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Adaptive control of non-synchronous oscillations in a network of identical

electronic neuron-like generators
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In a radio physical experiment, a control scheme is implemented that makes it possible to desynchronize

oscillations in networks of identical electronic neuron-like generators with a random topology of additive and
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The synchronizing adjustment of rhythms of interacting

self-oscillating systems is typical of animate and inani-

mate objects [1]. The examination of synchronization

processes in networks of coupled oscillators is relevant to

various branches of science and attracts much research

attention [2]. Specifically, numerous biological and physi-

ological systems exhibit synchronization of their elements.

For example, synchronization effects are central to motor

functioning [3,4], healthy functioning of the cardiovascular

system [5], and cognitive brain functioning [6]. However,

excessive synchronization of neurons in the brain may

lead to such serious neurological diseases as epilepsy [7],
schizophrenia [8], and Parkinson’s disease [9]. Therefore, the
issue of desynchronization of oscillations in neural networks

is of much interest.

Different methods relying on linear [10] and nonlin-

ear [11] delayed feedback and mean-field inversion [12] have
been proposed for disrupting the synchronization regime

in networks of coupled oscillators. All these methods

have been developed for networks of oscillators that are

coupled globally via a mean field. Other types of oscillator

coupling (e.g., additive and diffusive coupling) are often

found in real-life multielement networks. The issue of

desynchronization of oscillations in neural networks with

a random topology of such couplings has been examined

numerically in [13], and the desynchronization conditions

for a network of diffusively coupled oscillators have been

determined analytically in [14] based on the Yakubovich

oscillatority concept. In the present study, we report the

results of the first successful radiophysical experiment on

desynchronization of synchronous oscillations in a network

of electronic neuron-like generators having a random topol-

ogy of additive and diffusive couplings with the use of

adaptive control of oscillatory regimes.

Let us first consider a neural network consisting of

additively coupled neuron-like FitzHugh−Nagumo oscil-

lators [15] with their dynamics characterized by model

equations of the following form:

εu̇i(t) = ui(t) −
u3

i (t)
3

− v i(t) +

N
∑

j=1

k i, j u j(t) + c(t),

v̇ i(t) = ui(t) + a, (1)

where ui(t) and v i(t) are dynamic variables of the ith
oscillator, i = 1, . . . , N is the oscillator index number,

N is the overall number of oscillators, ε is the time-

scale parameter that is typically small, a is the threshold

parameter, k i, j is the coefficient of coupling acting in the

direction from oscillator j to oscillator i , and c(t) is the

external control signal. We consider the case of identical

oscillators (1) that are engaged in periodic self-oscillations

in the absence of couplings and control signal (i.e., the case

of a < 1) [15].
Coefficients k i, j characterize the architecture and strength

of couplings in a network. If all k i, j 6= 0, all oscillators in a

network are coupled via mean field ū(t) = N−1
N
∑

j=1

u j(t),

and their oscillations synchronize if the coupling is suf-

ficiently strong. This synchronization may be disrupted

by applying a control signal in the form of a mean-field

signal with a reverse sign to them [12]. A similar approach

may be used to desynchronize network (1) that lacks a

fraction of interoscillator couplings. However, control signal

c(t) = −kmDū(t) [13], where km is the greatest of all

coefficients k i, j and D is the mean number of oscillators

affecting each network element, should be applied in this

case.

We have constructed an original analog-digital setup

to control oscillations in a network of coupled identi-

cal neuron-like oscillators in a radiophysical experiment.

The studied network consisted of ten analog electronic

FitzHugh−Nagumo generators exhibiting neuron-like dy-

namics. Their schematic circuit diagram has been detailed

38



Adaptive control of non-synchronous oscillations in a network of identical electronic neuron-like generators 39

–0.1

10

6

0.1 0.30 0.2

0

0.1

8

i
c

t(
),

V

0.1 0.30 0.2

–3

0

1

u
(

),
V

t

0.1 0.30 0.2

–100

0

100

2 80 6

2

–2

–1

4

200

300

D
j

p
4
,
j(

)/
2

t

0

1

2

–2

–1

u
i,

V

a

b

c

d

t, s

t, s

t, s

t, s

4

2

0

Figure 1. a — Spatiotemporal diagram of oscillations of variables ui(t) of additively coupled generators (1). b — Control signal c(t).
c — Temporal dynamics of mean field ū(t). d — Temporal dynamics of phase differences 1ϕ4, j (normalized to 2π) between the fourth

generator and the other nine generators.

in [16]. A software approach to shaping the signals

governing the coupling between analog generators was

used to implement this coupling [17]. In accordance

with this approach, voltage signals from the output of

each generator are fed to a multichannel analog-to-digital

converter and digitized. These signals are then transformed

in a LabView application, and signals of the needed shape,

which establish generator coupling, are formed. Control

signal c(t) is added to each coupling signal in accordance

with Eq. (1). The signals shaped this way are processed by a

multichannel digital-to-analog converter and fed to the input

of each generator. This approach provides an opportunity

to set arbitrary architecture and type of couplings between

generators and adjust the control signal in real time.

Figure 1, a presents the spatiotemporal diagram of oscil-

lations of variable ui(t) in each of the ten generators with

parameters ε = 0.1, a = 0.8, D = 4, and km = 0.02 and

k i, j values distributed uniformly within the [0;0.02] interval.
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Figure 2. a — Spatiotemporal diagram of oscillations of variables ui (t) of diffusively coupled generators (2). b — Temporal dynamics

of mean field ū(t).

Control signal c(t) = 0 within the first 0.1 s (Fig. 1, b). All
generators remain synchronized during this time period.

However, since the analog elements of generators cannot be

exactly identical, ui(t) oscillation amplitudes of generators

differ slightly (Fig. 1, a). Note that both the amplitudes and

the frequencies of self-oscillations of electronic generators

differed in the case of k i, j = 0 (i.e., without couplings)
and took the values of 2.077± 0.004 V (mean ± standard

deviation) and 287.4± 5.1Hz, respectively. Within the

interval from t = 0.1 to 0.2 s, the control signal disrupts syn-

chronization, and the ui(t) values become non-synchronous

(Fig. 1, a). The control signal at the last 0.1 s is again set

to c(t) = 0 (Fig. 1, b), and generator synchronization in the

network is restored following a transient process (Fig. 1, a).
Figure 1, c presents the temporal dynamics of mean field

ū(t). Within the synchronization region (t ∈ [0; 0.1] s),
ū(t) oscillates with a nearly constant amplitude that is

comparable to the amplitude of ui(t) oscillations and has

deviation σ = 1.45. When the control signal is present

(at t ∈ [0.1; 0.2] s), ū(t) undergoes irregular oscillations

with a significantly smaller amplitude and features devia-

tion σ = 0.15. The amplitude of ū(t) increases again after

the control signal is switched off. These data agree well

with the results of numerical studies of oscillator networks

coupled globally via a mean field, where the mean-field

deviation was demonstrated to be close to zero at high

N values in the non-synchronous regime and to increase

markedly after synchronization [10,11].
Phase difference 1ϕi, j between any pair of generators

remains almost constant in the case of synchronization;

in the non-synchronous regime, it may vary (increase or

decrease without restrictions). Since 1ϕi, j does not have

enough time to change considerably in the non-synchronous

regime within the interval of application of the control signal

in Figs. 1, a−c, we plotted a different graph where the

on and off intervals of c(t) are extended from 0.1 to 3 s

(Fig. 1, d). It can be seen that the synchronization of

oscillations is disrupted in the presence of the control signal

at t ∈ [3; 6] s.
Let us now consider diffusively coupled

FitzHugh−Nagumo generators characterized by the

following equations:

εu̇i(t) = ui(t) −
u3

i (t)
3

− v i(t)

+
N

∑

j=1

k i, j
(

u j(t) − ui(t)
)

+ c i(t),

v̇ i(t) = ui(t) + a . (2)

In contrast to the case of additive coupling, the application

of the same control signal c(t) = −kmDū(t) to all generators

results in suppression of oscillations in generator network

(2) [13]. In order to disrupt synchronization while retaining

oscillatory activity, one needs to apply different signals to

different generators: c i(t) = kmD
(

ui(t) − ū(t)
)

[13].
Figure 2, a presents the spatiotemporal diagram of ui(t)

oscillations in each of the ten generators with the same

parameters that were used in Fig. 1, a. The duration of
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on and off intervals of the control signal is 0.1 s. With

the control signal switched on in the middle section of

the plot (t ∈ [0.1; 0.2] s), the values of ui(t) desynchronize

(Fig. 2, a), and the amplitude of mean field ū(t) decreases

markedly relative to the ū(t) amplitude in the synchroniza-

tion region (t ∈ [0; 0.1] s) (Fig. 2, b). When the control

signal is switched off at t = 0.2 s, generator synchronization

in the network is restored following a transient process.

Thus, control over non-synchronous oscillations was

established in a radiophysical experiment in a network of

identical electronic neuron-like generators with a random

topology of sparse couplings. It was demonstrated that a

control signal common to all generators may be used to

disrupt synchronization in a network of additively coupled

generators, while different control signals need to be applied

to different generators in order to achieve desynchronization

in a diffusively coupled network.
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Chaos, 19, 745 (2009). DOI: 10.1142/S0218127409023111
[16] D.D. Kulminskiy, V.I. Ponomarenko, M.D. Prokhorov,

A.E. Hramov, Nonlinear Dyn., 98, 735 (2019).
DOI: 10.1007/s11071-019-05224-x

[17] D.D. Kul’minskii, V.I. Ponomarenko, I.V. Sysoev,

M.D. Prokhorov, Tech. Phys. Lett., 46, 175 (2020).
DOI: 10.1134/S1063785020020236

Technical Physics Letters, 2022, Vol. 48, No. 10


