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A generalized model of the continuously generating superradiant Raman laser is considered. The model includes

competing individual and cooperative atomic processes arising from the interaction of atoms with external light

fields. We show that proper selection of the model parameters leads to cooperative effects in the atomic active

laser medium. We calculate the steady state values of the atomic polarization and two-atom correlations. Using

the quantum regression theorem, we determine the spectral characteristics of the collectively emitted light. We use

cumulant expansion to estimate the higher-order correlations between atoms.
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1. Introduction

The operation of a superradiant laser [1] is based on

the phenomenon of cooperative spontaneous emission (or
the Dicke superradiance) [2]. Unlike conventional lasers,

whose active medium is located in a high-quality,
”
good“

cavity, the superradiant laser operates in the regime of the

so-called
”
bad“ cavity [3]. In such a regime the photons

of the generated light leave the cavity almost instantly,

but this turns out to be sufficient to match the phases of

individual emitting atoms with each other, which leads to the

formation of a long-lived collective coherence in the atomic

medium. Over time, correlations between atoms accumulate

and along the cavity axis the ensemble of atoms radiates as a

whole with a radiation line width comparable to the width

of the atomic laser transition. In theory, the superradiant

laser operating on a clock transition can achieve a radiation

line width about 1mHz [4]. Since the coherence of the

emitted light is determined by the atomic medium, not by

the cavity, the superradiant laser is almost insensitive to both

thermal and technical vibrations of mirrors, which impose

a fundamental stability limitation for laser sources with

passive optical cavities [5,6]. Thus, due to the high stability

and narrowness of the spectral line, the superradiant lasers

are often considered in the context of a new generation

of atomic clocks and frequency standards [7]. However,

this does not mean at all that the superradiant sources of

coherent radiation are not in demand in other areas. In

particular, amplification of spontaneous radiation due to the

effect of superradiance can also occur at two-photon Raman

transitions, which has already been shown in experimental

works [8,9]. Such radiation sources are of interest for a

number of important problems of magnetometry [10], as

well as for generating nonclassical states of light [11].

The simplest model of a superradiant laser, which

describes the dynamics of a two-level atomic system in

the presence of external electromagnetic fields, includes

the individual pumping of atoms from the ground state

to the excited state and their collective decay in the

reverse transition [4,12]. In this paper, we will consider

a generalized model of a superradiant Raman laser, which

(in addition to individual pumping and decay of atoms)
includes two competing cooperative processes acting on

the transition between the ground and excited states of the

effective two-level scheme. Such processes are characteristic

of atoms with a complex multilevel energy structure, such

as Rubidium and Cesium, which are usually used in optical

experiments. Note that even in the case of a simple model

of the superradiant laser, the cooperative generation occurs

only for a certain choice of its parameters. In particular,

the rate of individual pumping of atoms by an external

laser field must exceed the decay rate of the excited state

of the atom in order to create a population inversion in

the atomic medium, but at the same time it should not

be too high so as not to destroy the phase correlations

that arise between individual emitters. In the generalized

model under consideration, due to the presence of several

competing processes the balance between the parameters

takes on a much more complex form. In this paper we will

find the range of values of the model parameters at which

the cooperative radiation of the atomic medium occurs, and

determine the spectral characteristics of light at the output

of the cavity in the stationary state.

The paper is organized as follows. In Section 2 we

will consider the simplest model of the superradiant laser,

with the help of which we will describe its most important

characteristics in the stationary state. In particular, we
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will be interested in the average polarization of atoms

(population inversion of the atomic medium) and two-

atom correlations, the presence of which, as we shall see,

will indicate the occurrence of cooperative effects in the

medium. The results obtained will help in the analysis of

solutions for the generalized model of the superradiant laser

in Section 3, in which we will find the radiation spectrum

and determine its characteristics. In particular, we will

show that, under optimal generation conditions, the width

of the spectral line of the radiation will be comparable

to the width of the atomic transition. In Section 4 using

the cumulant expansion we will estimate the presence of

higher-order correlations between atoms in the stationary

state of generation of the superradiant laser. Besides, in

this paper we will pay special attention to a number of

theoretical methods that are often used in the study of

the superradiant laser: the quantum regression theorem,

yielding the radiation spectrum, and cumulant analysis,

which will allow us to determine the presence of interatomic

correlations in the system.

2. Superradiant laser model

First, let us consider the simplest model of the super-

radiant laser, which defines to describe the main physical

processes occurring in it, leading to cooperative emission of

atoms. Its general view is schematically shown in Fig. 1, a.

An ensemble of N two-level atoms is placed inside a single-

mode cavity with line width κ . The cavity is chosen so that

the frequency ωc of the â mode, supported by it, coincides

with the frequency ωeg of the transition between the ground

|g〉 and the excited |e〉 levels of the atom, i.e. ωc = ωeg . We

describe the interaction between the cavity field and atoms

using the dipole approximation, while assuming that the

field interacts with each atom in the same way, and the

interaction strength is determined by the single-photon Rabi

frequency �/2 (Fig. 1, b). The time evolution of the state

of the system obeys the Lindblad master equation:

d
dt

ρ = − i
ωeg

2
[Jz + â†â, ρ] − i

�

2
[J+â + J−â†, ρ]

+ w
∑

i

D
[

σ+
i

]

ρ + κD [â] ρ, (1)

where using D [A] ρ = AρA† − 1/2A†Aρ − 1/2ρA†A the

Lindblad superoperators are designated, Jz =
∑N

i=1 σ
z
i and

J± =
∑N

i=1 σ
±
i are collective angular momentum operators

written in terms of the Pauli matrix σ z
i and ladder (raising

and lowering) operators of the σ±
i of ith atom. Besides

the coherent interaction of the atoms with the intracavity

field, we also included in equation (1) the photons escape

from the cavity with the rate κ, and the individual pumping

of the atoms with the rate w, which transfers the atoms

from the ground state |g〉 to the excited state |e〉. Note that

the individual nature of pumping is important due to two

reasons. First, as was shown in papers [12,13], only in this

case the collective dipole moment of the atoms ensemble

is formed, i.e. the ensemble radiates as a whole. Second,

individual pumping can balance other incoherent processes,

such as individual spontaneous decay of atoms. For the

simplicity of analysis, individual spontaneous decay was

not included in equation (1), but its contribution will be

evaluated later when considering the generalized model of

the superradiant laser in Section 3.

Unlike conventional lasers, whose radiation coherence

depends on the properties of the cavity, the radiation

coherence of the superradiant laser is determined by

cooperative effects in the atomic medium. These effects

arise in the bad cavity regime, when the photons escape

from the cavity is faster than other processes in (1), i.e.

κ ≫ w, �. This makes it possible to adiabatically eliminate

the field â from the Lindblad equation and consider the

dynamics of the atomic state separately [12]. To do this,

we used the projector method described in [14]. As a

result, after the adiabatic elimination of the cavity mode,

a master equation was obtained describing the evolution of

the density matrix ρat of the atomic system:

d
dt

ρat = w
∑

i

D
[

σ+
i

]

ρat + γD
[

J−
]

ρat, (2)

where γ = �2/κ is the effective decay rate of atom from

excited state |e〉 to the ground state |g〉.
From (2) we derive a system of equations describing the

time evolution of the mean values for the polarization (pop-
ulation inversion) 〈σ z

1 〉 and two-atom correlations 〈σ+
1 σ−

2 〉
containing the relative phase between two emitters:

d
dt
〈σ z

1 〉 = w(1− 〈σ z
1 〉) − γ(1 + 〈σ z

1 〉)

− 2(N − 1)γ〈σ+
1 σ−

2 〉,

d
dt
〈σ+

1 σ−
2 〉 =

{

(N − 2)γ〈σ z
1 〉 − (w + γ)

}

〈σ+
1 σ−

2 〉

+
γ

2
(〈σ z

1 〉 + 1)〈σ z
1 〉. (3)

Subscript denotes the number of the atom. Due to

permutation symmetry, each atom of the ensemble interacts

with the cavity mode and external pumping in the same

way. Thus, the 1st and the 2nd atom can be chosen in

an arbitrary way. Besides, when writing the system of

equations (3) we used the cumulant expansion, in which

we neglected third-order correlations and factorized the mo-

ment
〈

σ+
1 σ−

2 σ z
3

〉

=
〈

σ+
1 σ−

2

〉

〈σ z
1 〉 , and also approximate

〈σ z
1 〉 〈σ

z
2 〉 = 〈σ z

1 〉
2 [15]. The presence of higher-order

correlations will be estimated in Section 4.

To find the average values of polarization 〈σ z
1 〉 and two-

atom correlations
〈

σ+
1 σ−

2

〉

established in the stationary

state of superradiant laser generation, it is necessary to

equate the left part (3) to zero, and then solve the resulting

homogeneous system of equations. Fig. 2 shows the

dependences of these observations on the dimensionless

individual pumping rate of atoms w/Nγ . It can be seen
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Figure 1. (a) Superradiant laser based on an ensemble of N atoms placed in the cavity with line width κ; (b) the effective two-level energy

scheme of atoms inside cavity, which in practice can be implemented through the processes shown in (c) and (d). w — effective pumping

rate of atoms, �/2 — effective single-photon Rabi frequency, (c) optical pumping of atom with λ-scheme of levels, (d) two-photon Raman

transition induced by external field in atom with λ-scheme of levels.
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Figure 2. Average polarization 〈σ z
1 〉 (dark purple solid line), two-

atom correlations
〈

σ +
1 σ−

2

〉

(orange dashed line) and the spectral

line width Ŵ, expressed in units of the effective decay rate of the

atom γ from the excited state |e〉 to the ground state |g〉 (yellow
dotted line) in the stationary state of superradiant laser generation.

Number of atoms N = 106.

from the figure that the polarization increases linearly as

the pumping rate increases, while the curve for two-atom

correlations describes an inverted parabola that grows from

zero at w/Nγ = 0 to a maximum value at w/Nγ = 0.5,

and then decreasing to zero at w/Nγ = 1. The presence

of nonzero values of two-atom correlations, indicates the

occurrence of superradiance, at which the rate of the atom

transition γ from the excited state |e〉 to the ground state

|g〉 is enhanced depending on the number of atoms in the

excited state. It can be seen from the graphs that, for this

case the pumping rate of atoms w must satisfy the following

boundary conditions:

γ < w < Nγ. (4)

Here, the lower boundary wmin = γ corresponds to the

appearance of the population inversion in the atomic

medium, which is necessary for laser generation. This

differs significantly from the conventional laser, in which the

lower generation threshold is reached when the pumping

exceeds the cavity losses. The upper boundary wmax = Nγ

corresponds to the situation when the cooperative emission

of atoms disappears due to the presence of noise caused by

the pumping itself.

To calculate the radiation spectrum, we used the quantum

regression theorem (Section 3), and found that its value is

determined by the Fourier transformation taken from the

two-time correlation function of collective atomic operators:

S(ω) = F[
〈

â†(t)â(0)
〉

](ω) =
�2

κ2
F[

〈

J+(t)J−(0)
〉

](ω),

(5)
which in turn can be determined from the equation

assuming stationary state

d
dt

〈

J+(t)J−(0)
〉

=

(

iωeg −
Ŵ

2

)

〈

J+(t)J−(0)
〉

. (6)

As we will see below, the radiation spectrum has

a Lorentz profile with the line width Ŵ = w + γ −
−(N − 1)γ 〈σ z

1 〉 , which, with the optimal choice of pump-

ing rate w corresponding to the maximum of two-atom

correlations
〈

σ+
1 σ−

2

〉

turns out to be comparable with γ

(Fig. 2).
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The above model of the superradiant laser is based on the

use of an ensemble of two-level atoms, and, as was shown

in the papers [4,12], it is sufficient to describe the main

properties of the resulting cooperative radiation. In practice,

this model can be implemented, in particular, with the help

of two-photon Raman transitions induced by external fields

in atoms with λ-configuration of energy levels (Fig. 1, c, d).
In this case, due to the presence of a detuning from

resonance, the upper level can be adiabatically eliminated;

i.e. atoms can be described with the effective two-level

scheme. However, in actual atoms with complex energy

structure of levels, the nonresonant two-photon Raman

transitions lead to the additional cooperative and individual

terms in the equation for the density matrix. These terms

compete with each other resulting in new conditions for

the appearance of the superradiant laser transition in the

medium (or even several such transitions).

3. Generalized model of superradiant
Raman laser

3.1. Master equation

As was shown in the previous section, even in a

simplified model the superradiance requires maintaining a

certain balance between the individual pumping rate and

the cooperative decay rate. In this section we consider a

generalized model of the superradiant Raman laser, which

includes additional competing cooperative and individual

processes arising in the effective two-level scheme of atoms

due to nonresonant two-photon Raman transitions (Fig. 3).
These additional processes lead to the occurrence of a

new, finer balance between the model parameters, which

is necessary for the superradiance.

The dynamics of the state of the atomic-field system

under consideration after the adiabatic elimination of

nonresonant energy levels is described by the following

master equation, obtained with the rotating frame approxi-

mation [16]:

d
dt
ρ = −i

ωeg

2

[

Jz , ρ
]

− i
[(�−

2
J+ +

�+

2
J−

)

â + h.c., ρ
]

+ w+

∑

i

D
[

σ+
i

]

ρ + w−

∑

i

D
[

σ−
i

]

ρ + κD [â] ρ,

(7)
where ωeg is frequency difference between two sublevels of

the ground state of the atom |g〉 and |e〉. In accordance

with the Jaynes-Cummings model, this equation includes

a cooperative term proportional to the effective Rabi

frequency �−, which describes the transition of the atoms

from the level |g〉 to the level |e〉 as a result of interaction

with the cavity mode â and an external classical field (in
Fig. 3, a is shown by the left straight vertical arrow), as

well as a cooperative term proportional to the effective

frequency �+ acting on the reverse transition, i.e. from the

level |e〉 to the level |g〉, and induced by another classical

E ħ/

weg

|gñ

W+

W–

|eñ

weg

E ħ/

|gñ
|eñ

W±

w+
w–

w–

w+

a

b

Figure 3. (a) The energy scheme of atomic levels, which

designates the processes of individual pumping with an effective

rate w+ on the transition |g〉 → |e〉, of individual pumping with

an effective rate w− on the |e〉 → |g〉 transition, as well as two-

photon Raman transitions induced by external fields, occurring at

an effective one-photon Rabi frequency �/2; (b) The simplified

effective scheme of atomic levels, which includes only the

processes that are relevant for the considered system.

field (in Fig. 3, a is shown by the right straight vertical

arrow). Note that if the energy gap ωeg between the levels is

small compared to the frequency of external classical fields,

then they act the both transitions (Fig. 3, a). Besides, we

also included in the model the individual pumping process

with an effective rate w+ on the transition |g〉 → |e〉 and

individual pumping process with an effective rate w− acting

on the transition |e〉 → |g〉, as well as the photons escape

from the cavity with the rate κ .

As before, we assume that the photons escape from the

cavity is much faster than all other processes included in (7),
i.e., κ ≫ �±, w±. After the adiabatic elimination of the

cavity field using the projectors method, we obtain the

master equation for the density matrix, which describes the

time evolution of the atomic system only:

d
dt

ρat = −i
ωeg

2

[

Jz , ρat

]

+ w+

∑

i

D
[

σ+
i

]

ρat

+ γ−D
[

J−
]

ρat + w−

∑

i

D
[

σ−
i

]

ρat + γ+D
[

J+
]

ρat,

(8)
where γ− = �2

−/κ is the effective decay rate of atom

from the excited state |e〉 to the ground state |g〉, and

γ+ = �2
+/κ is the effective rate of the backward transition.
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In the resulting equation the second and the third

terms corresponding to individual pumping at the |g〉 → |e〉
transition and cooperative decay at the |e〉 → |g〉 transition
coincide with the right side of equation (2). At the same

time, the fourth and the fifth terms represent individual

”
pumping“ and cooperative

”
decay“ in the opposite di-

rection, i.e. act as if the symbols of levels |e〉 and |g〉
were reversed. Thus, a certain symmetry arises in the

resulting equation: if we replace
”
pluses“ with

”
minuses“

and
”
minuses“ with

”
pluses“, then the form of the equation

does not change. This symmetry is convenient for use in

the analysis of the obtained solutions. In particular, without

loss of generality, it is sufficient to consider only those cases

where w+ > w−. As follows from the solutions for the

simplified model shown in Fig. 2, the cooperative effects

in atomic medium appear when a sufficient populations

inversion is created in the medium, at which the individual

pumping rate w is comparable in order of magnitude to

the cooperative decay rate Nγ . Thus, we are interested in

the area w+, w− ≫ γ−, γ+. Without loss of generality, we

assume γ− > γ+. In all other cases, the system behaves in

a similar way, with the only difference that the atomic levels

are
”
swapped“.

From (8) it is easy to derive equations for polarization

〈σ z
1 〉 and two-atom correlations

〈

σ+
1 σ−

2

〉

:

d
dt

〈σ z
1 〉 = w+(1− 〈σ z

1 〉 ) − w−(1 + 〈σ z
1 〉 )

− 2(N − 1)(γ− − γ+)
〈

σ+
1 σ−

2

〉

,

d
dt

〈

σ+
1 σ−

2

〉

=
{

(N − 2)(γ− − γ+) 〈σ z
1 〉

− (w+ + w− + γ− + γ+)
} 〈

σ+
1 σ−

2

〉

+
1

2
((γ− − γ+) + (γ− + γ+) 〈σ z

1 〉 ]) 〈σ z
1 〉 ,

(9)
where, as earlier, the third-order correlations were ne-

glected, and the following moments were factorized [15]:
〈σ z

1 σ
z
2 〉 ≈ 〈σ z

1 〉
2 and

〈

σ+
1 σ−

2 σ z
3

〉

≈
〈

σ+
1 σ−

2

〉

〈σ z
1 〉 . To find

a stationary solution to these equations, one must set the left

hand side of the equations equal to zero and then solve the

resulting linear system.

Fig. 4, a shows the solutions of stationary equations for

the mean polarization 〈σ z
1 〉 and two-atomic correlations

〈

σ+
1 σ−

2

〉

depending on the dimensionless pumping rate

w+/Nγ−, normalized to the number of atoms N, at γ+ = 0,

i.e. in the presence of only one cooperative decay in (8)
from the level |e〉 to the level |g〉. The solid curves

correspond to simplified model of the superradiant laser

with w− = 0 (as in Fig. 2), which we use for comparison.

The dashed and dotted lines correspond to the other two

cases, when w−/Nγ− = 0.03 and w−/Nγ− = 0.06. It can

be seen that the presence of additional individual term in (8)
on the transition from |e〉 → |g〉 (it can be considered as

an individual decay) leads to the shift in the lower and
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Figure 4. Mean polarization 〈σ z
1 〉 (three upper lines), two-

atom correlations
〈

σ +
1 σ−

2

〉

(three lower lines) depending on the

following parameters of the problem: (a) dimensionless pumping

w+/Nγ− on the transition |g〉 → |e〉; (b) dimensionless rate of the

cooperative process γ+/γ− on the transition |g〉 → |e〉. Number

of atoms N = 106 .

upper generation thresholds, i.e. changing the boundary

conditions (4). In this case, the polarization of the medium

rises with the pumping rate w+ up to a certain value,

after which it reaches saturation. Maximum of two-atom

correlations

max
w+

〈

σ+
1 σ−

2

〉

=
1

8
−

w−

Nγ+

1
γ
−

γ+
− 1

is achieved at the pumping rate w+,opt =
= N(γ− − γ+)/2− w− for N ≫ 1.

Fig. 4, b shows the mean polarization 〈σ z
1 〉 and the two-

atom correlations
〈

σ+
1 σ−

2

〉

vs. γ+/γ− for w+/Nγ− = 0.1.

It can be seen that two-atom correlations in the system turn

out to be very sensitive to the presence of individual decay

of atoms from the level |e〉 to the level |g〉.
The stationary solution for the two-atom correlations

〈

σ+
1 σ−

2

〉

demonstrates that superradiance occurs in the

system when the individual pumping rate w+ satisfies the

following inequalities:

w− < w+ < N(γ− − γ+)
w+ − w−

w+ + w−
− w−. (10)
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Figure 5. (a–c) Polarization 〈σ z
1 〉 ; (d–f) of two-atom correlations

〈

σ +
1 σ−

2

〉

; (g–i) dimensionless width of spectral line Ŵ/γ− as a function

of the dimensionless individual pumping rate w±/Nγ−, normalized to the number of atoms N, and dimensionless velocity γ+/γ−. Number

of atoms N = 106.

Compared to the previously obtained boundary condi-

tions (4) for simplified model of the superradiant laser, the

new boundary conditions depend on all four rates included

in (8). Thus, a finer balance between them is required for

the cooperative generation of coherent light.

Fig. 5, a–f shows the general view of the mean polar-

ization 〈σ z
1 〉 and two-atom correlations

〈

σ+
1 σ−

2

〉

vs. di-

mensionless individual pumping rate w+/Nγ−, normalized

to the number of atoms N, and the dimensionless rate

γ+/γ− of the cooperative process on transition |g〉 → |e〉. In
Fig. 5, a–f (as well as Fig. 5, g–i), the dotted curve designates

the range of parameter values at which cooperative radiation

occurs in the atomic medium, which is confirmed by the

spectrum calculation.

3.2. Radiation spectrum

To find the radiation spectrum generated by the su-

perradiant Raman laser, we apply the quantum regression

theorem [14,17]. For this purpose, let us return to master

equation (7), which describes the time evolution of the

density matrix of the system before the adiabatic elimination

of the cavity. With its help we derive the equation for the

mean value of the annihilation operator â :

d
dt

〈â(t)〉 = −
κ

2
〈â(t)〉 − i

(

�+

〈

J−(t)
〉

+ �−

〈

J+(t)
〉

)

.

(11)
The right-hand side of the equation includes the mean values

of the atomic collective raising and lowering operators

〈J+(t)〉 and 〈J−(t)〉 . Since κ ≫ w±, �±, the change
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over time 〈J+(t)〉 and 〈J−(t)〉 is slower than 〈â(t)〉 ,
which makes it possible to use the master equation for the

density matrix of atomic system (8) to determine their time

evolution instead of the equation for the density matrix of

the complete system (7). We get the following equations:

d
dt
〈J−(t)〉 = −iweg〈J

−(t)〉

−
1

2

{

γ− + γ+ + ω+ + ω− − (γ− − γ+)N〈σ z
1 〉

}

〈J−(t)〉,

(12)
d
dt
〈J+(t)〉 = +iweg〈J

+(t)〉

−
1

2

{

γ− + γ+ + ω+ + ω− − (γ− − γ+)N〈σ z
1 〉

}

〈J+(t)〉,

(13)
solving which, we find:

〈J−(t)〉 = 〈J−(0)〉e−
1
2
Ŵte−iweg t, (14)

〈J+(t)〉 = 〈J+(0)〉e−
1
2
Ŵte+iweg t, (15)

where Ŵ = γ− + γ+ + ω+ + ω− − (γ− − γ+)N〈σ z
1 〉 is the

linewidth of the spectrum. Substituting the obtained

solutions for 〈J+(t)〉 and 〈J−(t)〉 into (11), we get the

following inhomogeneous differential equation:

d
dt
〈â(t)〉 +

κ

2
〈â(t)〉 = −i

(

�+〈J
−(0)〉e−

1
2
Ŵte−iweg t

+ �−〈J
+(0)〉e−

1
2
Ŵteiweg t

)

, (16)

from which we find:

〈â(t)〉 = C(0)e−
κt
2 + i

( �−〈J+(0)〉

−iweg + (Ŵ− κ)/2
eiweg t

+
�+〈J−(0)〉

iweg + (Ŵ− κ)/2
e−iweg t

)

e−Ŵt/2, (17)

where C(0) = 0, since there is no field at the initial time.

According to the quantum regression theorem [14,17], for
a set of operators {Yi} of open quantum system whose mean

values are described by a closed linear system of differential

equations

∂t〈Yi(t)〉 =
∑

j

Gi j(t)〈Yj(t)〉,

where Gi j(t) are some functions relating these mean values

to each other, the two-time correlation function can be

written as

∂t〈Yi(t + τ )Yk(t)〉 =
∑

j

Gi j(τ )〈Yj(t + τ )Yk(t)〉.

Thus, from (17) it follows the expression for the two-time

correlation function 〈â†(t)â(0)〉:

〈â†(t)â(0)〉 =

(

�2
−〈J

−(0)J+(0)〉

w2
eg + (Ŵ− κ)2/4

e−iweg t

+
�2

+〈J
+(0)J−(0)〉

w2
eg + (Ŵ− κ)2/4

eiweg t

)

e−Ŵt/2. (18)

S
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w geg/ –

Figure 6. The form of the radiation spectrum S(ω) and its

characteristics.

The radiation spectrum follows from the Fourier transfor-

mation:

S(ω) = F[
〈

â†(t)â(0)
〉

](ω).

It can be seen that the presence of the two cooperative

transitions of atoms |e〉 → |g〉 and |g〉 → |e〉 on the right-

hand side (7) leads to two Lorentz peaks. In this case, the

spectral width Ŵ for each of them is the same (for w+ > w−

and N ≫ 1) and equal to

Ŵ

γ−
≈

(

1

W−(1−W+)
+

W+

1−W+
−W+ −

1

W−

)(

1−
γ+

γ−

)

=
W+ + W+W−(W− −W+W− − 1)

(W+ − 1)(W− − 1)W−

(

1−
γ+

γ−

)

, (19)

where, for convenience, we introduced the dimensionless

value

W± :=
(w+ ± w−)(w+ + w−)

N(γ− − γ+)(w+ − w−)
.

Fig. 5, g–i shows the dimensionless line width Ŵ/γ−
as a function of the same parameters of the generalized

model as for the previously analyzed mean polarizations

and two-atom correlations. It can be seen that, as for the

simplified model of the superradiant laser, the linewidth in

the generalized case also turns out to be comparable to γ−
in the region where nonzero two-atom correlations exist,

and the boundary conditions (10) are satisfied. For clarity,

Fig. 6 schematically shows the form of the resulting radiation

spectrum, where S+ and S− designate the intensities of the

Lorentz peaks. Moreover, their relationship obeys

S+

S−
=

γ+

γ−

1

1− 〈Jz 〉
〈J+J−〉

≈
γ+

γ−
. (20)

Note that the peak intensities cannot be the same, since the

boundary conditions (10) are not satisfied at γ+ = γ−.
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4. Influence of high-order correlations

In this section, we estimate the presence of high-

order interatomic correlations in the stationary state. For

simplicity, we analyze the simplified model described by

equation (2), when there are only the cooperative transition

on the |e〉 → |g〉 transition and the individual pumping on

the |g〉 → |e〉 transition. Let us write the master equation

for the reduced density matrix of a subensemble of n
arbitrarily taken atoms (the subscript

”
at“, which was used

earlier to designate the atomic system, will be omitted here

and below):

ρ̇n = Ln(ρn)

−
1

2
γ(N − n)

n
∑

i=1

{

σ
(i)
− Tr{n+1}[σ

(n+1)
+ ρn+1] + h.c.

}

,

(21)
where ρn = Tr{n+1,...,N}[ρ] is the reduced density matrix

for n particles. Curved brackets indicate tracing out of

remaining (N − n) particles. On the right-hand side of

the equation, Ln designates the superoperator that performs

the time evolution of ρn according to (2). Here, we took

into account that the atoms interaction with the intracavity

field is the same, and the ensemble turns out to be

symmetrical with respect to the permutation of any two

particles. Thus one can describe the interactions of the

considered subensemble with the remaining (N − n) atoms

with the reduced density matrix ρn+1 of n particles of the

subensemble and one of the remaining (N − n).
Equation (21) turns out to be non-closed, since its

right-hand side contains the reduced density matrix ρn+1,

which describes the state of (n + 1) particles. To remove

(n + 1)-order correlations from the system and to express

ρn+1 in terms of ρn, we apply the cumulant expansion.

The convenience of cumulants lies in the fact that, unlike

moments the nonzero cumulant of the n-th order shows the

presence of correlations between n parts at once, i.e. it does

not include lower-order correlations of it parts.

It is well known that the moments are the coefficients of

the expansion in series of the characteristic function, while

the cumulants are the coefficients of the expansion of its

logarithm [18]. There is a bijective map between cumulants

and moments [19]. So, for example, for cumulants and

moments from the 1st order to the 3rd order, we have:

〈〈σ α1
1 〉 〉 = 〈σ α1

1 〉 ,

〈〈σ α1
1 σ α2

2 〉 〉 = 〈σ α1
1 σ α2

2 〉 − 〈σ α1
1 〉 〈σ α2

2 〉 ,
〈〈

σ
α1
1 σ

α2
2 σ

α3
3

〉 〉

=
〈

σ
α1
1 σ

α2
2 σ

α3
3

〉

− 〈σ α1
1 σ

α2
2 〉

〈

σ
α3
3

〉

−
〈

σ α1
1 σ

α3
3

〉

〈σ α2
2 〉 −

〈

σ α2
2 σ

α3
3

〉

〈σ α1
1 〉

+ 2 〈σ α1
1 〉 〈σ α2

2 〉
〈

σ
α3
3

〉

. (22)

Here σ
αi
i is the operator acting on the state of the i-th

atom. The superscript αi , as before, specifies a specific type

of the operator (for example,
”
z“,

”
+“,

”
−“). Cumulants

are designated by double angle brackets, and moments by

single angle brackets. The general expression connecting

cumulants and moments of an arbitrary order can be written

as follows:

〈〈

⊗

i∈A

σ
αi
i

〉 〉

=
∑

π∈πA

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

⊗

i∈B

σ
αi
i

〉

,

(23)
where A is some set of particle numbers, which is a

subset of {1, . . . , N}, i.e. A ⊆ {1, . . . , N}. |π| denotes

the number of elements of π set, and πA is the set of

all possible partitions of the set A. For example, for

A = {1, 2, 3} the set πA consists of the next partitions

{1, 2, 3}:
{

{1, 2}, {3}
}

,
{

{1}, {2, 3}
}

,
{

{1, 3}, {2}
}

,
{

{1}, {2}, {3}
}

.

In quantum mechanics, the moments can be calculated

not only through the characteristic function, but also

directly, taking the trace from the product of the correspond-

ing operators and the density matrix describing the state

of the system, i.e. 〈⊗i∈AAαi
i 〉 = TrA[ρA ⊗i∈A Aαi

i ]. In [20]
the density matrix τA for cumulants was introduced, which

makes it possible to estimate any cumulant 〈〈⊗i∈AAαi
i 〉 〉

similarly:

〈〈

⊗

i∈A

Aαi
i

〉 〉

= TrA

[

τA

⊗

i∈A

Aαi
i

]

. (24)

Also, it was shown that there is a relationship between

the density matrix for cumulants and the common density

matrix, which is similar to (23):

τA :=
∑

π∈πA

(|π| − 1)!(−1)|π|−1
⊗

B∈π

ρB. (25)

For example, the relation between density matrices for cu-

mulants and the common density matrices for a subensem-

ble of particles {1, 2, 3} is similar to (22):

τ{1} = ρ{1},

τ{1,2} = ρ{1,2} − ρ{1} ⊗ ρ{2},

τ{1,2,3} = ρ{1,2,3} − ρ{1,2} ⊗ ρ{3}

− ρ{1,3} ⊗ ρ{2} − ρ{1} ⊗ ρ{2,3} + 2ρ{1} ⊗ ρ{2} ⊗ ρ{3}.

This relationship can also be written in the opposite

direction, expressing the density matrices in terms of the

density matrices for cumulants:

ρA =
∑

π∈πA

⊗

B∈π

τB, (26)

wherefrom for the subensemble of particles {1, 2, 3} it

follows:

ρ{1} = τ{1},

ρ{1,2} = τ{1,2} + τ{1} ⊗ τ{2},
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Figure 7. The Frobenius norm of the density matrix for τn

cumulants vs. dimensionless pumping rate w/Nγ . Number of

atoms N = 106.

ρ{1,2,3} = τ{1,2,3} + τ{1,2} ⊗ τ{3} + τ{1,3} ⊗ τ{2}

+ τ{1} ⊗ τ{2,3} + τ{1} ⊗ τ{2} ⊗ τ{3}. (27)

Let us return to the master equation for the subensemble

of n particles (21). Employing the relationship between

the common density matrices and density matrices for

cumulants, we write the truncated density matrix ρtrunc
n+1

for (n + 1) particle: ρtrunc
n+1 = ρn+1 − τn+1. We subtracted

the density matrix for cumulants τn+1 from ρn+1, thereby

removing information about the (n + 1)th order correlations

between (n + 1) particle from ρn+1. This allows to express

ρtrunc
n+1 as a function of ρn. For example, for the subensemble

of three particles {1, 2, 3} we have:

ρtrunc
{1,2,3} = τ{1,2} ⊗ τ{3} + τ{1,3} ⊗ τ{2} + τ{1} ⊗ τ{2,3}

+ τ{1} ⊗ τ{2} ⊗ τ{3} = ρ{1,2} ⊗ ρ{3} + ρ{1,3} ⊗ ρ{2}

+ ρ{1} ⊗ ρ{2,3} − 2ρ{1} ⊗ ρ{2} ⊗ ρ{3},

(28)
where we used (27). It can be seen that in the resulting

expression, the right-hand side now depends on the lower-

order density matrices, i.e. fewer particles. Thus, in (21),
acting similarly, one can replace ρ(n+1) with ρtrunc

(n+1), which

is a non-linear function of ρn, i.e., ρtrunc
(n+1) = f (ρn). As a

result, we close the master equation for subsensemble of n
particles:

ρ̇n = Ln(ρn)

−
1

2
γ(N − n)

n
∑

i=1

{

σ
(i)
− Tr{n+1}[σ

(n+1)
+ f (ρn)] + h.c.

}

.

(29)
This equation contains information about correlations in the

system up to the nth order. Its stationary solution gives the

density matrices for τn cumulants up to the nth order. Thus,

the presence of a nonzero Frobenius norm at τn indicates

the presence of the n-th order correlations in the system, i.e.

correlations between n particles at once.

Fig. 7 shows the Frobenius norm of the density matrix

τn for cumulants vs. the dimensionless pumping rate w/Nγ

for n ∈ {2, 4, 6} plotted in a logarithmic scale. It can be

seen that for two-atom correlations n = 2 (solid line) this

dependence coincides with the dependence for
〈

σ+
1 σ−

2

〉

shown in Fig. 2. In this case, the values for correlations

between 4 particles at n = 4 (dashed line) and 6 particles at

n = 6 (dotted line) turn out to be significantly smaller than

for n = 2 at any values of w/Nγ . Note that τ2 includes not

only two-atom correlations of the form
〈

σ+
1 σ−

2

〉

. However,

this type of correlations makes the largest contribution to

the Frobenius norm. It is noteworthy that there are no

correlations of odd orders in the stationary state for N ≫ 1,

due to the presence of permutation symmetry. This also

correct for the generalized model of the superradiant laser

whose atomic system density matrix obeys (8).

5. Conclusion

We considered the generalized model of the superradiant

Raman laser, in which we took into account competing

cooperative and individual processes that occur in atoms

with a complex multilevel energy structure when they

interact with external light fields. Using the projector

method, we succeeded in adiabatically eliminating the

rapidly decaying cavity mode and write the master equation

for the density matrix describing the state of the atomic

ensemble only. With its help, we found stationary solutions

for the mean polarization (populations inversion) 〈σ z
1 〉 and

two-atom correlations
〈

σ+
1 σ−

2

〉

, and after their analysis

we estimated the threshold conditions for superradiance

emission. Then, returning to the equation for the density

matrix of the complete system, applying the quantum

regression theorem, we calculated the two-time correlation

function 〈â†(t)â(0)〉. Taking its Fourier transform we found

the radiation spectrum S(w). As we saw, the radiation

spectrum contains two narrow Lorentz peaks, associated

with competitive cooperative processes. The linewidth

of these peaks turned out to be comparable with the

effective decay rate of one atom γ− . We also estimated

the presence of high-order interatomic correlations by

calculating the Frobenius norm of the density matrix for

cumulants and showed that two-atom correlations make the

largest contribution to stationary light generation.

The considered model can be used not only to estimate

the properties of the superradiant laser, but also to study

spin-polarized ensembles of alkali atoms with high optical

density, which are continuously pumped and probed by

external fields [21,22]. Such systems are of interest for

numerous applications in quantum metrology and quantum

information processing. As in the case when the atoms are

inside the cavity, the high optical density in the direction of

the optical axis creates a preferred direction in the medium,

along which, due to the Purcell effect, the cooperative

radiation of the ensemble occurs. This makes possible

to introduce a
”
virtual“ cavity and consider the ensemble
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of atoms in the same way as the superradiant laser, i.e.,

employ the same methods as discussed in this paper. Thus,

the obtained results can serve as a helpful reference for

explanation of the occurring cooperative effects.
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