07.4

Спиновый эффект Холла в поликристаллических образцах немагнитных металлов пятого и шестого периодов

© В.К. Игнатьев, С.В. Перченко, Д.А. Станкевич

Волгоградский государственный университет, Волгоград, Россия E-mail: vkignatjev@yandex.ru

Поступило в Редакцию 23 ноября 2022 г. В окончательной редакции 23 ноября 2022 г. Принято к публикации 10 января 2023 г.

Предложен способ оценки коэффициента спинового эффекта Холла для поликристаллических образцов чистых немагнитных металлов. Вычислены поперечные удельные сопротивления, характеризующие спиновый эффект Холла, для различных металлов пятого и шестого периодов. Показано, что результат в пределах погрешности измерений согласуется с экспериментальными данными.

Ключевые слова: спиновый эффект Холла, спин-орбитальное взаимодействие, водородоподобные волновые функции.

DOI: 10.21883/PJTF.2023.06.54812.19437

Спиновый эффект Холла (СЭХ) заключается в том, что зарядовый ток в немагнитных металлах с сильным спин-орбитальным взаимодействием приводит к возникновению измеряемого поперечного спинового тока [1]. Современное состояние экспериментальной техники и теоретического описания СЭХ подробно изложено во многих обзорных работах (см., например, [1–3]). В последнее время особое внимание уделяется исследованию влияния структуры эпитаксиальных пленок металлов на спин-зависимые транспортные свойства. Так, показано, что в некоторых случаях в поликристаллических образцах наблюдается увеличение угла СЭХ по сравнению с таковым для монокристаллических [4].

Чтобы определить величину СЭХ в однородном и изотропном поликристалле, запишем спин-орбитальную добавку в энергию электрона, находящегося в электрическом поле с потенциалом $\Phi(\mathbf{r})$:

$$\hat{V} = -\frac{\hbar e}{2m^2 c^2} \varepsilon_{\alpha\beta\gamma} \hat{s}_{\alpha} \frac{\partial \Phi}{\partial r_{\beta}} \hat{p}_{\gamma}.$$
(1)

Здесь m — масса электрона с зарядом -e; $\varepsilon_{\alpha\beta\gamma}$ — единичный антисимметричный тензор Леви-Чивиты. Динамика импульса электрона, создаваемая возмущением (1), описывается уравнением для средних

$$\frac{dp_{\delta}}{dt} = \frac{i}{\hbar} \left\langle \left[\hat{V}, \, \hat{p}_{\delta} \right] \right\rangle = \frac{\hbar e \varepsilon_{\alpha\beta\gamma}}{2m^2 c^2} \left\langle \hat{s}_{\alpha} \frac{\partial^2 \Phi}{\partial r_{\beta} \partial r_{\delta}} \hat{p}_{\gamma} \right\rangle. \tag{2}$$

Потенциал электрона проводимости в кристаллическом поле ионных остатков с эффективным зарядом Ze и координатами \mathbf{R}_k имеет вид $\Phi(\mathbf{r}) = \frac{eZ}{4\pi\epsilon_0} \sum_{k=1}^N \frac{1}{|\mathbf{r} - \mathbf{R}_k|}.$

Величину Z можно оценить, приравняв координату максимума радиальной компоненты водородоподобной волновой функции к радиусу атома R_a . Так, для платины $R_a = 1.39 \cdot 10^{-10}$ m, что для 6*s*-оболочки соответствует

 $Z \approx 22.45$. В табл. 1 приведены свойства атомов исследованных металлов, конфигурации их электронных оболочек, а также параметры их кристаллических решеток.

Для любого спинового состояния электрона можно выбрать такое направление оси *z*, чтобы проекция его спина на эту ось имела определенное значение s_z , т.е. $\psi(\mathbf{r}, \sigma) = \psi(\mathbf{r})\delta(\sigma, s_z)$. Запишем волновую функцию коллективизированного электрона проводимости в виде разложения по функциям Ванье: $\psi(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \Psi(\mathbf{r} - \mathbf{R}_n) \exp(i\mathbf{k}\mathbf{R}_n)$, где $\Psi(\mathbf{r})$ — водородоподобная функция электрона, \mathbf{R}_n — вектор трансляции, N — количество узлов в кристаллите. Тогда после суммирования в (2) по спиновым переменным, положив $\langle \mathbf{s} \rangle = \mathbf{s}$ и выполнив замену переменных $\mathbf{r} - \mathbf{R}_k \to \mathbf{r}$, получаем

$$\frac{dp_{\delta}}{dt} = \frac{\hbar^2 e^2 Z s_{\alpha}}{8\pi\varepsilon_0 m^2 c^2 N} \sum_{n,m,k=1}^N \exp\left(i\mathbf{k}(\mathbf{R}_n - \mathbf{R}_m)\right) \\
\times \left\langle \Psi(\mathbf{r} + \mathbf{R}_k - \mathbf{R}_m) \left| 3\frac{r_{\delta}}{r^5} \hat{l}_{\alpha} - \frac{\varepsilon_{\alpha\delta\gamma}}{\hbar r^3} \hat{p}_{\gamma} \right| \Psi(\mathbf{r} + \mathbf{R}_k - \mathbf{R}_n) \right\rangle.$$
(3)

Водородоподобные функции малы при $r > na_B/Z$, где $a_B = 5.29 \cdot 10^{-11} \text{ m}$ — боровский радиус, n — главное квантовое число. Поэтому среднее в правой части (3) отлично от нуля только при $\mathbf{R}_n - \mathbf{R}_k = 0$ или $\pm \mathbf{a}_v$ и $\mathbf{R}_m - \mathbf{R}_k = 0$ или $\pm \mathbf{a}_v$, где \mathbf{a}_v — вектор, проведенный к ближайшему соседу. Тогда с учетом эрмитовости и нечетности оператора получаем

$$\frac{dp_{\delta}}{dt} = -\frac{\hbar^2 e^2 Z s_{\alpha}}{4\pi\varepsilon_0 m^2 c^2} \sin(\mathbf{k} \mathbf{a}_{\nu}) \operatorname{Im} \left\langle \Psi_{\nu} \left| 3\frac{r_{\delta}}{r^5} \hat{l}_{\alpha} - \frac{\varepsilon_{\alpha\delta\gamma}}{\hbar r^3} \hat{p}_{\gamma} \right| \Psi \right\rangle.$$
(4)

Здесь $\Psi_{\nu}(\mathbf{r}) = \Psi(\mathbf{r} + \mathbf{a}_{\nu}) - \Psi(\mathbf{r} - \mathbf{a}_{\nu})$ — функция с четностью, противоположной четности функции $\Psi(\mathbf{r})$, и подразумевается суммирование по ν .

Металл	Структура решетки	Электронная конфигурация	R_a , pm	Ζ	b_1	b_2	b_3
Pt	ГЦК	$5d^96s^1$	139	22.45	117	166	204
α -W	ОЦК	$5d^46s^2$	137	22.77	118	136	193
β -W	A15	$5d^46s^2$	137	22.77	121	187	195
Та	ОЦК	$5d^{3}6s^{2}$	149	21	113	131	185
Au	ГЦК	$5d^{10}6s^1$	144	21.7	118	167	205
Mo	ОЦК	$4d^45s^1$	139	15.22	78.6	90.4	128
Pd	ГЦК	$4d^{10}5s^0$	137	15.4	80.1	113	138
Nb	ОЦК	$4d^55s^1$	146	14.4	78.47	90.49	128

Таблица 1. Параметры решеток и электронных конфигураций металлов пятого и шестого периодов

Правая часть соотношения (4) равна силе, действующей на электрон. Ее можно представить как результат действия на электрон холловского электрического поля \mathbf{E}_{SH} . Полагая в (4) $\mathbf{k} = \mathbf{j}mR_H/\hbar$, где \mathbf{j} — плотность зарядового тока, $R_H = 1/(en_e)$ — постоянная Холла, n_e — концентрация электронов проводимости, получим в первом порядке малости по \mathbf{ka}_v

$$E_{SH\alpha} = \frac{\hbar Z e R_H s_\beta j_\mu}{4\pi\varepsilon_0 mc^2} a_{\nu\mu} \mathrm{Im} \left\langle \Psi_\nu \mid \frac{\varepsilon_\alpha \beta_\gamma}{\hbar r^3} \hat{p}_\gamma - 3 \frac{r_\alpha}{r^5} \hat{l}_\beta \mid \Psi \right\rangle.$$
⁽⁵⁾

Соотношение (5) записано в системе координат, связанной с кристаллическими осями. Введем лабораторную систему координат, связанную с приборами, которые задают ток проводимости и измеряют компоненты спина. Компоненты векторов и тензоров в лабораторной системе будем обозначать индексами со штрихами, а в системе координат, связанной с осями кристаллита, — индексами без штрихов. Преобразуем вектор плотности тока и спина электронов проводимости из лабораторной системы в систему кристаллических осей $j_{\mu} = p_{\mu\mu'} j_{\mu'}, \ s_{\beta} = p_{\beta\beta'} s_{\beta'}, \ a$ вектор холловского электрического поля — из системы кристаллических осей в лабораторную $E_{SH\alpha'} = p_{\alpha'\alpha}^{-1} E_{SH\alpha}$, где $p_{\alpha'\alpha}$ — унитарная матрица поворота, которую удобно выражать через углы Эйлера. Подставим это преобразование в уравнение (5) и усредним вектор **E**_{SH} в макроскопической области по случайным ориентациям кристаллитов

$$E_{SH\alpha'} = \frac{\hbar Z e R_H s_{\beta'} j_{\mu'} p_{\alpha'\alpha}^{-1} p_{\beta\beta'} p_{\mu\mu'}}{4\pi \varepsilon_0 m c^2} \times a_{\nu\mu} \mathrm{Im} \left\langle \Psi_{\nu} \left| \frac{\varepsilon_{\alpha\beta\gamma}}{\hbar r^3} \hat{p}_{\gamma} - 3 \frac{r_{\alpha}}{r^5} \hat{l}_{\beta} \right| \Psi \right\rangle.$$
(6)

Здесь черта означает усреднение по случайным равномерно распределенным углам Эйлера. Аналитическое усреднение уравнения (6) дает

$$\mathbf{E}_{SH} = \frac{R_S}{n_e} [\mathbf{j} \times \mathbf{P}],$$

$$R_S = \frac{\hbar R_H e Z}{48\pi\varepsilon_0 m c^2} \operatorname{Re} \left\langle \Psi_{\nu} \left| \frac{3\mathbf{r} (\mathbf{r} \mathbf{a}_{\nu}) - \mathbf{a}_{\nu} r^2}{r^5} \frac{\partial}{\partial \mathbf{r}} \right| \Psi \right\rangle.$$
(7)

где $\mathbf{P} = 2\mathbf{s}n_e$ — вектор плотности спиновой поляризации.

Для *s*-электрона проводимости, направляя полярную ось вдоль вектора \mathbf{a}_{ν} , получим для каждой пары ближайших соседей

$$\left\langle \Psi_{\nu} \left| \frac{3\mathbf{r}(\mathbf{r}\mathbf{a}_{\nu}) - \mathbf{a}_{\nu}r^{2}}{r^{5}} \frac{\partial}{\partial \mathbf{r}} \right| \Psi \right\rangle$$
$$= \frac{4bZ^{3}}{a_{\mathrm{B}}^{3}} \int_{0}^{\infty} \frac{dR(x)/dx}{x} dx \int_{0}^{1} y \left\{ R(x_{1}) - R(x_{2}) \right\} dy, \quad (8)$$

R(x)волновой ____ радиальная гле часть $x_1 = \sqrt{x^2 + b^2 + 2xby},$ функции, $x = Zr/a_{\rm B},$ $x_2 = \sqrt{x^2 + b^2 - 2xby}, \ b = Za/a_B$. Для гранецентрированной решетки платины каждый атом имеет шесть пар ближайших соседей на расстоянии $a = 2.77 \cdot 10^{-10} \,\mathrm{m}$, далее три пары на расстоянии 3.92 · 10⁻¹⁰ m и двенадцать пар на расстоянии 4.48 · 10⁻¹⁰ m. Тогда для этих трех групп атомов получим следующие безразмерные параметры: $b_1 = 117$, $b_2 = 166$, $b_3 = 204$, которые используются при вычислении (8). Эти параметры для различных металлов также приведены в табл. 1. Следует отметить, что основной вклад в величину R_S вносят ближайшие атомы, а остальные — на порядок меньший. Полагая для платины при 80 К $R_H = -2 \cdot 10^{-11} \, \mathrm{m^3/(A \cdot s)},$ для *s*-электронов получаем $R_s^s = 3.48 \cdot 10^{-9} \,\Omega \cdot m$. В эксперименте обычно определяется спин-холловский угол $\theta_{SH} = \sigma R_{S}^{e}$ [1,3]. Здесь σ , обычно обозначаемая как σ_{xx} , — проводимость металла в отсутствие спин-орбитального взаимодействия. Для платины при 10 K $\sigma = 8.1 \cdot 10^{6} \, (\Omega \cdot m)^{-1}, \ \theta_{SH} = 0.021 \pm 0.005$ [5]. Соответственно $R_{S}^{e} = (2.6 \pm 0.7) \cdot 10^{-9} \, \Omega \cdot m.$

В табл. 2 приведены теоретические и экспериментальные значения параметра R_S для различных металлов. Вольфрам в метастабильной β -модификации имеет кристаллическую решетку вида A15 (как у SiCr₃). Для атомов в центре и вершинах существует шесть пар ближайших соседей на расстоянии 2.81 · 10⁻¹⁰ m, а для атомов на гранях — одна пара ближайших соседей на расстоянии 2.51 · 10⁻¹⁰ m. Расчет показывает, что атомы обеих подрешеток вносят одинаковый вклад в СЭХ.

При анализе элементов пятого периода расчет по формуле (8) для *s*-электронов проводимости дает значения,

Таблица 2. Экспериментальные значения сопротивления спинового эффекта Холла (R_s^e) и значения, рассчитанные по формуле (8) для *s*-электронов (R_s^e) и по формуле (9) для *p*-электронов (R_s^e)

Металл	$\sigma, 10^5 \ (\Omega \cdot m)^{-1}$	$ heta_{SH},\%$	Лит. ссылка	$R_H, 10^{-11}$ m ³ /(A · s)	R_S^e , $10^{-9} \Omega \cdot \mathrm{m}$	R_S^s , 10^{-9} $\Omega \cdot m$	$R_S^p, 10^{-9}$ $\Omega \cdot m$
Pt	81	2.1 ± 0.5	[5]	-2	2.6 ± 0.7	3.48	_
Та	3	-0.37 ± 0.10	[5]	9.75	-13 ± 4	-15.38	_
Au	200	0.25 ± 0.05	[6]	-7.3	12 ± 3	7.1	_
α -W	47.6	~ -7	[7]	11.1	-14.7	-13.96	_
β -W	20.4	-35 ± 4	[8]	-162	$(7.4 \pm 0.8) \cdot 10^2$	$1.66 \cdot 10^3$	_
Mo	28	-0.8 ± 0.18	[5]	18	-2.8 ± 0.7	25.4	-4.41
Nb	11	-0.87 ± 0.20	[5]	8.88	-7.9 ± 2.0	10.1	-11.9
Pd	40	0.64 ± 0.10	[9]	-8.45	1.6 ± 0.3	-13.4	1.64

не согласующиеся с экспериментальными. Вместе с тем известно, что в переходных металлах зоны проводимости перекрываются, и значительная часть электронов проводимости может быть образована коллективизацией 5*p*-электронов. Особенно это актуально, видимо, для палладия, у которого 5*s*-электроны отсутствуют. Для *p*-электрона проводимости направим полярную ось вдоль вектора \mathbf{a}_{ν} и будем отсчитывать угол φ от плоскости $\mathbf{a}_{\nu}\mathbf{r}$. В сферических координатах орт \mathbf{e}_{φ} будет ортогонален плоскости $\mathbf{a}_{\nu}\mathbf{r}$, а орт \mathbf{e}_{θ} образует с полярной осью угол $\pi/2 + \theta$. Нормированная волновая функция 5*p*-электрона, ориентированная вдоль полярной оси, имеет вид $\Psi = i \sqrt{3/(4\pi)} R_{5,1}(x) \cos \theta$.

Тогда для каждой пары ближайших соседей получим

$$\left\langle \Psi_{\nu} \middle| \frac{3\mathbf{r}(\mathbf{r}\mathbf{a}_{\nu}) - \mathbf{a}_{\nu}r^{2}}{r^{5}} \frac{\partial}{\partial \mathbf{r}} \middle| \Psi \right\rangle = \frac{3bZ^{3}}{2\pi a_{\mathrm{B}}^{3}} \times \int_{0}^{\infty} \left(\frac{2ydR_{5,1}(x)/dx}{x} - \frac{1 - y^{2}}{x^{2}}R_{5,1}(x) \right) dx \times \int_{0}^{1} y \left\{ R_{5,1}(x_{1}) - R_{5,1}(x_{2}) \right\} dy.$$
(9)

Для металлов пятого периода в табл. 2 приведены значения сопротивления спинового эффекта Холла, рассчитанные по формулам (8) и (9). Хорошее согласие с экспериментом получается, если принять, что в молибдене 95% электронов проводимости являются коллективизированными *p*-электронами, а 5% — *s*-электронами; для ниобия 85% электронов — *p*-электроны, а 15% *s*-электроны.

Теоретический анализ показал, что случайная ориентация кристаллитов не приводит исчезновению спинового тока, а расчет согласуется с экспериментальными наблюдениями. В формуле (6) отдельно учтены вклады в эквивалентное электрическое поле спин-орбитального взаимодействия и зонной структуры металла, вклад которой выражается через константу электронного эффекта Холла. Предложенный способ усреднения по случайным ориентациям кристаллитов может быть особенно полезен при вычислении констант спин-зависимого транспорта в хиральных магнетиках, где недавно была обнаружена [10] сильная электронная поляризация в макроскопических поликристаллических образцах.

Финансирование работы

Исследование выполнено за счет средств гранта Российского научного фонда № 22-22-20035 (https://rscf.ru/project/22-22-20035/) и за счет средств бюджета Волгоградской области.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A. Hoffmann, IEEE Trans. Magn., **49**, 5172 (2013). DOI: 10.1109/TMAG.2013.2262947
- J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Rev. Mod. Phys., 87, 1213 (2015).
 DOI: 10.1103/RevModPhys.87.1213
- [3] Y. Niimi, Y. Otani, Rep. Prog. Phys., 78, 124501 (2015).
 DOI: 10.1088/0034-4885/78/12/124501
- [4] Y. Xiao, H. Wang, E.E. Fullerton, Front. Phys., 9, 791736 (2022). DOI: 10.3389/fphy.2021.791736
- [5] M. Morota, Y. Niimi, K. Ohnishi, D.H. Wei, T. Tanaka, H. Kontani, T. Kimura, Y. Otani, Phys. Rev. B, 83, 174405 (2011). DOI: 10.1103/PhysRevB.83.174405
- [6] V. Vlaminck, J.E. Pearson, S.D. Bader, A. Hoffmann, Phys. Rev. B, 88, 064414 (2013).
- DOI: 10.1103/PhysRevB.88.064414
- [7] C.-F. Pai, L. Liu, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Appl. Phys. Lett., 101, 122404 (2012).
 DOI: 10.1063/1.4753947
- [8] Q. Hao, W. Chen, G. Xiao, Appl. Phys. Lett., 106, 182403 (2015). DOI: 10.1063/1.4919867
- [9] O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Phys. Rev. B, 82, 214403 (2010). DOI: 10.1103/PhysRevB.82.214403
- [10] H. Shishido, R. Sakai, Y. Hosaka, Y. Togawa, Appl. Phys. Lett., 119, 182403 (2021). DOI: 10.1063/5.0074293