aug-cc-pVQZ). Then the obtained values are

adjusted to the equation, which is determined by the model

function. In this study we considered three most popular

models:

E(k) = ECBS + Fe−βk, (1)

E(k) = ECBS + Fk−3, (2)

E(k) = ECBS + Fk−β . (3)

Here ECBS is the energy value in the complete basis set

limit, F and β — model parameters, k — the so-called

cardinal number associated with the basis set. For example,

as noted in the introduction, for aug-cc-pVDZ k = 2, for

aug-cc-pVTZ k = 3 and etc.

The exponential form (1) was first considered in the

study [7] and proved to be good for determining the energy

in the HF approximation. A two-parameter model (2) was

proposed in the study [11] to determine the correlation

energy. The power extrapolation curve (3) was used in

the studies by Bakowies [15].
The equations (1) and (3) contain three parameters

ECBS, F and β, while equation (2) requires only two

parameters ECBS and F . Below, using the example of

the model function (1) and the basis sets aug-cc-pVDZ,

aug-cc-pVTZ and aug-cc-pVQZ (k = 2, 3, 4), we will show,

how these parameters can be determined. For this, the

previously calculated values E(k) = Ek → E2, E3, E4 in the

corresponding basis sets are used. On the other hand, the

energies can be determined by extrapolation equations (1),
i.e.

E2 = ECBS + Fe−2β,

E3 = ECBS + Fe−3β,

E4 = ECBS + Fe−4β. (4)

Thus, we have a system of nonlinear equations (4) with

respect to the unknowns ECBS, F and β, which for this case

has an analytical solution [21]:

ECBS =
E2E4 − E2

3

E2 − 2E3 + E4

,

F =
E2 − E4

3

(E3 − E4)2(E2 − 2E3 + E4)
,

β = ln
E2 − E3

E3 − E4

.

In a similar way, the parameters for other extrapolation

models can be found. In this case, the corresponding

systems of nonlinear equations, as a rule, do not have

an analytical solution and should be solved numerically.

It is useful to note, that there are online programs in

the literature, which for the given values of energies (or
other properties) and arbitrary cardinal numbers allow

to determine the desired characteristics in the complete

basis set limit [21] (complete basis set limit extrapolation

calculator).

Table 1. Sequences of basis sets from off-axis of s -
functions for the ground state of the H2 molecule at in-

teratomic distance R = 1.4 bohr, total Hartree-Fock energy

EHF(30s) = −1.13362933 Hartree, second-order correlation en-

ergy E(2) given in milliHartree and calculated in the basis sets

2 ∗ (15s + k ∗ 12off) + 12mid, k — cardinal numbers.

k Basis sets structure E(2) E(2)/E(2)
exact,%

distributive basis(a)

1 2 ∗ (15s + 12off) + 12mid(66s) −32.121 93.84

2 2 ∗ (15s + 2 ∗ 12off) + 12mid(90s) −33.429 97.66

3 2 ∗ (15s + 3 ∗ 12off) + 12mid(114s) −33.649 98.30

4 2.(15s +4.12off) +12mid (138s) −33.776 98.67

5 2.(15s +5.12off) +12mid (162s) −33.850 98.89

atom-centered basis(b)

2 aug-cc-pVDZ −27.29 79.73

3 aug-cc-pVTZ −31.99 93.46

4 aug-cc-pVQZ −33.25 97.14

MP2-R12/A (9s8p4d1f)
”
exact“ −34.23 100.00

Note.
(a) — this study, (b) — [25].

Discussion of results

The first part of this section deals with the construction

of basis sets from spherical Gaussian functions

χp(r) = exp[−ζp|r − Rp|
2]

= exp−ζp[(x − Xp)
2 + (y − Yp)

2 + (z − Zp)
2] (5)

to calculate the correlation energy, E(2), in the second

order of perturbation theory. The second part discusses

the features of extrapolation of distributive basis sets, in

particular, the choice of cardinal numbers.

The distributive basis sets have a long history and have

shown their effectiveness in energy calculations with the

HF [22,23] wave function and the Coulson-Fischer [24]
function. The parameters of exponent ζp and centering Rp

were determined based on different approaches. In one of

them they were completely optimized from the requirement

of HF energy minimum. In another approach the parameters

were determined using the so-called anharmonic distribution

model [23]. In this case the centers of functions were

located on the molecular axis. However, it is clear, that

a correct description of the correlation energy requires an

extension of the basis by functions located outside the

molecular axis, thus simulating the effects of polarization.

The choice of simple molecules H2 and LiH is based on

the existing for them precision calculations of the energies

MP2 of the ground state [25]. It is also worth noting, that

the use of distributive functions is not limited to s -functions.
It is also possible to use Gaussian functions with a large

angular moment quantum number. However, in this case

the variational procedure will be more complicated.

In this paper we propose and explore the possibilities of

one of the models for the distribution of such functions. It

is determined by subsets off-axis of s -functions uniformly
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Table 2. Convergence of the correlation energy with increasing

dimension of off-axis of s -basis for the ground state of the LiH

molecule at R = 3.015 bohr, HF energy EHF(36s) = −7.987329

Hartree, values EHF + E(2) are given in Hartree, values E(2) — are

in milliHartree, bases like 36s + k ∗ areused24off , k — cardinal

numbers.

k Basis structure EHF + E(2) E(2)

distributive basis(a)

1 36s + 1 ∗ 24off(60s) −8.052867 −65.538

2 36s + 2 ∗ 24off(84s) −8.055916 −68.587

3 36s + 3 ∗ 24off(108s) −8.057132 −69.803

4 36s + 4 ∗ 24off(132s) −8.057779 −70.450

atom-centered basis(b)

(14s9p4d3 f , 8s4p) − −63.68

(14s9p4d, 8s4p3d) − −65.24

(14s9p4d3 f , 8s4p3d) − −65.40

MP2-R12/A —
”
exact“

(11s8p6d5 f , 9s8p6d5 f ) − −72.76

Note. (a) this study, (b) — [25].

distributed along the circles, which planes are perpendicular

to the molecular axis. Figure 1 allows to visualize such sets.

The role of the parameters to be determined is played by

the circles radii, ρ, and the centrations of the circle planes

positions along the axis, Zoff. The number of functions N
on the circle can be different. In our case most efficient

was N = 3. Centrations of off-functions are conveniently

defined in the cylindrical coordinate system (ρ, φ, Z).
Then X = ρ cosφ, Y = ρ sinφ, Z = Zoff and φ = 2π

N . The

structure of the basis sets indicated in Tables 1, 2 means

the following: for example, for the LiH molecule the

basis 36s + 3 ∗ 24off means, that it includes 36 s -functions
located on axes, and three subsets of off-functions, each

containing 24 off-functions. For the hydrogen molecule the

basis 2 ∗ (15s + 4 ∗ 12off + 12mid contains 15 s -functions
located on the axis and four subsets of off-functions, each of

which includes 12 off-axis s -functions. All these functions

fall on one atom H. The term 12mid means the number of

functions at the midpoint on the axis. The total number of

s -functions is marked in brackets. The calculation algorithm

is as follows.

1) Calculate the HF energy, EHF, using the functions

distributed along the axis. The basis parameters were

determined by minimizing EHF. The calculations were

performed for bases of various dimensions M . Finally

a basis was chosen, which provided the value of the

HF energy close to the HF limit. For example, for H2

(R = 1.4 bohr) the basis of 2 · 15 = 30 of s -functions gave

EHF(30s) = −1.13362933 Hartree, which is comparable

to
”
exact“ HF-value EHF

limit = −1.13362957 Hartree . For

LiH the basis consisted of 36 s -functions, which provided

EHF(36s) = −7.987329 Hartree (compare with the HF

limit EHF
limit = −7.987351 Hartree). In this case, the addition

of off-functions practically does not change EHF.

X

Y

Z

Figure 1. Distribution of off-axis features in the subset 12off.

2) Add off-functions to the resulting basis and minimize

E(2) by the parameters (ζ , Z, ρ). In other words we

apply the Hilleras variational method to determine these

parameters.

The results of calculating the correlation energies H2

and LiH in the second order of the perturbation theory

are presented in the Tables 1 and 2, respectively. The

calculations were carried out for the internuclear distance

R = 1.4 bohr for H2 and R = 3.015 bohr for LiH. For

comparison, at the bottom of the tables we present the

results obtained using popular traditional bases. To evaluate

the efficiency of the model, we compare E(2) with the

results calculated by the MP2-R12 method, which can be

considered as
”
exact“. As you can seen, our result for H2

covers ∼ 99% and for LiH more than 97%
”
of the exact“

value.

A feature of choosing sequences of distributive off-

functions for constructing an extrapolation scheme is the

definition of cardinal numbers. As noted, in the case of

standard bases, the cardinal numbers depend on the value

of the quantum number of the angular moment l . For

example, for aug-cc-pVDZ basis k = l = 2 and etc. In our

case, the hierarchy of bases was determined by the number

of subsets of off-functions, i.e. the cardinal number is equal

to the number of subgroups consisting only of functions

centered off the molecular axis. In the Tables 1 and 2

the cardinal number is indicated in the first column. So, for

example, k = 2 means, that the basis contains two subsets of

off-functions. Each of them consists of 12 off-functions for

H2 and 24 off-functions for LiH. It is worth noting, that the

extrapolation results depend on the choice of the number of

features in the subsets. We performed calculations with

various types of subsets. Here are the most successful

results in terms of accuracy. Note, that in case of using

traditional bases, there is also arbitrariness in the choice

of cardinal numbers. Obviously, different sets of cardinal

numbers lead to different energy values in the full basis

limit.

Below we consider MP2 energies, E(2), in the limit of

a complete basis set. obtained as a result of extrapolation.

For H2 the basis sets with cardinal numbers 3, 4, 5 were

used, and for LiH k = 2, 3, 4. Table 3 shows the correlation

energies and optimal parameters for three extrapolation

models named A, B, and C, which are defined by equations

(1)−(3), respectively. As can be seen, for distributive
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Table 3. Extrapolation results E(2) = ECBS (in miliHartree) in complete basis set limit and optimized parameter values of model

extrapolation functions

Model(a) Basis H2 LiH

ECBS F β ECBS F β

A distributive −33.953 1.53832 0.540122 −71.186 9.1794 0.630973

atom-centered −33.711 89.3495 1.316445 −65.418 165.245 2.27726

B distributive −33.928 9.70492 − −70.922 30.2166 −

atom-centered −34.169 58.8454 − −65.516 7.47243 −

C distributive −34.112 1.57459 1.11341 −72.869 7.57998 0.823755

atom-centered −34.302 46.7168 2.73590 −65.444 70.3731 5.31791

Note.(a) A → E(k) = ECBS + Fe−βk , B → E(k) = ECBS + Fk−3, C → E(k) = ECBS + Fk−β .

k
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Figure 2. Correlation energy MP2 of the H2 molecule as a

function of the cardinal number: model B (circles), model C

(squares).

Table 4. Comparison of the correlation energies MP2 for the

ground state of H2 and LiH molecules with the results of precision

calculations.

Source Method E(2)

H2 LiH

This study CBS limit, off-axis functions −34.112 −72.869

[25] MP2-GG1 (a) −34.247 −72.877

[26] MP2-R12/A −34.23 −72.76

[26] MP2-R12/B −34.17 −72.16

Note.(a) Gaussian geminals were used as basis functions.

bases, the power model C is the most successful, i.e., e.

E(k) = ECBS + Fk−β , while for atom-centered bases this is

a two-parameter model (model B). The presented parameter

values allow us to reproduce our results. As an illustrative

example of convergence, we present in Fig. 2 the values

of the correlation energy of the H2 molecule as a function

of cardinal numbers for models B and C. As can be seen,

the models B and C show close behavior in the range of

cardinal numbers 4 and 5. This becomes clear, when we

consider, that the specified cardinal numbers are common

to
”
fitting“ of both extrapolation models.

Table 4 shows our best values of the MP2 correlation

energy (model C) in the complete basis limit compared to

”
exact values “obtained by methods using the MP2-R12

method. The analysis shows, that our results are in good

agreement with the results of precision calculations.

In conclusion, we note, that a further improvement of

the results can be achieved by combining atom-cnetered

and distributive bases centered outside the molecular axis.

For example, for more complex molecules, higher quantum

number orbitals (including d functions) are built as atom-

centered ones, while distributive functions are useful for

describing the outer part of the electron cloud.
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