удк 621.315.592 Генезис наноразмерных дефектов и разрушений в GaAs при многократном квазистатическом фотодеформировании микронных областей полупроводника

© С.В. Винценц*[¶], А.В. Зайцева, В.Б. Зайцев, Г.С. Плотников

* Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Россия Московский государственный университет им. М.В. Ломоносова (физический факультет), 119899 Москва, Россия

(Получена 13 мая 2003 г. Принята к печати 19 мая 2003 г.)

Методами атомно-силовой микроскопии, фототермических (квазистатических) деформаций поверхностей и по кинетике интенсивности зеркально отраженного света изучены особенности дефектообразования в GaAs в зависимости от числа N воздействующих на полупроводник сфокусированных лазерных импульсов. Облучение полупроводника сопровождалось его электронным возбуждением, локальным нагревом и деформированием поверхностных слоев. Впервые показано, что генезис поверхностных дефектов и разрушений полупроводника (внутри лазерного пятна микронных размеров) носит многостадийный характер вблизи порогов пластичности. Дефектно-индуцированные и пластические нанометровые поверхностные смещения ΔU_z нарастают с увеличением N лишь при превышении сдвиговыми деформациями поверхностей φ определенных ранее величин $10^{-5} < \varphi_0 < 10^{-4}$ деформационных пределов упругости (квазиупругости) в GaAs. Обсуждается природа возникновения наноразмерных дефектов и их самоорганизации на ранних стадиях фотодеформаций полупроводника, а также возможная связь обнаруженных эффектов с последующим катастрофическим разрушением микронных областей GaAs при больших значениях N.

1. Введение

Взаимодействие импульсного лазерного излучения с поверхностью GaAs изучается более 20 лет. Устойчивый интерес к таким исследованиям вызван широким применением арсенида галлия в современной микрои оптоэлектронике [1], а также, в частности, тем, что неравновесное импульсное воздействие способно инициировать в полупроводнике различные фазовые превращения и изменять ряд свойств поверхностного слоя внутри зоны облучения [2,3]. Взаимодействуя с GaAs, свет необратимо изменяет его химический состав и микроструктуру [2–6], люминесцентные [3,7,8] и электрофизические [6,7,9] характеристики, стимулирует генерацию точечных и протяженных дефектов [7,10,11], влияет на свойства оксидных слоев [2,3,12] и поверхностный рельеф [13,14].

В большинстве ранних исследований в основном использовались режимы однократного облучения полупроводника наносекундными (и другими) лазерными импульсами в спектральной области межзонного поглощения света с изменяющейся плотностью падающей энергии W. Облучаемые области выбирались достаточно большими (обычно больше $1-10 \text{ мм}^2$) и квазиоднородными по интенсивности света, что обеспечивало внутри таких областей отсутствие заметных сдвиговых деформаций. Изменение свойств полупроводника в основном за счет генерации дефектов наблюдалось вблизи поверхности при плотностях падающей энергии в импульсах W, весьма близких к расчетным порогам W_m образования

приповерхностной (метастабильной) жидкой фазы [2,3]. Результаты объяснялись преимущественно тепловым действием света [2–6] или комбинированным с учетом (при $W < W_m$) электронных возбуждений полупроводника [7,10].

С целью выяснения вклада фотодеформаций в дефектообразование нами были проведены прямые фотодеформационные исследования полупроводников и металлов, основанные на другом подходе — локальности и многократности "умеренных" сфокусированных одномодовых облучений с контролируемым, близким к гауссовому пространственным профилем интенсивности света [15–18]: $I(r, t) = W \exp(-r^2/\omega^2)(t/\tau^2) \exp(t/\tau)$, где W = 10 - 100 мДж/см² $\ll W_m$ — плотность падающей энергии в центре лазерного пятна, $\omega = 10 - 100$ мкм радиус лазерного пятна на образце, а $\tau = 0.1 - 1$ мкс характерная длительность импульсов. При этом, в соответствии с ожиданием, было обнаружено значительное усиление именно деформационных эффектов и, в частности, низкопороговое влияние возникающих при локальном облучении сдвиговых деформаций и напряжений на точечное дефектообразование в поверхностных слоях германия и кремния [19-22].

Особый интерес, естественно, вызывают дозированные (т. е. управляемые) фотодеформационные воздействия вблизи обнаруженных ранее деформационных пределов упругости (квазиупругости) полупроводников $\varphi_0(W_0)$ [21–25]. Такие исследования в первую очередь нами были проведены электрофизическими и оптическими методами в Ga и Si в режиме лазерного сканирования реальных поверхностей при фиксированном числе им-

[¶] E-mail: vintsents@mail.ru

пульсных облучений $N \approx 10^3$ и изменении W [19–22]. Вместе с тем одним из наиболее естественных параметров управления (наряду с плотностью энергии W) можно считать и число N импульсных облучений. При этом наибольший интерес вызывает изучение самых ранних стадий дефектообразования, когда N еще не велико. Такие исследования для упрощения интерпретации результатов целесообразно проводить в отсутствие лазерного сканирования, т.е. при фиксированном положении луча на поверхности.

Ранее в GaAs методами рентгеновского и химического микроанализа, электронной микроскопии и оже-спектроскопии нами был изучен случай с фиксированным на поверхности лучом при больших значениях $N \approx 10^5 - 10^6$ [26]. Оказалось, что GaAs представляет собой более сложный, чем Ge или Si, объект исследований в основном из-за летучести мышьяка [2,3] с возможным развитием разнообразных низкопороговых явлений [26,27]. Отметим, например, что нестационарные (акустические) деформации, инициированные локальным облучением, вызывали в тонком (~ 4-7 нм) поверхностном слое GaAs разложение полупроводника на примерно равные количества невстроенных в кристаллическую решетку атомов Ga и As даже на достаточно больших расстояниях (порядка миллиметров) от зоны облучения с радиусом $\omega \approx 20$ мкм [26]. Обнаруженный в [26] эффект дальнодействия лазерных импульсов, как и в работе [28], не был связан с локализованным вблизи области облучения нестационарным температурным полем.

Действительно, внутри лазерного пятна на микросекундной временной шкале доминируют другие, достаточно медленно изменяющиеся во времени и связанные в основном с температурными градиентами, квазистатические, так называемые "фототермические" деформации твердотельных поверхностей [16-25]. Такие "медленные" сдвиговые деформации в импульсной фотоакустической спектроскопии отклонения лазерных лучей [15-18] обычно характеризуются величиной локальных наклонов деформированной поверхности $\varphi \equiv (dU_z/dr)$, где U_z — эффективное нормальное смещение поверхности, а *r* — расстояние от центра луча. При $\phi > \phi_0 \approx (5-6) \cdot 10^{-5}$ и соответственно при плотностях энергии $W > W_0 \approx 100 \,\mathrm{мДж/cm^2}$ [22] в микронных областях GaAs paнee наблюдались [26] макроразрушения — катастрофы. При больших N на поверхностях GaAs внутри лазерного пятна возникали (в основном за счет неконгруэнтного испарения мышьяка) "макрократеры" правильной круглой формы глубиной ~ 1-5 мкм и размером $\sim \omega = 20$ мкм [26]. Подчеркнем, что генезис более ранних (начальных) стадий дефектообразования в локальных областях GaAs с ростом N не изучался.

В настоящей работе методами атомно-силовой микроскопии (ACM), фототермических деформаций поверхностей (ФТДП) и по интенсивности зеркально отраженного света впервые изучен процесс образования более тонких, наномасштабных изменений поверхностного рельефа GaAs при многократном квазистатическом фотодеформировании микронных областей полупроводника вблизи порогов $\varphi_0(W_0)$ [22] в широких пределах изменения N (от 1 до 10⁵).

Исследование может быть полезным для обоснования границ неразрушающих режимов лазерной микроскопии GaAs [29] и для моделирования процессов деградации малоразмерных (1–10 мкм) полупроводниковых приборов (например, миллиметрового диапазона волн), подверженных во время работы локальным перегревам [30,31] и, следовательно, деформациям [32].

2. Методика эксперимента

Образцы размером 5×5 мм с ориентацией поверхности (100) изготавливали из одной эпитаксиальной структуры GaAs, состоящей из пленки толщиной 2.4 мкм с концентрацией электронов $n \approx 10^{16}$ см⁻³, выращенной жидкофазной эпитаксией на сильно легированной подложке ($n^+ \approx 10^{18}$ см⁻³) толщиной ~ 250 мкм. Предварительная подготовка поверхности к облучению проводилась, как и в работе [26].

Образцы GaAs подвергались воздействию сфокусированных лазерных импульсов без режима сканирования луча на воздухе при комнатной температуре. Для облучения полупроводника использовалась вторая гармоника импульсного YAG-Nd-лазера с длиной волны λ = 0.53 мкм и характерной длительностью импульсов $\tau \ge 0.4 - 0.5$ мкс. Полная длительность импульсов по уровню 0.1 от I_{max} была не менее, чем 1.5 мкс. Импульсы следовали с частотой $f = 10-25 \,\mathrm{k}\Gamma\mathrm{u}$ и могли при необратимом (неупругом) изменении нанорельефа поверхности в дефектообразующем режиме облучений прерываться затвором с временами экспозиции Δt_i от 0.005 до 10 с. Излучение лазера в одномодовом режиме фокусировалось на образцы GaAs в пятно правильной формы с гауссовым радиусом $\omega \approx 20$ мкм, что контролировалось во время облучения методом ФТДП [16] по характерным профилям возникающих квазиупругих деформаций, а также с помощью оптической микроскопической приставки СОК-1-01 [23].

Диапазон изменения плотностей падающей энергии в центре лазерного пятна $W = E/\pi\omega^2 = 10-350 \text{ мДж/см}^2$ (здесь E — полная энергия импульса) выбирался вблизи ранее установленных порогов возникновения в GaAs неупругих деформаций поверхностных слоев $W_0 \approx 100 \text{ мДж/см}^2$ [22]. Подчеркнем, что для используемых в настоящей работе микросекундных лазерных импульсов расчетные [3] пороги плавления GaAs $W_m \ge 1-1.2 \text{ Дж/см}^2$ были существенно выше, чем для хорошо изученного наносекундного диапазона $\tau (W_m \approx 200 \text{ мДж/см}^2)$ [2,3].

О кинетике масштабных разрушений внутри лазерного пятна (0.1–1 мкм) судили в методе ФТДП [16,23] по зависимости интегральной интенсивности $I_p(t)$ зеркально отраженного от полупроводника зондирующего (пробного) луча Не–Ne-лазера от времени при непрерывном следовании сфокусированных лазерных импульсов. Особое внимание, как и в работе [33], обращали на стационарные значения $I_p(t)$, достигаемые в перерывах между импульсами. За начало катастрофы принимали момент времени t_0 , при котором отношение $I_p(t_0)/I_p(0)$ необратимо падало до уровня 0.9. Для повторной записи кинетик $I_p(t)$ каждый раз выбиралась новая, неповрежденная область GaAs, что контролировалось при помощи микроскопа СОК-1-01. Методика определения t_0 и соответственно критического числа облучений $N_0 = ft_0$ описана также в работах [34,35].

Для изучения более ранних стадий дефектообразования в GaAs (т.е. при $N \ll N_i$) применялись атомносиловой (АСМ) и оптический микроскопы, входящие в комплект сканирующего зондового микроскопа "Наноскоп-111а" (Digital Instruments). Отдельные участки полупроводника (при малых N) подвергались локальному импульсному облучению с фиксированными плотностями энергии W_i , где $W_i/W_0 = 0.1, 0.9, 1.15, 1.35,$ 1.6, 2.0, 2.6, 3.0, 3.5. В этом случае число импульсов N изменялось за счет разного времени воздействий Δt_i (см. выше). Полученная на одной эпитаксиальной структуре матрица из фотооблученных участков GaAs позволяла исследовать особенности развития дефектообразующих поверхностных деформаций и возникающих наноразмерных разрушений, как в зависимости от W при N = const, так и в зависимости от числа лазерных импульсов N при фиксированной плотности энергии W_i.

Разрешение оптического микроскопа позволяло наблюдать лишь самые грубые изменения поверхностного рельефа на уровне необратимых смещений $\Delta U_z \approx 1$ мкм. Атомно-силовой микроскоп использовался для изучения более тонкой эволюции нанорельефа поверхности ($\Delta U_z \approx 1$ нм) на начальных стадиях деформаций (малые N и $W \approx W_0$). АСМ-измерения проводились на воздухе. Микроскоп работал в контактном режиме, жесткость леверов составляла 0.01–0.2 Н/м. Обработка и анализ АСМ-изображений осуществлялись с помощью специализированного программного обеспечения "ФемтоСкан-001" [36].

3. Результаты и их обсуждение

Границы дефектообразующих неупругих фотодеформаций. Ранее отмечалось [22–25], что управляемые неупругие процессы, инициированные в полупроводниках многократным импульсным лазерным облучением микронных областей, ограничены по плотности энергии W снизу областью обратимой линейной фотоакустики (пороги W_0), а сверху — неуправляемыми процессами разрушений (пороги W_d). При $W_0 < W < W_d$ и $\omega = 10-100$ мкм существенным параметром неупругих

Рис. 1. a — кинетика интенсивности $I_p(t)$ зеркально отраженного от полупроводника непрерывно зондирующего лазерного луча (нормировано на начальную интенсивность $I_p(0)$): I — в режиме неразрушающих квазиупругих фотодеформаций GaAs, $\varphi < \varphi_0$ ($W < W_0$); 2 — при разрушающем облучении полупроводника, $\varphi > \varphi_0$ ($W > W_0$); 3 — схема определения критического числа лазерных импульсов N_0 . b — зависимость порогов разрушений W_d (в единицах $W_0 = 90-100 \text{ мДж/см}^2$) от $\lg(N_0)$ для GaAs при $\omega \approx 20 \text{ мкм. Цифрами 0–5 показана "траектория" увеличения <math>N$ при $W/W_0 \approx 1.35$. Численные значения N_i приведены в таблице.

воздействий становится также и число *N* импульсных облучений [22].

В этой связи мы исследовали в GaAs в первую очередь зависимости верхних порогов W_d от N по методике работ [34,35] (рис. 1). Для этого измеряли кинетику $I_p(t)$ при $W < W_0 = 90 - 100$ мДж/см² (рис. 1, *a*, кривая 1) и при $W > W_0$ (рис. 1, *a*, кривая 2). В первом случае в перерывах между импульсами не удавалось зафиксировать значительных изменений $I_p(t)$ вплоть до $N \ge 10^7 - 10^8$. Во втором случае при нескольких (*i*) фиксированных разрушающих уровнях плотностей энергии $W_0 < W_d^i < 3.5 W_0$ определяли критические числа облучений N_0^i (рис. 1, *a*, 3) и затем строили зависимости порогов разрушений W_d^i от N_0^i (рис. 1, b). Подчеркнем, что вслед за превышением N значений N₀ в GaAs всегда развивалась значительная деградация и катастрофическое разрушение микронных облучаемых областей полупроводника со стремлением $I_p(t) \rightarrow 0$ при $N \rightarrow \infty$ (рис. 1, *a*).

Рис. 2. a — схема метода ФТДП [16,22]: I — импульсный одномодовый "греющий" лазерный луч диаметром ~ 2ω , 2 — непрерывный зондирующий луч, угол отклонения которого $2\varphi(r, t)$ от деформируемой поверхности полупроводника 3 измеряется в различных точках поверхности r_i (4). b — характер распределения по сечению "греющего" луча возникающих в GaAs при $W \leq W_0$ [26] квазистатических сдвиговых деформаций $\varphi(r) \equiv dU_z/dr(r) - I$, нормированной расчетной температуры T(r)/T(0) - 2 и радиальное расположение обнаруженных при $W \geq W_0$ первичных дефектных областей — 3. c — схема расположения дефектных областей внутри зоны облучения GaAs, составленная по совокупным данным метода ACM.

Из экспериментально полученной зависимости $W_d(N)$ на рис. 1, *b* становится видна резкая нижняя граница при $W \approx W_0$, отделяющая области деградаций полупроводника от относительно безопасных уровней облучений. Чтобы убедиться в том, что при $W < W_0 = 90-100 \text{ мДж/см}^2$ в условиях наших экспериментов реализуется режим именно квазиупругих деформаций GaAs, применялся, как и в работах [22,26], метод фототермических деформаций поверхностей (ФТДП) (рис. 2, *a*). С его помощью удалось подтвердить, что при $\varphi \equiv (dU_z/dr)_{\text{max}} < \varphi_0 \approx 5-6 \cdot 10^{-5}$ фотодеформации $\varphi(t)$ в GaAs действительно полностью обратимы

во времени, и характер их кинетики не изменяется от импульса к импульсу вплоть до $N \ge 10^7 - 10^8$ [22].

Поскольку вблизи порогов φ_0 сдвиговые деформации dU_z/dr могут играть значительную роль в механизмах точечного дефектообразования и катастрофического разрушения в моноатомных полупроводниках и металлах [19-25], мы изучили методом ФТДП [16] характер распределения $\varphi(r)$ по сечению луча и в случае GaAs (рис. 2, b, кривая 1). Максимальные деформации достигались к моментам полного окончания лазерных импульсов t = 1.5 - 2.0 мкс, т.е. к моментам завершения основного тепловыделения в полупроводнике [2,3], причем по сечению луча максимумы φ были смещены от его центра на расстояния $r_{\rm max} \approx \omega/\sqrt{2} = 12 - 15$ мкм. Отметим, что в металлах сходное распределение $\varphi(r)$ на ранних стадиях развития деформаций ранее связывалось с частичной реализацией "квазиодномерного" режима смещений $U_{7}(r)$ [17,18].

Таким образом, проведенное предварительное изучение кинетики $I_p(t, W)$ и деформаций $\varphi(t, r, W)$ позволило обоснованно выбрать в координатах (W, N) режимы исследования начальных стадий дефектообразования и наноразрушений в GaAs. Дефектообразование в указанных режимах $(W/W_0 \ge 1$ и $N/N_0 \ll 1)$ при переменных значениях N в дальнейшем исследовалось методом атомно-силовой микроскопии (ACM).

Генезис наноразмерных дефектов и разрушений в GaAs изучался при разных комбинациях значений W и N. В качестве примера на рис. 1, b цифрами от 0 до 5 показана траектория увеличения N при $W/W_0 \approx 1.35$. Соответствующие ACM-результаты представлены на рис. 3, a-d и сведены в таблицу. В развитии дефектообразования и наноразрушений GaAs нам удалось выделить несколько различных стадий. Опишем их основные характеристики в порядке увеличения N (численные значения N_i для $W/W_0 \approx 1.35$ приведены в таблице).

Латентный период. Оказалось, что при самом малом числе облучений (N < N₁) от импульса к импульсу доминирует скрытое накопление точечных дефектов с сохранением по всей площади облучения наномасштабных амплитуд ΔU_z^0 случайного рельефа поверхности, характерного для необлученного GaAs с $\Delta U_z^0 < 1$ нм. Ранее для некоторых полупроводников (в том числе и для GaAs) методом динамического индентирования было показано [37], что именно при малых временах ($\leq 1 - 10 \,\mathrm{mc}$) импульсного контактного нагружения доминируют недислокационные механизмы микропластичности поверхностных слоев с преимущественной миграцией вблизи поверхности именно точечных, а не протяженных дефектов. Дефектно-диффузионные механизмы микропластичности характерны для относительно малых приповерхностных напряжений в полупроводниках [19-22] и могут реализоваться даже при низких температурах, в том числе и комнатных [38].

Стадия 1. При $N_1 < N < N_2$ в областях полупроводника, смещенных по r на 6–7 мкм от центра облучения на

Номер	Число <i>N</i> импульсных		Характерные размеры		
стадии	квазистатических	Доминирующий тип генерируемых дефектов	Перепад	Латеральный	Период
	фотодеформаций		высот, ΔU_z , нм	размер, нм	структур, нм
0	$1 < N < N_1$	Латентное накопление точечных дефектов	$\Delta U_z^0 < 1$	_	-
(скрытая)		при амплитудах флуктуаций смещений	-		
1	$N_1 < N < N_2$	Неориентированные кластеры нановпадин поверхности	1.5 - 2	10-50	—
2	$N_2 < N < N_3$	Слияние кластеров в ориентированные полосы впадин	5 - 7	50-100	100 - 200
3	$N_3 < N < N_4$	Укрупненные ориентированные волны нанорельефа	15 - 20	200 - 250	400 - 500
4	$N_4 < N < N_5$	Углубленные волны понижений нанорельефа	30 - 40	~ 250	~ 500
		Локальное выгорание GaAs, отдельные микрократеры	100 - 150	≤ 1000	—
5	$N > N_5$	Единый макроскопический кратер — катастрофа	1-5	$(1{-}3)\cdot 10^4$	—

Последовательные стадии генезиса наноразмерных дефектов в GaAs при увеличении числа N разрушающих ($W/W_0 \approx 1.35$) квазистатических фотодеформаций микронных областей полупроводника

Примечание. При локальном импульсном лазерном облучении GaAs с $\omega \approx 20$ мкм и $W/W_0 \approx 1.35$ (см. текст) величины N_i лежали в пределах: $N_1 \approx (2-5) \cdot 10^2$, $N_2 \approx 2.5 \cdot 10^3$, $N_3 \approx 10^4$, $N_4 \approx (5-10) \cdot 10^4$, $N_5 \ge 10^5 - 10^6$.

периферию (рис. 2, b, кривые 3), возникают неориентированные в пространстве кластеры точечных дефектов, которые методом АСМ идентифицируются как преимущественные понижения исходного поверхностного рельефа полупроводника (рис. 3, a). В пределах каждого нанократера наблюдается сложный характер рельефа дна с некоторым повышением в центре. Перепад высот ΔU_{z} в таких дефектах составляет 1.5–2.0 нм, характерный поверхностный размер 10-50 нм (см. таблицу). Результаты сравнения указанных характеристик дефектов с полученными ранее данными рентгеновского микроанализа [26] позволяют сделать вывод о том, что обнаруженные локальные нанометровые понижения рельефа в GaAs обусловлены в основном потерей полупроводником мышьяка. Дальнейшее развитие начальных стадий разрушений и возникновение новых типов дефектов в GaAs происходило в основном внутри упомянутых периферийных областей, т.е. по бокам лазерного пятна (рис. 2, c), и сопровождалось их расширением с ростом N.

Стадия 2. При $N_2 < N < N_3$ обнаружена пространственная самоорганизация неориентированных кластеров наноразмерных дефектов вдоль одного из кристаллографических направлений GaAs (рис. 3, b). Области пониженного рельефа с $\Delta U_z = 5-7$ нм сливаются в достаточно тонкие (50–100 нм) и протяженные (400–600 нм) линии с пространственным периодом 100–200 нм (рис. 3, b и таблица). Подчеркнем, что развитие подобных процессов по-прежнему доминирует не в центре лазерного пятна, где приращение фото-индуцированной температуры $\Delta T(r)$ и концентрация неравновесных электронов максимальны [2,3,15–18,23] (рис. 2, b, кривая 2), а на расстояниях r_0 5–10 мкм от центра (рис. 2, b, кривая 3 и рис. 2, c).

Это прямо свидетельствует о значительном вкладе в изучаемые процессы дефектообразования и перераспределения дефектов не только температуры $\Delta T(r)$ и электронного возбуждения полупроводника, но и локальных

Физика и техника полупроводников, 2004, том 38, вып. 3

сдвиговых квазистатических деформаций $\varphi \equiv dU_z/dr$ (рис. 2, *b*, кривая *I*). Действительно, области зарождения (стадия *I*) и первичной самоорганизации (стадия *2*) дефектов при локальном фотодеформировании GaAs всегда располагались между максимумами $\Delta T(r)$ и $\varphi(r)$ (рис. 2, *b*, кривые *I*–*3*). Такой многофакторный характер точечного дефектообразования был ранее подробно изучен для квазиодномерного режима облучения полупроводников наносекундными импульсами и сформулирован в виде электронно-деформационно-тепловой модели [39–41].

В радиальных направлениях (ось *у* на рис. 2, *c*), перпендикулярных обнаруженным вытянутым линиям (рис. 3, *b*), эффекты самоорганизации дефектов оказались выражены значительно слабее. Это позволяет высказать предположение об облегченной миграции дефектных кластеров и их слиянии на стадии 2 вдоль обнаруженного методом АСМ выделенного направления, например, за счет пьезоэлектрического эффекта [1–3]. Эти направления могут соответствовать проекциям пьезоэлектрических осей на плоскость (100). По-видимому, в этом случае сдвиговые деформации dU_z/dr и соответствующие подповерхностные напряжения σ_{zr} [23–25], перпендикулярные таким направлениям (рис. 2, *c*), могут быть значительно менее эффективны.

Стадия 3. При $N_3 < N < N_4$ происходит укрупнение ориентированных полос поверхностного рельефа GaAs (рис. 3, *c*). Из тонких вытянутых впадин, образовавшихся на стадии 2, формируется без изменения пространственной ориентации полос более крупномасштабный одномерный волновой рельеф с перепадом высот $\Delta U_z = 15-20$ нм, поперечным (латеральным) размером 200–250 нм и периодом 400–500 нм (см. таблицу). По нашему мнению, близкий к длине волны λ период таких структур на стадии 3 не связан с явлениями оптической интерференции [2,3,29], поскольку на стадии 2 период аналогичных структур был значительно меньше, чем λ (см. выше и таблицу).

Рис. 3. АСМ-изображения участков поверхности GaAs на разных стадиях дефектообразования при многократном квазистатическом фотодеформировании полупроводника. Размер изображений 2×2 мкм (a-c) и 4.5×4.5 мкм (d). Справа — профили нормальных смещений поверхности $\Delta U_z(x)$ вдоль вертикального направления z (x — координата вдоль поверхности).

На стадии 3, как и на двух предыдущих, происходит преимущественное понижение рельефа поверхности, видимо, связанное с дальнейшей потерей полупроводником мышьяка. В пользу этого говорят два установленных факта. Во-первых, разрушение поверхности GaAs с диаметром 10–15 мкм сопровождается образованием "кромки" рельефа с высотой резких краев 15–20 нм. Напомним, что ранее, в работе [26], подобный эффект объяснялся неконгруентным испарением мышьяка и подтверждался наблюдением голубой катодолюминесценции в оптический микроскоп микроанализатора в области образующейся "кромки" за счет возникновения там Ga_2O_3 в результате окисления освободившегося галлия. Во-вторых, по данным метода ACM, другая часть освободившегося галлия формирует наноразмерные капли на стадии *3* в направлении оси *y* (рис. 2, *c*), что ранее было предсказано из стехиометрических данных оже-спектроскопии GaAs [26].

Стадия 4. При дальнейшем увеличении числа N импульсных фотодеформаций GaAs $(N > N_4)$ в нескольких местах полупроводника, в основном на расстояниях $r \approx r_0$ от центра лазерного пятна, возникали отдельные микрократеры. Один из таких дефектов достаточно правильной (круглой) формы с глубиной дна $\Delta U_z = 120 - 150$ нм и поперечным размером ~ 1 мкм показан на рис. 3, d. Методом АСМ установлено, что такое локальное "выгорание" GaAs происходит только на фоне уже сформировавшихся на стадии 3 и дополнительно развитых на стадии 4 ориентированных укрупненных полос рельефа с перепадом высот $\Delta U_z \ge 30-40$ нм (рис. 3, *d*). Сопоставление данных АСМ по N_4 и зависимостей $W_d(N)$ при $W/W_0 \approx 1.35$ на рис. 1 позволяет сделать вывод о том, что именно обнаруженную стадию 4 следует классифицировать как начало катастрофических деградаций GaAs. Напомним, что пороги W_d указанных разрушений ранее традиционно фиксировались в полупроводниках и металлах по необратимому падению интенсивности зеркально отраженного света или с помощью различных вариантов оптической микроскопии [23-25,29,34,35]. В настоящей работе методом АСМ на нанометровой шкале поверхностных смещений впервые прослежено развитие более ранних стадий (1-3) дефектообразования в микронных областях GaAs.

Стадия 5. При $N > N_5 = 10^5 - 10^6$ отдельные микрократеры, возникшие на стадии 4, сливались в единый макроскопический дефект. Возникал "гигантский" кратер круглой формы с глубиной $\Delta U_z = 1 - 5$ мкм и поперечным размером 10–30 мкм, близким к диаметру 2ω лазерного пятна на поверхности полупроводника. Ранее такие конечные стадии разрушений в GaAs были нами подробно изучены методами электронной микроскопии, рентгеновского и химического микроанализа в работе [26].

Как показали ACM-измерения на матрице фотооблученных участков GaAs, характер наноразмерных разрушений поверхности зависит как от плотности энергии падающего излучения (при $W > W_0$), так и от числа Nимпульсных квазистатических фотодеформаций полупроводника. Сходных результатов можно было добиться не только изменением N при W = const, но и при возрастании W в условиях N = const. Действительно, увеличение W всегда приводило к сдвигу каждой из рассмотренных выше стадий дефектообразования в GaAs в область меньших значений N.

4. Заключение

Полученные результаты позволяют впервые взглянуть на процесс катастрофического разрушения микронных областей GaAs под воздействием многократного лазерного облучения с единой точки зрения — как на развивающийся многостадийный процесс. Самые ранние, начальные стадии дефектообразования при неупругом деформировании полупроводника, $W > W_0$ [22] характеризуются латентным накоплением от импульса к импульсу в основном точечных дефектов (вакансии мышьяка, избыток галлия, [26]). С ростом N дефекты сливаются в наноразмерные кластеры, образуя беспорядочные локальные понижения рельефа, и впоследствии участвуют в процессах их ориентированной самоорганизации. Методами ФТДП и АСМ показан значительный вклад в механизмы дефектообразования и миграции кластеров не только повышенной температуры или электронного возбуждения, но и возникающих при локальном облучении полупроводника сдвиговых деформаций $dU_r/dr(r)$ и подповерхностных напряжений [23-25]. Полученные результаты хорошо согласуются как с развитой ранее квазиодномерной электронно-деформационно-тепловой моделью лазерноиндуцированного дефектообразования в полупроводниках [39–41], так и с деформационно-стимулированными "размерными" эффектами [23-25,34,35].

Впервые прослеженные методом АСМ в микронных областях GaAs последовательные стадии дефектообразования при нанометровых возрастающих поверхностных смещениях ΔU_{τ} ясно свидетельствуют (как и в случае германия [42]) о постепенном перерастании процессов самоорганизации дефектных кластеров в дальнейшие фотостимулированные нано- и микроразрушения полупроводника. Мы полагаем, что сходные механизмы генезиса дефектов в GaAs могут реализоваться также и при иных способах разогрева микронных областей полупроводника, например при прохождении электрического тока. В этом случае исследованные процессы способны приводить к фундаментальным ограничениям [31] штатных режимов работы промышленных малоразмерных приборов (диоды Ганна, Шоттки и др.) с локальным тепловыделением [30] и, соответственно, локальным деформированием [32] активных полупроводниковых слоев.

Авторы благодарны И.Е. Сапожинскому и А.Г. Барскову за помощь в приготовлении части образцов и в текущем ремонте зондирующих лазеров.

Список литературы

- [1] М. Шур. Современные приборы на основе арсенида галлия (М., Мир, 1991).
- [2] А.В. Двуреченский, Г.А. Качурин, Е.В. Нидаев, Л.С. Смирнов. Импульсный отжиг полупроводниковых материалов (М., Наука, 1982).

- [3] Semiconductors and Semimetals, v. 23. Pulsed Laser Processing of Semiconductors, ed. by R.F. Wood, C.W. White, R.T. Young (N.Y., Academic Press, 1984).
- [4] Н.Г. Джумамухамбетов, А.Г. Дмитриев. Письма ЖТФ, 17 (13), 21 (1991).
- [5] В.Д. Андреева, М.И. Анисимов, Н.Г. Джумамухамбетов, А.Г. Дмитриев. ФТП, 24, 1010 (1990).
- [6] Б.Г. Грибов, Г.М. Гусаков, Т.Н. Кондратова, Е.Н. Нагдаев, А.В. Родионов. ДАН СССР, **314**, 618 (1990).
- [7] А.И. Ефимова, П.К. Кашкаров, В.И. Петров, В.Ю. Тимошенко. Поверхность, № 8, 94 (1990).
- [8] Н.Г. Джумамухамбетов, А.Г. Дмитриев. ФТП, 22, 1880 (1988).
- [9] Г.М. Гусаков, Т.Н. Кондратова, К.С. Капский, А.И. Ларюшин, ФТП, 23, 1864 (1989).
- [10] П.К. Кашкаров, В.И. Петров, Д.В. Птицын, В.Ю. Тимошенко. ФТП, 23, 2080 (1989).
- [11] Г.Д. Ивлев, Ф.М. Кощанов, В.Л. Малевич, Е.А. Тявловская. Письма ЖТФ, 16 (6), 42 (1990).
- [12] C. Cohen, J. Siejka, D. Pribat. J. de Phys., C5, 44 (10), 179 (1983).
- [13] К.К. Джаманбалин, А.Г. Дмитриев, Э.Н. Сокол-Номоконов, Ю.И. Уханов. Физика и химия обраб. материалов, № 2, 20 (1990).
- [14] А.Г. Дмитриев. ФТП, 27, 582 (1993).
- [15] F.A. McDonald, R.J. Gutfield, R.W. Dreyfus. IEEE Ultrasonic Sympos., 403 (1986).
- [16] С.В. Винценц, С.Г. Дмитриев. ЖТФ, 67, 105 (1997).
- [17] С.В. Винценц, С.Г. Дмитриев, О.Г. Шагимуратов. ФТТ, 38, 993 (1996).
- [18] С.В. Винценц, С.Г. Дмитриев, К.И. Спиридонов. ФТТ, **39**, 2224 (1997).
- [19] С.В. Винценц, С.Г. Дмитриев, Р.А. Захаров, Г.С. Плотников. ФТП, **31**, 513 (1997).
- [20] S.V. Vintsents, V.B. Zaitsev, A.V. Zoteyev, G.S. Plotnikov, A.V. Chervyakov. 3th Int. Conf. on Physics of Low-Dimensional Structures. (Chernogolovka, 2001), 3, 69.
- [21] С.В. Винценц, В.Б. Зайцев, А.В. Зотеев, Г.С. Плотников, А.И. Родионов, А.В. Червяков. ФТП, 36, 947 (2002).
- [22] С.В. Винценц, А.В. Зотеев, Г.С. Плотников. ФТП, 36, 902 (2002).
- [23] А.Г. Барсков, С.В. Винценц. ФТТ, 36, 2590 (1994).
- [24] С.В. Винценц, С.Г. Дмитриев. Письма ЖТФ, **21** (19), 1 (1995).
- [25] С.В. Винценц, С.Г. Дмитриев, О.Г. Шагимуратов. Письма ЖТФ, 22 (8), 8 (1996).
- [26] А.Г. Барсков, С.В. Винценц, Г.Г. Дворянкина, З.М. Лебедева, В.Е. Любченко, А.Б. Ормонт, А.Г. Петров. Поверхность, № 3, 79 (1995).
- [27] D.V. Lioubtchenko, I.A. Markov, T.A. Briantseva. Appl. Surf. Sci., **195**, 42 (2002).
- [28] А. Блажис, С. Жиленис, Г. Таутвайшас. ЖТФ, 58 (11), 2237 (1988).
- [29] W.W. Duley. *Laser Processing and Analysis of Materials* (Plenum Press, 1983).
- [30] В.И. Борисов, В.Е. Любченко, А.С. Рогашков. Электрон. техн., сер. Электроника СВЧ, **10**, 404 (1987).
- [31] В.Е. Любченко. Радиотехника, № 2, 16 (2002).
- [32] А.Л. Полякова. Деформация полупроводников и полупроводниковых приборов (М., Энергия, 1979).
- [33] П.К. Кашкаров, М.В. Русина, В.Ю. Тимошенко. ФТП, 26 (10), 1835 (1992).

- [34] C.S. Lee, N. Koumvakalis, M. Bass. Appl. Phys. Lett., 47, 625 (1982); Opt.Eng., 22, 419 (1983); J. Appl. Phys., 54, 5727 (1983).
- [35] S.S. Cohen, J.B. Bernstein, P.W. Wyatt. J. Appl. Phys., 71, 630 (1992).
- [36] А.С. Филонов, И.В. Яминский. Руководство пользователя "ФемтоСкан-001" (М., ЦПТ, 1999).
- [37] Ю.И. Головин, А.И. Тюрин. ФТТ, 42, 1818 (2000).
- [38] В.П. Алехин. Физика прочности и пластичности поверхностных слоев материалов (М., Наука, 1983).
- [39] В.И. Емельянов, П.К. Кашкаров. Поверхность, № 2, 77 (1990).
- [40] V.I. Emel'yanov, P.K. Kashkarov. Appl. Phys. A., 55, 161 (1992).
- [41] П.К. Кашкаров, В.Ю. Тимошенко. Поверхность, № 6, 5 (1995).
- [42] С.В. Винценц, А.В. Зайцева, Г.С. Плотников. ФТП, 37, 134 (2003).

Редактор Л.В. Беляков

Genesis of the nanoscale defects and damage in GaAs under the multi-pulse quasistatic photodeformations of the micron-sized areas of semiconductor

S.V. Vintsents*, A.V. Zaitseva, V.B. Zaitsev, G.S. Plotnikov

Institute of Radio Engineering & Electronics, Russian Academy of Sciences, 141120 Fryazino, Moscow State University, 119899 Moscow, Russia