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Influence of quantum well parameters on the spectrum

of two-dimensional plasmons in HgTe/CdHgTe heterostructures
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Influence of parameters of a quantum well and electronic polarizability spatial dispersion on the dependence

of two-dimensional plasmon energy on wave vector in narrow-gap CdHgTe quantum wells (band gap 35meV) is

studied theoretically. It is shown that at energies above 20meV, the dispersion law of two-dimensional plasmons is

close to linear. Taking into account the finite width of the quantum well decreases the plasmon phase velocity. This

effect increases with an increase in the fraction of cadmium in the QW while maintaining the band gap and with a

decrease in the concentration of charge carriers in it.
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1. Introduction

It is well known that for the wave vectors q, much greater

than ω/c (ω is the frequency, c is speed of light in vacuum),
the frequency of the two-dimensional (2D) plasmon is pro-

portional to a square root of its wave vector [1]. However,
this dependence is true only when the spatial dispersion

of polarizability of the 2D electron gas is not critical [1]
(i. e. q is much smaller than the Fermi wave vector of

the electrons). Besides, when finding the dispersion law

of the two-dimensional plasmon, it is often assumed that

the plasmon wavelength is much bigger than the quantum

well width. Usually, these conditions are well observed

for the plasmons with the frequencies up to 1 THz in the

systems with the GaAs quantum wells [2]. However, both

the conditions can be broken when considering interband

two-dimensional plasmons, whose energy exceeds the band

gap of the HgTe quantum well [3], which somewhat exceed

the energy of the longitudinal optical phonon in CdHgTe

(21meV). The interest in these plasmons has arisen in

relation to their stimulated lasing in narrow-gap HgTe

quantum wells [3]. Note that taking into account the spatial

dispersion of polarizability of the electron gas in graphene

results in the dependence of the plasmon frequency on

its wave vector, which is very different from the root

one within the high frequencies [4]. However, if for the

graphene plasmons the graphene thickness can be neglected

in comparison with the wavelength of the 2D plasmon, then

for the HgTe quantum wells the quantum well width is not

always small in comparison with the plasmon wave length.

In this regard, there is an issue of how the dispersion law

for the 2D plasmon will change when taking into account

the final width of the quantum well. This issue is important,

for example, when calculating a rate of recombination of

non-equilibrium carriers with plasmon emission or when

calculation a plasmon gain in the conditions of inverse

population of the bands.

The present paper is devoted to theoretical study of

influence of the spatial dispersion of susceptibility and

parameters of the quantum wells, including the width, on

the dispersion law of the two-dimensional plasmons in the

HgTe/CdHgTe heterostructures with the quantum wells.

2. Method of calculation of the spectrum
of the two-dimensional plasmons

In order to find the plasmon dispersion law, we will apply

a quasi-static approximation to neglect retardation effects

therein [5]. Besides, for simplicity, we will assume that the

permittivity κ is the same in the barriers and wells. As we

have interest in the plasmons with the frequency bigger than

the frequency of the optical phonons, we will assume that

the permittivity value is equal to its high-frequency value.

Let us assume that a potential wave with the wave vector q

and the frequency ω is propagating along the quantum well:

ϕ(r, t) = ϕ(z ) exp(iqr− iωt + αt)

+ ϕ∗(z ) exp(−iqr + iωt + αt), (1)

where α > 0 is an infinitely small value, which is required

to correctly go around poles, which appear when calculating

the polarizability of the electron gas (see, for example, how

the Lienhard formula is obtained in the book [6]). The axis z
is selected to be normal to the quantum well. Let us assume

that the wave function of the electron in the quantum well

with no potential is ψ0
k,s (z ) exp(ikr)/

√
S, where the index s

describes both an electron’s spin state and a number of
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a dimensional quantization subband, S is an area of the

quantum well, r is the radius-vector, k is the wave vector in

the quantum well. The first correction of the perturbation

theory to the electron wave function due to the potential (1)
is
ψ

(1)
k,s (z , t) =

∑

s ′

bs ,s ′(k + q, t)ψk+q,s ′(z )exp
[

i(k + q)r)
]

+ cs ,s ′(k− q, t)ψk−q,s ′(z ) exp
[

i(k− q)r
]

, (2)

where
bs ,s ′(k + q, t)

= −e
exp[−iωt − iεs(k)t/~ + iεs ′(k + q)t/~ + αt]

εs (k) + ~ω − εs ′(k + q) + i~α

×
∫

dzψ∗

k+q,s ′(z )ϕ(z )ψk,s (z ), (3)

cs ,s ′(k− q)

= −e
exp[iωt − iεs (k)t/~ + iεs ′(k − q)t/~ + αt]

εs(k) − ~ω − εs ′(k− q) + i~α

×
∫

dzψ∗

k−q,s ′(z )ϕ∗(z )ψk,s (z ), (4)

e is the electron charge, εs (k) is the electron energy with

the wave vector k in the s -th subband, ~ is the Planck

constant. The charge density due to the addition to the

wave function (2) is

ρ(z , t) = − e
∑

k,s

(

|ψ(0)
k,s(z , t) + ψ

(1)
k,s (z , t)|(2)

− |ψ(0)
k,s(z , t)|(2)

)

f s (k), (5)

where f s (k) is the function of distribution of the electrons

in the s --th subband. Using the equations (2)−(4), the

expression (5) can be represented as follows

ρ(z , t) = e2
∑

k,s ,s ′

ψ∗

k,s (z )ψk+q,s ′(z )

× exp(iqr− iωt) f s (k)

εs(k) + ~ω − εs ′(k + q) + i~α

×
∫

dzψ∗

k,s ′(z )ϕ(z )ψk,s (z )−e2
∑

k,s ,s ′

ψ∗

k−q,s ′(z )ψk+q,s ′(z )

× exp(iqr− iωt) f s (k)

εs(k) − ~ω − εs ′(k− q) − i~α

×
∫

dzψk−q,s ′(z )ϕ(z )ψ∗

k,s (z ) + c.c., (6)

where the symbol c.c. signifies a complex conjugate

summand.

It is clear from the formula (6) that the charge density

can be divided into two parts corresponding to ϕ(z ) and

ϕ∗(z ), which can be separately considered. For that reason,

in the potential (1) and the charge density (6) we will

further consider the those summands which are proportional

to ϕ(z ). Let us re-write the formula (6) more conveniently:

ρ(r) =
e2 exp(iqr− iωt)

S

×
∑

k,s ,s ′

ψ∗

k,s (z )ψk+q,s ′(z )
(

f s(k) − f s ′(k + q)
)

εs(k) + ~ω − εs ′(k + q) + i~α

×
∫

dz ′ψ∗

k+q,s ′(z
′)ϕ(z ′)ψk,s (z

′). (7)

Using (7), the Poisson’s equation can be represented as

−q2ϕ(z ) +
d2

dz 2
ϕ(z ) = −4π

κ

e2 exp(iqr− iωt)
S

×
∑

k,s ,s ′

ψ∗

k,s (z )ψk+q,s ′(z )
(

f s (k) − f s ′(k + q)
)

εs (k) + ~ω − εs ′(k + q) + i~α

×
∫

dz ′ψ∗

k+q,s ′(z
′)ϕ(z ′)ψk,s (z

′), (8)

where q = |q|.
Using the Fourier transformation for the function ϕ(z ),

the integro-differential equation (8) can be transformed into

the integral equation:

ϕ(z ) =
4πe2

κS

∫

dkz exp(ikz z )
∑

k,s ,s ′

gs ,s ′(k, k + q, kz )

(q2 + k2
z )

×
(

f s (k) − f s ′(k + q)
)

εs (k) + ~ω − εs ′(k + q) + i~α

×
∫

dz ′ψ∗

k+q,s ′(z
′)ϕ(z ′)ψk,s (z

′), (9)

where

gs ,s ′(k, k + q, kz ) =

∫

dz exp(−ikz z )

× ψ∗

k,s(z )ψk+q,s ′(z )(2π)−1/2.

In order to find the solutions (9), we will make two

simplifying assumptions. The first one is that we will neglect

the dependence
∫

dz ′ψ∗

k+q,s ′(z
′)ϕ(z ′)ψk,s (z ′) on k, q, and

we will also assume that this integral is non-zero only

for s = s ′, wherein the integral does not depend on the

electron spin in each dimensional quantization subband.

Note that this assumption is accurate when the electron

movements along and across the quantum well are mutually

independent. The numerical analysis of the functions for

ψ∗

k+q,s ′(z
′)ψk,s (z ′) of the two quantum wells to be discussed

below, in which dq ≤ 1 (d is the QW width), shows the

adequacy of these approximations.

Using this assumption, indices corresponding to the wave

vector in the integral
∫

dz ′ψ∗

k+q,s ′(z
′)ϕ(z ′)ψk,s (z ′), can be

omitted.
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The second assumption is that the spectrum is degenerate

in terms of a spin and the electrons fill only the lower

dimensional quantization subband in the conductivity band

and the holes are only in the highest valence subband.

That is why instead of s we will use the index c for the

conductivity band and the index v for the valence band.

Multiplying (9) first by ψ∗

c (z )ψc(z ) and integrating by z , and
then making a similar operation with the wave functions of

the valence band, we obtain the system of the two equations:

Ic = Ic

∫

dkz
gc,c(kz )gv,v(−kz )

q2 + k2
z

Ac(q, ω)

+ Iv

∫

dkz
gv,v(kz )gc,c(−kz )

q2 + k2
z

Av(q, ω)

Iv = Ic

∫

dkz
gc,c(kz )gv,v(−kz )

q2 + k2
z

Ac(q, ω)

+ Iv

∫

dkz
gv,v(kz )gv,v(−kz )

q2 + k2
z

Av(q, ω), (10)

where

I j =

∫

dz ′ϕ(z ′)ψ∗

j (z
′)ψ j(z

′)

A j(q, ω) =
2e2

κπ

∫

d2k

(

f j(k) − f j(k + q)
)

ε j(k) + ~ω − ε j(k + q) + i~α
,

(11)
where j = c, v .

As (10) is a system of two linear homogeneous equations

in relation to Ic and Iv , a condition of existence of the non-

trivial solution is the fulfillment of the equality as follows:

[
∫

dkz
gc,c(kz )gc,c(−kz )

q2 + k2
z

Ac(q, ω) − 1

]

×
[
∫

dkz
gv,v(kz )gv,v(−kz )

q2 + k2
z

Av(q, ω) − 1

]

−
∫

dkz
gv,v(kz )gc,c(−kz )

q2 + k2
z

Av(q, ω)

×
∫

dkz
gc,c(kz )gv,v(−kz )

q2 + k2
z

Ac(q, ω) = 0, (12)

which is an equation for finding the dependence of the plas-

mon frequency on its wave vector. When the localization

size of the wave functions along the z axis is much smaller

than 1/q, the following relationships are true

gc(kz ) = gv(kz ) = (2π)−1/2,

∫

dkz
gc(kz )gc(−kz )

q2 + k2
z

=
1

2q
. (13)

Then (12) can be represented as follows

1 =
2πe2

qκS

∑

k

[

f c(k) − f c(k + q)

εc(k) + ~ω − εc(k + q) + i~α

+
f v(k) − f v(k + q)

εv(k) + ~ω − εv(k + q) + i~α

]

, (14)

which corresponds to
”
usual“ (i .e. when the quantum

well width is assumed to be infinitely small) the dispersion

equation for the plasmons with taking into account the

spatial dispersion of the polarizability of the electron and

hole gas [1]. Thus, we have demonstrated that in the limit

case (12) converts to the
”
usual“ equation for finding the

dispersion law of the two-dimensional plasmon, which takes

into account the spatial dispersion of polarizability of the

electron gas.

3. Results and discussion

The calculation has been performed for the structures

grown on the (013) CdTe plane, as they are the most

frequently used for observing the lasing [7–9]. The concen-

trations of the electrons and holes have been assumed to be

the same, so has the temperature T = 4.2K. The functions

of electron distribution in the bands have been assumed to

be equal to

f j(k) =

[

1 + exp

(

ε j(k) − Fj

kBT

)]

−1

, (15)

where kB is the Boltzmann’s constant. The values of the

chemical potentials in the bands have been found from the

condition of equality of the concentrations of the electrons

and the holes, which are calculated by means of (15) to the

given concentrations.

For calculation of the electron states, the Kane model

has been used taking into account deformation effects.

For simplicity, we have neglected a reduced symmetry of

the structure on heterointerfaces and no inversion center,

thereby resulting in two-fold degeneration of the electron

spectrum. The calculation details can be found in [10].
The two quantum wells with the same band gap (35meV)
have been considered, but they had different widths: 5

and 11.75 nm and were surrounded by the Cd0.7Hg0.3Te

barriers. A material for the 5 nm — quantum well has been

assumed to be HgTe, so for 11.75 nm — quantum well has

Cd0.1Hg0.9Te. Fig. 1 shows the electron spectra for these

wells.

Fig. 2 shows the calculated dependences of the energy

of the two-dimensional plasmon on its wave vector for the

HgTe 5 nm quantum well at the two concentrations of the

non-equilibrium carriers n = p = 2 · 1011 and 5 · 1011 cm−2.

The solid curves are obtained by solving the equation (12),
so are the dotted by solving the equation (14). It is

clear from Fig. 2 that for the energies of the plasmon
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> 20meV the dependence of the plasmon frequency on the

wave vector is close to linear ω ∝ q. With increase in the

concentration of the carriers, the plasmon phase velocity

is increasing. Taking into account the finite width of the

quantum well decreases the plasmon phase velocity. This

effect is more pronounced for lesser concentrations of the

carriers. It is clear from Fig. 2 that taking into account

the non-zero width of the quantum well in the calculations

is similar to effective decrease in the concentration of the

carriers in the quantum well.

In order to explain the dependence of the plasmon energy

on the wave vector at high values of q, we note that for

the big electron wave vectors the dispersion law for the

electrons in the conductivity band is close to linear (see
Fig. 1), i. e. at the big wave vectors the dependence of

the electron energy on the wave vector k can be presented
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Figure 1. Spectra of the electrons in the quantum wells

HgTe with thickness 5 nm (a) and Cd0.1Hg0.9Te with thickness

11.75 nm (b). The wave vector is directed along the [100]
crystallographic direction. The quantum wells are grown on

the (013) CdTe plane and surrounded by the Cd0.7Hg0.3Te barriers.

The temperature is 4.2K.
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Figure 2. Dependences of the plasmon energy on the wave vector

in the HgTe 5 nm — quantum well. The concentrations of the

electrons and the holes, cm−2 : 1 — 5 · 1011 , 2 — 2 · 1011 cm−2 .

The solid lines are resulted from solving the equation (12), so are

the dotted — (14).

as εc(k) ≈ ~V k + ε0, where V is the maximum velocity of

the electron. Besides, it is clear from Fig. 1 that for the

big wave vectors k the effective mass of the holes is much

bigger than the mass of the electrons. That is why the

hole polarizability is much less than the electron one. For

that reason, the dispersion law of the plasmons is mainly

determined by the electrons and the second summand in

the right part of (14) can be neglected. If q ≫ kF, where

kF is the wave vector at the Fermi level, then the right part

of (14) can be represented as

2πe2

qκS

∑

k

[

f c(k) − f c(k + q)

εc(k) + ~ω − εc(k + q) + i~α

]

≈ 2πe2n
κ

~V
(~ω)2 − (~V q)2

, (16)

where n is the concentration of the electrons in the quantum

well. Substituting (16) in (14), we obtain

~ω ≈
√

(~V q)2 +
2πe2n~V

κ
. (17)

It is clear from (17) that with the high q the plasmon

frequency linearly depends on the wave vector ω ∼ q, while

the plasmon group velocity tends to the maximum velocity

of the electron. Note that the calculations of the graphene

spectrum provide the similar picture [4].
Fig. 3 shows the calculated dependences of the energy

of the two-dimensional plasmon on its wave vector for

the Cd0.1Hg0.9Te 11.75 nm — quantum well, which is

surrounded by the Cd0.7Hg0.3Te barriers. This well has

the same band gap as the 5 nm-HgTe quantum well —
5 nm. Adding cadmium to the quantum well increases its
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Figure 3. Dependence of the plasmon energy on the wave

vector in the Cd0.1Hg0.9Te 11.75 nm — quantum well. The

concentrations of the electrons and the holes, cm−2 : 1 — 5 · 1011,

2 — 2 · 1011 cm−2 . The solid lines are resulted from solving the

equation (12), so are the dotted — (14).

thickness provided that the band gap is maintained. That is

why in this situation taking into account the quantum well

width when calculating the dispersion law more strongly

affects the dependence of the plasmon energy on the

wave vector. It is clear from comparison of the figures 2

and 3 that the addition of cadmium slightly increases the

plasmon velocity provided that the band gap is maintained.

It is also clear from Fig. 3 that for the concentration of

the electrons and the holes 2 · 1011 cm−2, decrease in the

plasmon energy (due to taking into account the QW finite

width) is approximately two times bigger than for the

concentration 5 · 1011 cm−2 at the definite wave vector at

a linear section of the dispersion curve.

4. Conclusion

In the conclusion the main results of the study are

described. It is shown that at the big vectors of the two-

dimensional plasmon the frequency dispersion of polariza-

bility of the current carriers in the quantum well results in

the dependence ω ∝ q. The group velocity of the plasmons

with the big q tends to the maximum velocity of the electron

in the lower subband of the dimensional quantization

subband. At the given wave vector, taking into account the

quantum well width when calculating the dispersion law

results in reduction of the plasmon energy like in reduction

of the plasmon energy which occurs when reducing the

concentration of the charged carriers in the quantum well.
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