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Second-harmonic generation in the surface layer of a dielectric

spheroidal particle: I. Analytical solution
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The problem of second-harmonic generation by a plane elliptically polarized electromagnetic wave in a thin

optically nonlinear surface layer of a dielectric particle shaped as an ellipsoid of revolution is solved. The generalized

Rayleigh−Gans−Debye approximation is used for an analytical description with taking into account the difference

in refractive indices of the medium corresponding to the frequencies of the exciting and generated radiation. The

limiting forms of functions are obtained, with the use of which the electric field strength of the generated radiation

is expressed. The order of dependence of these functions on the linear dimensions is found, when the lengths of

the semiaxes of the particle are small compared to the wavelength of the exciting radiation and their ratio remains

constant. It was found that the power density of the generated radiation in this case is determined to a greater

extent by the chiral components of the nonlinear dielectric susceptibility tensor and is proportional to the fourth

power of the length of the semiaxis of the particle, if the shape of the spheroidal particle differs significantly from

the spherical one. The solution of this problem, obtained by other authors, is supplemented for the possibility

of applying to the description of generation in the surface layer of a dielectric particle not only in the form of a

prolate, but also in the form of an oblate spheroid. Corrections of inaccuracies and misprints made in similar works

by other authors are proposed. The relationships between the formulas used in these works are found, taking into

account the corrections and the formulas used in this work.
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DOI: 10.21883/EOS.2022.07.54726.3228-22

Introduction

Second-harmonic generation was proven to be indis-

pensable in studies of micro- and nanosized objects

(medical and biological research included). It provides

an opportunity both to visualize live cells, tissue, and

collagen fibers [1] and to examine the properties of

surfaces of dielectric particles [2] and molecules adsorbed

on them [3].

According to the results of earlier research, the nonlinear

response of metal and dielectric nanoparticles is directly

affected by their size and shape [4]. The majority

of studies published to date are focused on second-

harmonic generation in spherical particles, since this is

the most simple and symmetrical shape [2–5]. Particles

with a single symmetry axis (spheroidal [6] and cylin-

drical [7–10]) are examined much less frequently. This

is attributable to the fact that such studies raise the

requirements imposed on the mathematical framework and

the computation capacity. Axially symmetric particles

are used in the design of metamaterials that allow for

amplification of a nonlinear signal [11] and control over

the intensity of electromagnetic waves propagating through

interfaces [12].

Particles shaped as an ellipsoid of revolution (spheroid)
are a generalization of spherical ones. Under the influence

of external forces, spherical particles may deform and

assume a spheroidal shape. In fact, it is virtually impossible

to form dielectric particles of an ideal spherical shape due

to the presence of irregularities on their surface. This is

especially relevant to the formation of ultrasmall particles

(with diameters below 100 nm), when the emerging irreg-

ularities become comparable to the linear dimensions of

particles [13]. As far as we know, a sufficiently complete

analytical model of nonlinear generation in the surface layer

of spheroidal dielectric particles has not been developed

yet.

The aim of the present study is to characterize analytically

and reveal the specific features of second-harmonic gener-

ation in the surface layer of dielectric particles, which are

shaped as an ellipsoid of revolution, using the generalized

Rayleigh–Gans–Debye model [4] that was proven to be

efficient in analyzing nonlinear generation in spherical

dielectric particles.

In the first part, we

– provide formulae characterizing the spatial distribution

of generated radiation,

– analyze limit forms of the used mathematical functions

for a small-sized spheroidal particle,
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– find a relation between the obtained expressions and

formulae corresponding to the problem of second-harmonic

generation in the surface layer of a spherical particle,

and

– compare the results with the data obtained in other

studies.

The following topics are covered in the second part of the

study:

– the spatial distribution of generated radiation at key

values of the problem parameters is illustrated using three-

dimensional directivity patterns,

– mathematical properties characterizing the symmetry of

directivity patterns are indicated for the functions used,

– the influence of individual parameters on the shape of

the directivity pattern is characterized, and

– methods for estimating selectively the independent

components of the nonlinear dielectric susceptibility tensor

using the conditions of zero generation and generation of

linearly polarized radiation are proposed.

Problem formulation

Let us assume that second-harmonic generation proceeds

in a thin optically nonlinear layer distributed uniformly over

the surface of a dielectric particle shaped as an ellipsoid

of revolution. We denote the length of the semiaxis of an

ellipsoid aligned with its symmetry axis as a z and the length

of the semiaxis perpendicular to the symmetry axis as ax .

The ratio of these quantities is denoted as ρ = a z/ax . If

ρ > 1, a particle has the shape of an elongated ellipsoid of

revolution, which may be produced by stretching a spherical

shape along the prospective symmetry axis. If ρ < 1, a

particle has the shape of an oblate ellipsoid of revolution,

which may be produced by compressing a spherical shape

along the prospective symmetry axis. If ρ = 1, the particle

shape is spherical. Thickness d0 of the optically nonlinear

layer is chosen so that conditions d0 ≪ ax , d0 ≪ a z are

satisfied.

Following the line of reasoning from [5,8], we define

the electric field vector of an incident plane electromag-

netic wave at a point characterized by radius vector x

as

E(x) = E0e
(ω) exp(ik(ω)x), (1)

where E0 and e(ω) are the complex amplitude and a

unit vector of polarization, respectively; the wave vector

is denoted as k(ω). Temporal part exp(−iωt), where

ω is the cyclic frequency of excitation radiation, is im-

plied to be present here and elsewhere; if not a part

of an index, symbol i denotes imaginary unit. The

schematic diagram of the problem is presented in the

figure.

Scattered electromagnetic waves are neglected in calcu-

lations within a model based on the generalized Rayleigh–
Gans–Debye approximation. Such a model may be used if

e( )w
k( )w

X

Y

Z

Schematic diagram of the problem of second-harmonic generation

in the surface layer of a spheroidal particle.

the refraction indices of a dielectric within and outside of

the particle are fairly close [5]:
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where np and nm are the refraction indices of the particle

material and the environment, respectively, R is the charac-

teristic particle size (e.g., major semiaxis length), and λ is

the excitation radiation wavelength in vacuum.

The components of vector P(2) (nonlinear part of the

polarization vector enabling second-order nonlinear gener-

ation) may then be determined, in accordance with the

dipole model, for a surface layer element using the rule

of summation over repeated indices:

P(2)
i = χ

(2)
i jkE jEk , (3)

where E j , Ek are the jth and kth components of the electric

field vector of excitation radiation, respectively. Tensor

χ
(2)
i jk for second-harmonic generation contains only four

independent components (χ
(2)
1−3 are non-chiral, and χ

(2)
4 is

chiral) and may be written as follows in the component

form:

χ
(2)
i jk = χ

(2)
1 nin jnk + χ

(2)
2 niδ jk + χ

(2)
3 (n jδki + nkδi j)

+ χ
(2)
4 nm(nkεi jm − n jεimk). (4)

Here, ni , n j, nk, nm are the components of a unit normal to

a surface element, δ jk , δki , δi j are Kronecker delta symbols,

and εi jm, εimk are Levi-Civita symbols. The lower indices

in formula (4) may assume values x , y, z that correspond

to the axes of a right-hand orthonormal coordinate system.

Only the case of real values of components χ
(2)
1−4 is

considered in the present study.

The objective is to derive and analyze formulae character-

izing the spatial distribution and power of double-frequency
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radiation in the far-field region generated in the surface

optically nonlinear layer of a spheroidal dielectric particle

by a plane elliptically polarized electromagnetic wave.

Electric field of the second harmonic

The following expression may be used to determine

the components of the electric field vector of the second

harmonic in the far-field region:

E(2ω)
i (x) = µ2ω

(2ω)2

c2

exp(ik2ωr)

r
d0(δim − er,ier,m)e(ω)

j e(ω)
k

×

∫

S

exp(ix′q(x))χ(2)
m jk(x

′)dSx′. (5)

Formula (5), which was derived in [4,5,8] with the use of

the Green function method, is applicable in calculations of

the electric field of radiation generated in the surface layer

of dielectric particles of arbitrary shape. Integration should

be performed over the entire area S of the particle surface

covered with an optically nonlinear layer. The notation

in formula (5) is as follows: µ2ω is the permeability of

the environment, k2ω is the modulus of wave vector k(2ω)

of the generated wave, r = |x| is the distance from the

geometric center of a dielectric particle to the observation

point, er,i , er,m are the components of unit vector er

directed from the particle center to the observation point,

x′ is a vector directed from the center of a particle to its

surface element, and q(x) is the scattering vector given

by

q(x) = 2k(ω) − k(2ω)(x),

k(2ω) = k(2ω)(x) = k2ω

x

r
. (6)

When (4) is inserted into expression (5), it becomes

necessary to calculate the following integrals over the

surface of an ellipsoid of revolution:

I(ni |x) =
1

a2
x

∫

S

exp(ix′q(x))ni(x
′)dSx′,

I(ni n j |x) =
1

a2
x

∫

S

exp(ix′q(x))ni(x
′)n j(x

′)dSx′,

I(ni n jnk |x) =
1

a2
x

∫

S

exp(ix′q(x))ni(x
′)n j(x

′)nk(x
′)dSx′.

(7)
Permutation symmetry is an important property of inte-

grals (7):

I(nin j |x) = I(n j ni |x), (8)

I(ni n jnk |x) = I(ni nkn j |x), I(nin j nk |x) = I(n jni nk |x). (9)

The expression for the components of the electric field

vector may then be written as

E(2ω)
i (x) = µ2ω

(2ω)2

c2

exp(ik2ωr)

r

× d0a
2
x(δim − er,i er,m)e(ω)

j e(ω)
k X (2ω)

m jk (x), (10)

where X (2ω)
m jk is the effective nonlinear dielectric susceptibility

tensor [5] that is expressed in terms of integrals (7) in the

following way:

X (2ω)
m jk (x) = χ

(2)
1 I(nmn jnk |x) + χ

(2)
2 I(nm|x)δ jk

+ χ
(2)
3

(

I(n j |x)δkm + I(nk |x)δm j
)

+ χ
(2)
4

(

I(npnk |x)ǫm j p − I(npn j |x)ǫmpk
)

. (11)

The determination of the explicit form of integrals in

formulae (7) is the most difficult part of calculation of the

electric field of generated radiation.

Explicit form of auxiliary integrals

Let us introduce Cartesian coordinate system (x , y, z )
with its center coinciding with the geometric center of

a dielectric particle and axis Oz being aligned with the

symmetry axis of this particle (see the figure). The equation
characterizing the surface of an ellipsoidal particle with

semiaxes ax , ax , a z may then be written as

x2

a2
x

+
y2

a2
x

+
z 2

a2
z

= 1. (12)

In the context of calculation of integrals (7), it is convenient
to switch to the parametric form of this equation:

x′ = ax sin θ
′ cosϕ′ex + ax sin θ

′ sinϕ′ey + a z cos θ
′ez ,

(13)
where x′ is the radius vector of a surface element of an

ellipsoid of revolution, θ′, ϕ′ are its angular coordinates,

and ex , ey , ez are Cartesian vectors.

Using expression (13), we find the dependence of a unit

normal to the particle surface on angular coordinates θ′, ϕ′ :

n =

[

∂x′

∂θ′
× ∂x′

∂ϕ′

]

∣

∣

∣

∂x′

∂θ′
× ∂x′

∂ϕ′

∣

∣

∣

=
a z sin θ

′ cosϕ′ex + a z sin θ
′ sinϕ′ey + ax cos θ

′ez
√

a2
z sin

2 θ′ + a2
x cos

2 θ′

=
ρ sin θ′ cosϕ′ex + ρ sin θ′ sinϕ′ey + cos θ′ez

√

ρ2 sin2 θ′ + cos2 θ′
.

(14)
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The surface element area in integrals (7) is also calculated

based on the expression for radius vector (13):

dSx′ = |dSx′ | =

∣

∣

∣

∣

∂x′

∂θ′
×

∂x′

∂ϕ′

∣

∣

∣

∣

dθ′dϕ′

= ax sin θ

√

a2
z sin

2 θ′ + a2
x cos

2 θ′dθ′dϕ′. (15)

The components of scattering vector q are defined as

q = qxex + qyey + qz ez . (16)

Inserting (13)−(16) into (7), we obtain a more extensive

form of auxiliary integrals depending on x:

I(ni |x) =
1

a2
x

∫

S

exp(ix′q(x))ni(x
′)dSx′

=
1

a2
x

π
∫

−π

π
∫

0

exp(iqx ax sin θ
′ cosϕ′ + iqy ax sin θ

′ sinϕ′

+ iqz a z cos θ
′)

× ni(θ
′, ϕ′)ax sin θ

′
√

a2
z sin

2 θ′ + a2
x cos

2 θ′dθ′dϕ′

=

π
∫

0

exp(iqz a z cos θ
′)

√

ρ2 sin2 θ′ + cos2 θ′ sin θ′

×

π
∫

−π

exp(iqx ax sin θ
′ cosϕ′ + iqy ax sin θ

′ sinϕ′)

× ni(θ
′, ϕ′)dϕ′dθ′,

(17)

I(nin j |x) =

π
∫

0

exp(iqz a z cos θ
′)

√

ρ2 sin2 θ′ + cos2 θ′ sin θ′

×

π
∫

−π

exp(iqx ax sin θ
′ cosϕ′ + iqy ax sin θ

′ sinϕ′)

× ni(θ
′, ϕ′)n j(θ

′, ϕ′)dϕ′dθ′, (18)

I(ni n jnk |x) =

=

π
∫

0

exp(iqz a z cos θ
′)

√

ρ2 sin2 θ′ + cos2 θ′ sin θ′

×

π
∫

−π

exp(iqx ax sin θ
′ cosϕ′ + iqy ax sin θ

′ sinϕ′)

× ni(θ
′, ϕ′)n j(θ

′, ϕ′)nk(θ
′, ϕ′)dϕ′dθ′. (19)

Integrals (17)−(19) may be calculated analytically with

the use of infinite series. An incomplete calculation of

this kind was performed in [6]. All combinations of

component values (with i, j, k equal to x , y, z ) should

be considered separately. Since transformations needed

to derive an explicit form of the indicated integrals are

rather cumbersome, we provide only the end result.

Function M2s. ,c. ,q.
(z 1, z 2, ρ) needs to be introduced for this

purpose:

M2s. ,c. ,q.
(z 1, z 2, ρ) =

4πi2{q. /2}−c.

ρ2s.+c.+q.−1

∞
∑

g.=0

∞
∑

n.=0

s.
∑

m. =0

×

s.−m.
∑

k.=0

2m. +c.
∑

l.=0

(−1)k.+l.+g.
(

2(q. /2 + {q. /2} + n. + g. + k. ) − 1
)

!!

×

(

−(c. + q. − 1)/2 − s.

n.

)(

s.

m. , k. , s. − m. − k.

)

×

(

2m. + c.

l.

)

(

1

ρ2
− 1

)n.

(q. /2 + {q. /2} + n. + g. + k. )l.

×
j (2m. +c.−l.)

q. /2+{q. /2}+n.+g.+k.
(z 1)

z
q. /2+{q. /2}+n.+g.+k.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
.

(20)

The notation in formula (20) is as fol-

lows:

– all symbols with a dot below them (s. , c. , q. , g. , n. , m. , k. ,

l. , d. ) are auxiliary non-negative integer indices;

– {z} designates the fractional part of z ;

– (n. )l. = Ŵ(n.+l.)
Ŵ(n. )

is the Pochhammer symbol expressed in

terms of a gamma function;

–

(

s.
m.

)

= s. !
s. !(s.−m. )!

and
(

s.
m. , k. , s. − m. − k.

)

= s. !
m. !k. !(s.−m. −k. )!

are binomial and

multinomial coefficients, respectively;

– j (d. )
n. (z ) =

∂d. jn. (z )

∂z d. — is the derivative of order d. of a

spherical Bessel function of order n. .

The infinite series in n. in (20) converges only at

ρ2 > 1/2. A proof of this is provided in Appendix A. It may

be proven in a similar fashion that the infinite series in (20)

converges at arbitrary values of z 1 and z 2 in summation

over indices n. and g. .
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In the case when the series in formula (20) diverges, one

needs to use another form of function M2s. ,c. ,q.
(z 1, z 2, ρ):

M2s. ,c. ,q.
(z 1, z 2, ρ) = 4πi2{q. /2}−c.

∞
∑

g.=0

∞
∑

n.=0

s.
∑

m. =0

s.−m.
∑

k.=0

2m. +c.
∑

l.=0

×

n.
∑

d.=0

(−1)k.+l.+g.+d.
(

2(q. /2 + {q. /2} + d. + g. + k. ) − 1
)

!!

×

(

−(c. + q. − 1)/2− s.
−(c. + q. − 1)/2− s. − n. , n. − d. , d.

)

×

(

s.
m. , k. , s. − m. − k.

)(

2m. + c.
l.

)

× (ρ2 − 1)n. (q. /2 + {q. /2} + d. + g. + k. )l.

×
j (2m. +c.−l.)

q. /2+{q. /2}+d.+g.+k.
(z 1)

z
q. /2+{q. /2}+d.+g.+k.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
,

(21)
where the notation is similar to the one used in (20).
Index d. and the other indices also assume integer non-

negative values. The convergence domain of the infinite

series in summation over n. in (21) is bounded by condition

0 < ρ2 < 2. The proof of this is similar to the one presented

in Appendix A.

Thus, at ρ2 ≥ 2, one should use form (20) of function

M2s. ,c. ,q.
(z 1, z 2, ρ); at 0 < ρ2 ≤ 1/2, only form (21) is ap-

plicable; if condition 1/2 < ρ2 < 2, ρ 6= 1 is satisfied, both

formulae are applicable. When ρ = 1, 00 indeterminancy

emerges in formulae (20) and (21), which renders them

unusable. Since a particle is spherical in this case, the

formulae from [5], where second-harmonic generation in

the surface layer of a spherical particle was characterized,

should be used. The following trend is observed when either

one of formulae (20), (21) are applied: the lower the value

of |ρ2 − 1| is, the smaller is the number of terms in infinite

sums over n. and g. needed to achieve the required accuracy

of the value of function M2s. ,c. ,q.
(z 1, z 2, ρ). Analyzing

formulae (20), (21), one may notice that, depending on the

values of indices, function M2s. ,c. ,q.
(z 1, z 2, ρ) assumes real

(c. + q. is even) or purely imaginary (c. + q. is odd) values.

The expressions for integrals (17)−(19) take the follow-

ing form when function M2s. ,c. ,q.
(z 1, z 2, ρ) is used:

I((nz )
m|x) = M0,0,m

(

q⊥(x)ax , qz (x)a z , ρ
)

, m = 1, 2, 3,

(22)

I((nz )
mni |x)=ρM0,1,m

(

q⊥(x)ax , qz (x)a z , ρ
)

νi , m=0, 1, 2,

(23)

I((nz )
mni n j |x) = ρ2

(

M0,2,m
(

q⊥(x)ax , qz (x)a z , ρ
)

− M2,0,m
(

q⊥(x)ax , qz (x)a z , ρ
)

)

νiν j

+ ρ2M2,0,m
(

q⊥(x)ax , qz (x)a z , ρ
)

δi j , m = 0, 1, (24)

I(nin jnk |x) = ρ3
(

M0,3,0

(

q⊥(x)ax , qz (x)a z , ρ
)

− 3M2,1,0

(

q⊥(x)ax , qz (x)a z , ρ
)

)

νiν jνk

+ ρ3M2,1,0

(

q⊥(x)ax , qz (x)a z , ρ
)(

νiδ jk + ν jδki + νkδi j).
(25)

The possible values of m are indicated in the corresponding

formulae; indices i, j, k may assume values x or y ; quantity
q⊥ is the modulus of component q of the scattering vector

perpendicular to the particle symmetry axis; qz is the

projection of scattering vector q onto Cartesian axis Oz ; and
νi, ν j, νk are the components of unit vector ν codirectional

with vector q⊥:

qz = qez , q⊥ = q− qz ez , q⊥ = |q⊥|, ν = q⊥/q⊥. (26)

Formulae (22)−(25) were verified by numerical integration

at random parameter values for all possible combinations of

indices i, j, k .
This compact form of formulae (22)−(25) eliminates

the need to specify integrals (17)−(19) component-wise at

different values of indices i, j, k . However, the values of

integrals I at all the possible values of indices i, j, k, m are

listed in Appendix B to make it easier to compare the results

with the solution of a similar problem presented in [6].
Note that integrals I(ni |x) and I(nin jnk |x) assume real

values, while the values of integrals I(ni n j |x) are purely

imaginary. This is attributable to the specifics of functions

M2s. ,c. ,q.
(z 1, z 2, ρ): functions M0,0,1, M0,1,0, which are used

to define integrals I(ni |x), and functions M0,0,3, M0,2,1,

M2,0,1, M2,1,0, M0,3,0, which are used to define integrals

I(nin jnk |x), assume imaginary values, and functions M0,1,1,

M0,0,2, M2,0,0, M0,2,0 found in the expressions for I(ni n j |x)
assume real values.

Limit forms of functions M

Limit forms of functions M at ρ → 1

At limit values of certain parameters, function

M2s. ,c. ,q.
(z 1, z 2, ρ) takes a simpler form and may be related

to the already known functions used to solve problems of

nonlinear generation.

If ρ → 1, formulae (20) and (21) take the form

lim
ρ→1

M2s. ,c. ,q.
(z 1, z 2, ρ) = 4πi2{q. /2}−c.

∞
∑

g.=0

s.
∑

m. =0

s.−m.
∑

k.=0

2m. +c.
∑

l.=0

× (−1)k.+l.+g.
(

2(q. /2 + {q. /2} + g. + k. ) − 1
)

!!

×

(

s.
m. , k. , s. − m. − k.

)(

2m. + c.
l.

)

× (q. /2 + {q. /2} + g. + k. )l.

×
j (2m. +c.−l.)

q. /2+{q. /2}+g.+k.
(z 1)

z
q. /2+{q. /2}+g.+k.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
. (27)
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We managed to avoid summation over index n. here, since
all terms at n. > 0 turn to zero.

At specific values of indices s, c, q, limit

limρ→1 M2s. ,c. ,q.
(z 1, z 2, ρ) in (27) assumes the following

forms after simplification (here, Z =
√

z 2
1 + z 2

2):

lim
ρ→1

M0,0,1(z 1, z 2, ρ) = 4πi
z 2

Z
j1(Z), (28)

lim
ρ→1

M0,0,2(z 1, z 2, ρ)

= 4π

[

1

3
( j0(Z) + j2(Z)) −

(

z 2

Z

)2

j2(Z)

]

, (29)

lim
ρ→1

M0,0,3(z 1, z 2, ρ)

= 4πi

[

3

5
( j1(Z) + j3(Z))

z 2

Z
− j3(Z)

(

z 2

Z

)3]

, (30)

lim
ρ→1

M0,1,0(z 1, z 2, ρ) = 4πi
z 1

Z
j1(Z), (31)

lim
ρ→1

M0,1,1(z 1, z 2, ρ) = −4π
z 1z 2

Z2
j2(Z), (32)

lim
ρ→1

M0,1,2(z 1, z 2, ρ)

= 4πi
z 1

Z

[

1

5
( j1(Z) + j3(Z)) − j3(Z)

(

z 2

Z

)2]

, (33)

lim
ρ→1

M2,0,0(z 1, z 2, ρ) = 4π
1

3

(

j0(Z) + j2(Z)
)

, (34)

lim
ρ→1

M2,0,1(z 1, z 2, ρ) = 4πi
1

5

z 2

Z

(

j1(Z) + j3(Z)
)

, (35)

lim
ρ→1

M0,2,0(z 1, z 2, ρ)

= 4π

(

1

3

(

j0(Z) + j2(Z)
)

− j2(Z)

(

z 1

Z

)2)

, (36)

lim
ρ→1

M0,2,1(z 1, z 2, ρ)

= 4πi
z 2

Z

(

1

5

(

j1(Z) + j3(Z)
)

− j3(Z)

(

z 1

Z

)2)

, (37)

lim
ρ→1

M2,1,0(z 1, z 2, ρ) = 4πi
1

5

(

j1(Z) + j3(Z)
) z 1

Z
, (38)

lim
ρ→1

M0,3,0(z 1, z 2, ρ)

= 4πi
z 1

Z

(

3

5

(

j1(Z) + j3(Z)
)

− j3(Z)

(

z 1

Z

)2)

. (39)

Only the values of indices found in formulae

for integrals (22)−(25) were considered

in (28)−(39).

Inserting (28)−(39) into formulae (22)−(25) and the

obtained result into formula (11), we find the expres-

sion for effective susceptibility tensor X (2ω)
i jk . In accor-

dance with the correspondence principle, this expression

matches a similar quantity in [5] for second-harmonic

generation in the surface layer of a spherical parti-

cle.

Limit forms of function M at z 2 → 0

Let us analyze the value of function M2s. ,c. ,q.
(z 1, z 2, ρ)

at small values of z 1 and z 2. Condition z 2 → 0 in

the considered problem corresponds to the case when

qz (x)a z → 0. It is established if semiaxis length a z

is negligible comparable to the wavelength of excitation

radiation or radiation is generated in directions where

projection qz (x) of the scattering vector is close to zero.

Condition z 1 → 0 may be satisfied if q⊥(x)ax → 0. When

this is the case, semiaxis length ax is small comparable

to the wavelength of an incident electromagnetic wave

or generation proceeds in directions where the modu-

lus of the scattering vector projection onto the plane

perpendicular to the particle symmetry axis tends to

zero.

At z 2 → 0, all terms containing factor z
2g.+2{q. /2}
2 at g. > 0

in the sum over index g. are negligible comparable to the

terms at g. = 0. Therefore, function M2s. ,c. ,q.
(z 1, z 2, ρ) may

be written as

M2s. ,c. ,q.
(z 1, z 2, ρ) =

4πi2{q. /2}−c.

ρ2s.+c.+q.−1

∞
∑

n.=0

s.
∑

m. =0

×

s.−m.
∑

k.=0

2m. +c.
∑

l.=0

(−1)k.+l.
(

2(q. /2 + {q. /2} + n. + k. ) − 1
)

!!

×

(

−(c. + q. − 1)/2− s.
n.

)(

s.
m. , k. , s. − m. − k.

)

×

(

2m. + c.
l.

)(

1

ρ2
− 1

)n.

(q. /2 + {q. /2} + n. + k. )l.

×
j (2m. +c.−l.)

q. /2+{q. /2}+n.+k.
(z 1)

z
q. /2+{q. /2}+n.+k.+l.
1

z
2{q. /2}
2

(2{q. /2})!
. (40)

Since expression (40) was derived from formula (20), it

is applicable only at ρ2 > 1/2. Extending this reasoning

to formula (21), we find that function M2s. ,c. ,q.
(z 1, z 2, ρ) at
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ρ2 < 2 may be written as

M2s. ,c. ,q.
(z 1, z 2, ρ) = 4πi2{q. /2}−c.

∞
∑

n.=0

s.
∑

m. =0

s.−m.
∑

k.=0

2m. +c.
∑

l.=0

×

n.
∑

d.=0

(−1)k.+l.+d.
(

2(q. /2 + {q. /2} + d. + k. ) − 1
)

!!

×

(

−(c. + q. − 1)/2− s.
−(c. + q. − 1)/2− s. − n. , n. − d. , d.

)

×

(

s.
m. , k. , s. − m. − k.

)(

2m. + c.
l.

)

× (ρ2 − 1)n. (q. /2 + {q. /2} + d. + k. )l.

×
j (2m. +c.−l.)

q. /2+{q. /2}+d.+k.
(z 1)

z
q. /2+{q. /2}+d.+k.+l.
1

z
2{q. /2}
2

(2{q. /2})!
. (41)

It follows from (40) and (41) that

M2s. ,c. ,q.
(z 1, z 2, ρ) ∝ z

2{q. /2}
2 . This implies that function

M2s. ,c. ,q.
(z 1, z 2, ρ) is independent of z 2 at even q. values; at

odd values, M2s. ,c. ,q.
(z 1, z 2, ρ) ∝ z 2.

Limit forms of function M at z 1 → 0

Let us analyze the dependence of function M on z 1.

A series expansion of the corresponding factor containing

a spherical Bessel function [14] and depending on z 1 is

needed for this purpose:

j (d)
n (z 1)

z m
1

= z−m
1

∂d

∂z d

( ∞
∑

p=0

(−1)pz n+2p
1

2p p!(2n + 2p + 1)!!

)

=
∞
∑

p=0

(−1)p(n − d + 2p + 1)d

2p p!(2n + 2p + 1)!!
z n−d−m+2p
1 . (42)

Inserting formula (42) into (20) and simplifying

the obtained expression at z 1 → 0, we find that

M2s. ,c. ,q.
(z 1, z 2, ρ) ∝ z 2{c. /2}

1 . The transformations are not

detailed here owing to their cumbersomeness. Thus,

function M2s. ,c. ,q.
(z 1, z 2, ρ) is independent of variable z 1 at

even values of c. ; at odd c. values, it is proportional to z 1.

The indicated trends are easy to verify by analyzing

the simplified form of functions M2s. ,c. ,q.
(z 1, z 2, ρ) at fixed

values of parameters s. , c. , q. , which are given in Appendix C,

or at ρ → 1 (formulae (28)−(39)) or via numerical

calculations at arbitrary values of arguments of function

M2s. ,c. ,q.
(z 1, z 2, ρ).

Limit forms of function M at z 1 → 0 and z 2 → 0

If z 1 and z 2 both assume small values, the following

formula holds true:

M2s. ,c. ,q.
(z 1, z 2, ρ) ∝ z 2{c/2}

1 z 2{q/2}
2 , z 1 → 0, z 2 → 0.

(43)
In addition to functions M2s. ,c. ,q.

(z 1, z 2, ρ), one should

also consider linear combinations of these functions found

in integrals (22)−(25):

M0,2,0(z 1, z 2, ρ) − M2,0,0(z 1, z 2, ρ), (44)

M0,2,1(z 1, z 2, ρ) − M2,0,1(z 1, z 2, ρ). (45)

If functions M2s. ,c. ,q.
(z 1, z 2, ρ) in their explicit form are in-

serted into formulae (44) and (45), it becomes evident that

these two expressions are directly proportional to (z 1)
2 and

(z 1)
2z 2, respectively, at z 1 → 0, z 2 → 0. This is attributable

to the canceling out of terms containing factor z 1 and z 1z 2

in formulae (44) and (45), respectively.

Limit forms of integrals I

Let us consider the dependence of integrals (22)−(25)
on the linear dimensions of an ellipsoidal particle and the

components of scattering vector q at |qz (x)a z | ≪ 1 and

q⊥(x)ax ≪ 1. Using (43), we obtain

I((nz )
m|x) ∝ (qz (x)a z )

2{m/2}, m = 1, 2, 3, (46)

I((nz )
mni |x) ∝ (q⊥(x)ax)(qz (x)a z )

2{m/2}, m = 0, 1, 2,

(47)
I((nz )

mnin j |x) ∝ (qz (x)a z )
2{m/2}, m = 0, 1, (48)

I(ni n jnk |x) ∝ (q⊥(x)ax). (49)

Indices i, j, k may assume values x or y . The sole excep-

tions are the values of integrals I(nx ny |x) and I(nz nx ny |x).
They contain expressions (44) and (45), respectively. There-
fore, the following formulae hold true for the indicated

integrals:

I(nx ny |x) ∝ (q⊥(x)ax)
2, (50)

I(nz nx ny |x) ∝ (q⊥(x)ax )
2(qz (x)a z ). (51)

Formulae characterizing the dependence of integrals

I(ni |x), I(ni n j |x), I(nin jnk |x) on q⊥(x)ax and qz (x)a z

at |qz (x)a z | ≪ 1 and q⊥(x)ax ≪ 1 and all the possible

combinations of indices i, j, k are given in Appendix D.

Note that the discovered trends are not only valid at small

particle sizes (a z /λ ≪ 1, ax/λ ≪ 1), but are also typical

of directions where specific components of the scattering

vector are close to zero (q⊥ → 0, qz → 0) even at relatively

large linear dimensions of a spheroidal particle. The

indicated forms of dependence of integrals I on linear

particle dimensions agree with the formulae for functions

listed in Table 5 in [6].
Dependences (46)−(51) may be used to characterize

the dependence of effective susceptibility tensor X (2ω)
i jk

on linear dimensions of a small (kωax ≪ 1) dielectric

particle. The expressions for non-chiral components, which

feature coefficients χ
(2)
1−3, also contain integrals I(ni |x) and

I(nin jnk |x). The indicated integrals are, in turn, proportional

to ax at a fixed ρ value. In the far-field region where

the generated radiation is characterized by equations for

plane waves, the modulus of the Umov–Poynting vector of

a generated wave may be calculated as

S(2ω)
r ≈ |S(2ω)(x)| =

c
8π

n2ω

µ2ω
|E(2ω)(x)|2. (52)
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Therefore, the power density of the generated radi-

ation for a non-chiral layer (χ
(2)
1−3 6= 0, χ

(2)
4 = 0) is

directly proportional to a6
x for a spheroidal particle

with small linear dimensions. Similar dependences for

non-chiral components have already been found ear-

lier in solving the problems of second-harmonic genera-

tion [5] and sum-frequency generation [15] in a spherical

layer.

The expressions for chiral components including χ
(2)
4

also contain integrals I(ni n j |x) that do not depend on ax .

Therefore, the modulus of the Umov–Poynting vector for

a chiral layer (χ
(2)
4 6= 0, χ

(2)
1−3 = 0) is directly proportional

to a4
x . A similar degree of dependence was found in the

examination of sum-frequency generation in the surface

layer of a spherical particle [15].
It is worth noting that the Umov–Poynting vector is

directly proportional to a8
x in the case of second-harmonic

generation in a chiral surface layer of a spherical particle [5].
This differs considerably from the result for a spheroidal

dielectric particle (S(2ω)
r ∝ a4

x).
The probable reason for this is as follows. In accor-

dance with formula (11), the value of integrals I(nmnk |x)
and I(nmn j |x), which contain zero-order and second-

order spherical Bessel functions at ρ → 1, is required

in calculation of the contribution of chiral component

χ
(2)
4 to generation. One may verify this assertion by

inserting the values of functions M2s. ,c. ,q.
(z 1, z 2, ρ) from

formulae (29), (32), (34), (36) of the present study

into formulae (81)−(86) from Appendix D. However, the

terms containing zero-order spherical Bessel functions are

canceled out in summation over indices j and k , which

emerges after the insertion of (11) into formula (5).
The terms proportional to second-order spherical Bessel

functions, which are proportional to a2
x in the case of

small-sized particles, become dominant. The canceling

out of zero-order spherical Bessel functions occurs only

in the case of second-harmonic generation in a spherical

layer; it does not occur in sum-frequency generation [15]
in a spherical layer or second-harmonic generation in a

spheroidal layer.

Comparison with the works of other
authors

The problem of nonlinear generation in the surface layer

of a spheroidal dielectric particle has been analyzed earlier

in [6]. However, the obtained solution suffered from several

drawbacks and inaccuracies.

(1) The obtained expressions in the form of series for

characterization of integrals, which are similar to the ones

written in (7), converge only at ρ2 > 1/2 and are thus

inapplicable to the process of generation in sufficiently

oblate spheroidal particles. Notably, the authors of [6] do

not indicate the limits of applicability of their model.

(2) The values of integrals in [6] were determined on

the assumption that scattering vector q lies in plane Oxz .

Therefore, it is not possible to calculate the numerical values

of components of the electric field vector of generated

radiation outside of the plane containing vector q without

additional rotation transformations, which complicate the

process of analysis of the spatial distribution of generated

radiation.

(3) Several typing errors were made in Table 3 in [6]:
– the expression for Bx ′z ′ should not feature an imaginary

unit. In other words, the expression for Bx ′z ′ should be

imaginary (in common with the expressions for Bx ′x ′ , By ′y ′ ,

and B z ′z ′ listed in the same table); this is also corroborated

by one characteristic feature noted in the present study: the

values of integrals I(ni n j |x) corresponding to functions B i j

are real;

– variable a z ′ in the expression for Bx ′z ′ should be

substituted with qz ′ . This is corroborated by the fact that,

in contrast to qz ′ , a z ′ is not found in any other expression

in [6].
With these corrections, the expression for Bx ′z ′ in [6]

should read

Bx ′z ′ = − 3V Dqx ′qz ′

∞
∑

n,h

(2n − 1)!!

(2n)!!

×
(2n + 2h + 1)!!

2h + 1
M(n, h)κn+h+2(qx ′D). (53)

(4) A typing error was made in the series expansion

in formula (27) in [6]: variable ρ in the denominator of

expression cos2n(t)/ρ2 should not be squared. This is easy

to verify by inserting numerical values into the formula. The

correct form of the mentioned expansion is

1

γ(ρ, t)
=

1

(cos2 t + ρ2 sin2 t)1/2

=

∞
∑

n=0

(

ρ2 − 1

ρ2

)n
(2n − 1)!!

(2n)!!

cos2n t
ρ

. (54)

(5) Factor 3 was omitted in the expression for vector C

in formula (19) in [6]. The formula should be written as

C = 3iqV
j1[(q2

x ′ + ρ2q2
z ′)1/2D]

(q2
x ′ + ρ2q2

z ′)1/2D
, (55)

which is corroborated by the values of components of

vector C listed in Table 3 in [6] and agrees with the results

obtained in the present study.

With the indicated corrections introduced, the relation

between the functions in the present study and in [6] is as

follows:

C i = a2
x I(ni), (56)

B i j = a2
x I(nin j), (57)

Ai jk = a2
x I(nin j nk). (58)

The designations adopted in [6] are shown on the left, and

the designations from the present study for a special case of

qy = 0 and ρ2 > 1/2 are on the right.
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It is easy to verify that the values of integrals I(ni),
I(ni n j), and I(ni n jnk) also adhere to the properties indi-

cated in [6]:

I(ni nknk) = I(ni), (59)

I(nknk) = I(1). (60)

Expression I(1) in [6] is designated as f (q) and referred to

as a surface linear form factor.

Conclusion

Finding the solution of the problem of second-harmonic

generation in the surface layer of a particle shaped as

an ellipsoid of revolution by expansion into a series and

integration is the only currently available approach to an

analytical treatment of this phenomenon. A compact form

of resulting expressions written with the use of function

M2s. ,c. ,q.
(z 1, z 2, ρ) was obtained for the first time. It is

fairly convenient for subsequent analysis of the properties

of the spatial distribution of double-frequency radiation and

remains applicable at arbitrary ratio of linear dimensions of

a spheroidal particle. The use of two forms of function

M2s. ,c. ,q.
(z 1, z 2, ρ) provided an opportunity to expand the

applicability domain of the analytical solution obtained in [6]
to the characterization of generation of double-frequency

radiation in the surface layer of a particle shaped as an

ellipsoid of revolution. In order to verify the correctness of

this solution, the relation between special cases of functions

given in the present study and the functions used in [6]
to characterize second-harmonic generation was established.

It was found that the general properties typical of tensor

integral quantities, which were mentioned for the first time

in [6], also apply to auxiliary integrals I obtained in the

present study.

In the limit of a spherical shape of a spheroidal

particle (ρ → 1), the functions used to characterize

second-harmonic generation in the surface layer of a

spheroidal particle transform into functions characteriz-

ing the spatial distribution of double-frequency radiation

generated in the surface layer of a spherical dielectric

particle [5]. This is in line with the correspondence

principle.

The explicit form of functions M2s. ,c. ,q.
(z 1, z 2, ρ) at fixed

values of indices s. , c. , q. (Appendix C) may be used in

further analysis to shorten the time needed for calculating

the components of the electric field vector of the sec-

ond harmonic. The nature of dependence of functions

M2s. ,c. ,q.
(z 1, z 2, ρ) on small arguments z 1 and z 2 corresponds

to the formulae given in Appendix C and was used

successfully to determine the behavior of auxiliary integrals

for a small-sized dielectric particle shaped as an ellipsoid of

revolution.

The dependences provided in Appendix D allow one

to determine the dominant components of the double-

frequency electric field vector. Specifically, it was found

that chiral components associated with coefficient χ
(2)
4

produce the dominant contribution to generation in the

case of small linear dimensions of a spheroidal particle

when ρ differs substantially from 1. The power density

of generated radiation is directly proportional to a4
x . Under

the same conditions, non-chiral components associated with

coefficients χ
(2)
1−3 induce the generation of radiation with its

power density proportional to a6
x . Similar results with a pre-

dominant contribution of chiral components to generation

have been obtained earlier in studies focused on second-

harmonic generation [8] and sum-frequency generation [16]
in surface layers of dielectric particles shaped as cylinders.

The developed approach to the characterization of

second-harmonic generation in deformed spherical parti-

cles may find application in analytical treatment of sum-

frequency generation and other nonlinear effects in di-

electric particles of a similar shape. The method of

searching for an explicit form of integral tensor quantities

by expansion into a series may also be applied to problems

of nonlinear generation in particles of a more complex

shape (arbitrary ellipsoid, elliptical cylinder, hemisphere,

and their elements). The use of this method furthers

the prospect of developing systematic approaches for

high-accuracy characterization of nonlinear generation in

particles of an arbitrary shape (higher-order generation

included).
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Appendix A. Proof of convergence of the
sum of infinite series

Let us consider one of the terms in the sum written

in (20). In order to do that, we fix the values of indices

s. , c. , q. , g. , m. , k. , l. , d. , (all indices except for n. ) and variables

ρ, z 1, z 2. The following expression is then obtained:

Fn. =
(−1)k.+l.+g.

(

q. + 2{q. /2} + 2n. + 2g. + 2k. − 1
)

!!

(2g. + 2{q. /2})!

× (q. /2 + {q. /2} + n. + g. + k. )l.

(

−(c. + q. − 1)/2 − s.

n.

)

×

(

s.
m. , k. , s. ,−m. − k.

)(

2m. + c.
l.

)(

1

ρ2
− 1

)n.

× j (2m. +c.−l.)
q. /2+{q. /2}+n.+g.+k.

(z 1)z
−(n.+g.+k.+l.)
1 z

2g.
2 .

(61)
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Let us use the d’Alembert’s ratio test to identify the
conditions for convergence of the sum in n. over n. → ∞.

With this aim in view, we take the ratio limit of values

of expression (61) at two consecutive values of index n. at
n. → ∞:

lim
n.→∞

(Fn.+1/Fn. ). (62)

We then consider the ratios of the corresponding factors in
functions Fn.+1 and Fn. .

The first factor:

(−1)k.+l.+g.
(

q. + 2{q. /2} + 2(n. + 1) + 2g. + 2k. − 1
)

!!

(2g. + 2{q. /2})!

×

(

(−1)k.+l.+g.
(

q. + 2{q. /2} + 2n. + 2g. + 2k. − 1
)

!!

(2g. + 2{q. /2})!

)−1

= q. + 2{q. /2} + 2n. + 1 + 2g. + 2k. .
(63)

The second factor:
(

q. /2 + {q. /2} + n. + 1 + g. + k.
)

l.

/(

q. /2 + {q. /2} + n. + g. + k.
)

l.

=
q. /2 + {q. /2} + n. + 1 + g. + k.

q. /2 + {q. /2} + n. + g. + k.
. (64)

The third factor:
(

−(c. + q. − 1)/2− s.

n. + 1

)

/

(

−(c. + q. − 1)/2 − s.

n.

)

=
Ŵ(−(c. + q. − 1)/2− s. + 1)

Ŵ(n. + 2)Ŵ(−(c. + q. − 1)/2− s. − n. )

/

Ŵ(−(c. + q. − 1)/2− s. + 1)

Ŵ(n. + 1)Ŵ(−(c. + q. − 1)/2− s. − n. + 1)

=
Ŵ(n. + 1)

Ŵ(n. + 2)

Ŵ(−(c. + q. − 1)/2− s. − n. + 1)

Ŵ(−(c. + q. − 1)/2− s. − n.

=
−(c. + q. − 1)/2− s. − n.

1 + n.
. (65)

Since the fourth and the fifth factors do not depend on n. ,
their ratio at two consecutive values of n. is unity. The sixth

factor:
(

1

ρ2
− 1

)n.+1/(

1

ρ2
− 1

)n.

=
1

ρ2
− 1. (66)

To perform calculations with the seventh factor, we first

need to calculate limit lim
n.→∞

j (d. )
n.+1(z )/ j (d. )

n. (z ). The easiest

way to do that is via a series expansion [14]:

jn. (z ) = z n.

∞
∑

k.=0

(

− 1
2
z 2
)k.

k. !(2n. + 2k. + 1)!!
=

∞
∑

k.=0

(−1)k. z 2k.+n.

2k. k. !(2n. + 2k. + 1)!!
.

(67)

The following expansion then holds true for the derivative

of order d. :

j (d. )
n.

(z ) =
∞
∑

k.=0

(2k. + n. )!(−1)k. z 2k.+n.−d.

(2k. + n. − d. )!2k. k. !(2n. + 2k. + 1)!!
. (68)

Therefore, the ratio of the corresponding functions at

consecutive values of n. may be written as

j (d. )
n.+1(z )/ j (d. )

n.
(z ) =

∑∞
k.=0

(2k.+n.+1)!(−1)k. z 2k.+n.+1−d.

(2k.+n.−d.+1)!2k. k. !(2n.+2k.+3)!!
∑∞

k.=0
(2k.+n. )!(−1)k. z 2k.+n.−d.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!

= z

∑∞
k.=0

(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!
(2k.+n.+1)

(2k.+n.−d.+1)(2n.+2k.+3)
∑∞

k.=0
(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!

. (69)

At n. → ∞, we obtain

lim
n.→∞

(2k. + n. + 1)

(2k. + n. − d. + 1)(2n. + 2k. + 3)
=

1

2n.
. (70)

Using (70) in (69), we find

lim
n.→∞

z

∑∞
k.=0

(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!
(2k.+n.+1)

(2k.+n.−d.+1)(2n.+2k.+3)
∑∞

k.=0
(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!

= lim
n.→∞

z
1
2n.

∑∞
k.=0

(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!
∑∞

k.=0
(2k.+n. )!(−1)k. z 2k.

(2k.+n.−d. )!2k. k. !(2n.+2k.+1)!!

=
z
2n.

.

(71)

Note that the substitution of
(2k.+n.+1)

(2k.+n.−d.+1)(2n.+2k.+3) with 1
2n.

in formula (71) is correct if n. ≫ k. . However, the other

terms of the sum for which n. and k. are of a similar order

(or condition k. ≫ n. is satisfied) are negligible relative to the

accurate value of the derivative corresponding to a spherical

Bessel function.

The limit value of the ratio of derivatives of order d. of

(n. + 1)- and n. -order spherical Bessel functions at n. → ∞
may be determined using the following expression:

lim
n.→∞

j (d. )
n.+1(z )

j (d. )
n. (z )

=
z
2n.

. (72)

Applying (72), we find

lim
n.→∞

j (2m. +c.−l.)
q. /2+{q. /2}+n.+1+q.+k.

(z 1)

j (2m. +c.−l.)
q. /2+{q. /2}+n.+g.+k.

(z 1)

=
z 1

2(q. /2 + {q. /2} + n. + g. + k. )
. (73)

The ratio for the eighth and the ninth factors is

z
−(n.+1+g.+k.+l.)
1 z

2g.
2

z
−(n.+g.+k.+l.)
1 z

2g.
2

=
1

z 1

. (74)
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Using (63)−(66), (73), and (74), we then find the limit

of ratio Fn.+1/Fn. :

lim
n.→∞

(Fn.+1/Fn. )= lim
n.→∞

(q.+2{q. /2} + 2n.+2+2g.+2k. − 1)

×
q. /2 + {q. /2} + n. + 1 + g. + k.

q. /2 + {q. /2} + n. + g. + k.

−(c. + q. − 1)/2− s. − n.
1 + n.

×

(

1

ρ2
−1

)

z 1

2(q. /2+{q. /2}+n.+g. + k. )
1

z 1

= −

(

1

ρ2
−1

)

.

(75)
In accordance with the d’Alembert’s ratio test, the series

converges only if the following condition is satisfied:

∣

∣

∣

∣

−

(

1

ρ2
− 1

)∣

∣

∣

∣

< 1. (76)

This is possible if ρ2 adheres to restriction

ρ2 > 1/2. (77)

Appendix B. Explicit form of integrals I

I(nx |x) = ρM0,1,0(q⊥(x)ax , qz (x)a z , ρ)νx , (78)

I(ny |x) = ρM0,1,0(q⊥(x)ax , qz (x)a z , ρ)νy , (79)

I(nz |x) = ρM0,0,1(q⊥(x)ax , qz (x)a z , ρ), (80)

I(nx nx |x) = ρ2
(

M0,2,0(q⊥(x)ax , qz (x)a z , ρ)νxνx

+ M2,0,0(q⊥(x)ax , qz (x)a z , ρ)(1− νxνx)
)

,

(81)

I(nx ny |x) = ρ2
(

M0,2,0(q⊥(x)ax , qz (x)a z , ρ)

− M2,0,0(q⊥(x)ax , qz (x)a z , ρ)
)

νxνy , (82)

I(ny ny |x) = ρ2
(

M0,2,0(q⊥(x)ax , qz (x)a z , ρ)νyνy

+ M2,0,0(q⊥(x)ax , qz (x)a z , ρ)(1− νyνy)
)

,

(83)
I(nz nx |x) = ρM0,1,1(q⊥(x)ax , qz (x)a z , ρ)νx , (84)

I(nz ny |x) = ρM0,1,1(q⊥(x)ax , qz (x)a z , ρ)νy , (85)

I(nz nz |x) = M0,0,2(q⊥(x)ax , qz (x)a z , ρ), (86)

I(nx nx nx |x) = ρ3
(

M0,3,0(q⊥(x)ax , qz (x)a z , ρ)νxνx

+ 3M2,1,0(q⊥(x)ax , qz (x)a z , ρ)(1 − νxνx )
)

νx , (87)

I(nx nx ny |x) = ρ3
(

M0,3,0(q⊥(x)ax , qz (x)a z , ρ)νxνx

+ M2,1,0(q⊥(x)ax , qz (x)a z , ρ)(1− 3νxνx )
)

νy , (88)

I(nx ny ny |x) = ρ3
(

M0,3,0(q⊥(x)ax , qz (x)a z , ρ)νyνy

+ M2,1,0(q⊥(x)ax , qz (x)a z , ρ)(1− 3νyνy )
)

νx , (89)

I(ny ny ny |x) = ρ3
(

M0,3,0(q⊥(x)ax , qz (x)a z , ρ)νyνy

+ 3M2,1,0(q⊥(x)ax , qz (x)a z , ρ)(1− νyνy)
)

νy , (90)

I(nz nx nx |x) = ρ2
(

M0,2,1(q⊥(x)ax , qz (x)a z , ρ)νxνx

+ M2,0,1(q⊥(x)ax , qz (x)a z , ρ)(1 − νxνx )
)

,

(91)

I(nz nx ny |x) = ρ2
(

M0,2,1(q⊥(x)ax , qz (x)a z , ρ)

− M2,0,1(q⊥(x)ax , qz (x)a z , ρ)
)

νxνy), (92)

I(nz ny ny |x) = ρ2
(

M0,2,1(q⊥(x)ax , qz (x)a z , ρ)νyνy

+ M2,0,1(q⊥(x)ax , qz (x)a z , ρ)(1 − νyνy )
)

,

(93)

I(nz nz nx |x) = ρM0,1,2(q⊥(x)ax , qz (x)a z , ρ)νx , (94)

I(nz nz ny |x) = ρM0,1,2(q⊥(x)ax , qz (x)a z , ρ)νy , (95)

I(nz nz nz |x) = M0,0,3(q⊥(x)ax , qz (x)a z , ρ). (96)

Appendix C. Simplified formulae for
functions M

The following formulae hold true at ρ2 > 1/2:

M0,0,q.
(z 1, z 2, ρ) =

4πi2{q. /2}

ρq.−1

×

∞
∑

g.=0

∞
∑

n.=0

(−1)g.
(

2(q. /2 + {q. /2} + n. + g. ) − 1
)

!!

×

(

−(q. − 1)/2

n.

)(

1

ρ2
− 1

)n.

×
jq. /2+{q. /2}+n.+g.

(z 1)

z
q. /2+{q. /2}+n.+g.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
, (97)

M0,1,q.
(z 1, z 2, ρ) =

4πi2{q. /2}−1

ρq.

∞
∑

g.=0

∞
∑

n.=0

1
∑

l.=0

(−1)l.+g.

×
(

2(q. /2 + {q. /2} + n. + g. )−1
)

!!
(

q. /2 + {q. /2} + n. + g.
)

l.

×

(

−q. /2
n.

)(

1

ρ2
− 1

)n. j (1−l.)
q. /2+{q. /2}+n.+g.

(z 1)

z
q. /2+{q. /2}+n.+g.+l.
1

×
z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
=

4πi2{q. /2}−1

ρq.
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×

∞
∑

g.=0

∞
∑

n.=0

(−1)g.+1
(

2(q. /2 + {q. /2} + n. + g. ) − 1
)

!!

×

(

−q. /2
n.

)(

1

ρ2
− 1

)n jq. /2+{q. /2}+n.+g.+1(z 1)

z
q. /2+{q. /2}+n.+g.
1

×
z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
, (98)

M0,2,q.
(z 1, z 2, ρ) =

4πi2{q. /2}−2

ρ1+q.

∞
∑

g.=0

∞
∑

n.=0

2
∑

l.=0

(−1)l.+g.

×
(

2(q. /2 + {q. /2} + n. + g. ) − 1
)

!!

(

−(1 + q. )/2
n.

)

×

(

2

l.

)(

1

ρ2
− 1

)n.

(q. /2 + {q. /2} + n. + g. )l.

×
j (2−l.)

q. /2+{q. /2}+n.+g.
(z 1)

z
q. /2+{q. /2}+n.+g.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!

=
4πi2{q. /2}−2

ρ1+q.

∞
∑

g.=0

∞
∑

n.=0

(−1)g.
(

2(q. /2+{q. /2}+n.+g. )−1
)

!!

×

(

−(1 + q. )/2
n.

)(

1

ρ2
− 1

)n.

×
jq. /2+{q. /2}+n.+g.+2(z 1) − jq. /2+{q. /2}+n.+g.+1(z 1)/z 1

z
q. /2+{q. /2}+n.+g.
1

×
z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
. (99)

The formulae for 0 < ρ2 < 2 are as follows:

M0,0,q.
(z 1, z 2, ρ) = 4πi2{q. /2}

∞
∑

g.=0

∞
∑

n.=0

n.
∑

d.=0

(−1)g.+d.

×
(

2(q. /2 + {q. /2} + d. + g. ) − 1
)

!!

×

(

−(q. − 1)/2

−(q. − 1)/2 − n. , n. − d. , d.

)

(

ρ2 − 1
)n.

×
jq. /2+{q. /2}+d.+g.

(z 1)

z
q. /2+{q. /2}+d.+g.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
, (100)

M0,1,q.
(z 1, z 2, ρ) = 4πi2{q. /2}−1

∞
∑

g.=0

∞
∑

n.=0

1
∑

l.=0

n.
∑

d.=0

(−1)l.+g.+d.

×
(

2(q. /2 + {q. /2} + d. + g. ) − 1
)

!!

×

(

−q. /2
−q. /2− n. , n. − d. , d.

)

(

ρ2 − 1
)n.

× (q. /2 + {q. /2} + d. + g. )l

×
j (1−l.)

q. /2+{q. /2}+d.+g.
(z 1)

z
q. /2+{q. /2}+d.+g.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
,

= 4πi2{q. /2}−1

∞
∑

g.=0

∞
∑

n.=0

n.
∑

d.=0

(−1)1+g.+d.

×
(

2(q. /2 + {q. /2} + d. + g. ) − 1
)

!!

×

(

−q. /2
−q. /2− n. , n. − d. , d.

)

(

ρ2 − 1
)n.

×
jq. /2+(q. /2)+d.+g.+1(z 1)

z
q. /2+{q. /2}+d.+g.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
,

(101)

M0,2,q.
(z 1, z 2, ρ) = 4πi2{q. /2}−2

∞
∑

g.=0

∞
∑

n.=0

2
∑

l.=0

n.
∑

d.=0

(−1)l.+g.+d.

×
(

2(q. /2 + {q. /2} + d. + g. ) − 1
)

!!

×

(

−(q. + 1)/2

−(q. + 1)/2− n. , n. − d. , d.

)(

2

l.

)

(ρ2 − 1)n.

× (q. /2 + {q. /2} + d. + g. )l.

×
j (2−l.)

q. /2+{q. /2}+d.+g.
(z 1)

z
q. /2+{q. /2}+d.+g.+l.
1

z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!

= 4πi2{q. /2}
∞
∑

g.=0

∞
∑

n.=0

n.
∑

d.=0

(−1)g.+d.+1

×
(

2(q. /2+{q. /2}+d.+g. )−1
)

!!

×

(

−(q. + 1)/2

−(q. + 1)/2− n. , n. − d. , d.

)

(

ρ2 − 1
)n.

×
jq. /2+{q. /2}+d.+g.+2(z 1) − jq. /2+{q. /2}+d.+g.+1(z 1)/z 1

z
q. /2+{q. /2}+d.+g.
1

×
z
2g.+2{q. /2}
2

(2g. + 2{q. /2})!
.

(102)
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Appendix D. Dependence of auxiliary
integrals on linear dimensions of a
particle

I(nx |x) ∝ (q⊥(x)ax ), (103)

I(ny |x) ∝ (q⊥(x)ax ), (104)

I(nz |x) ∝ (qz (x)a z ), (105)

I(nx nx |x) ∝ 1, (106)

I(nx nyx) ∝ (q⊥(x)ax)
2, (107)

I(ny ny |x) ∝ 1, (108)

I(nz nx |x) ∝ (q⊥(x)ax)(qz (x)a z ), (109)

I(nz ny |x) ∝ (q⊥(x)ax)(qz (x)a z ), (110)

I(nz nz |x) ∝ 1, (111)

I(nx nx nx |x) ∝ (q⊥(x)ax), (112)

I(nx nx ny |x) ∝ (q⊥(x)ax), (113)

I(nx ny ny |x) ∝ (q⊥(x)ax), (114)

I(ny ny ny |x) ∝ (q⊥(x)ax), (115)

I(nz nx nx |x) ∝ (qz (x)a z ), (116)

I(nz nx ny |x) ∝ (q⊥(x)ax)
2(qz (x)a z ), (117)

I(nz ny ny |x) ∝ (qz (x)a z ), (118)

I(nz nz nx |x) ∝ (q⊥(x)ax ), (119)

I(nz nz ny |x) ∝ (q⊥(x)ax ), (120)

I(nz nz nz |x) ∝ (qz (x)a z ). (121)

References

[1] D.S. James, C.J. Brereton, D.E. Davies, M.G. Jones, P.J. Cam-

pagnola. J. Biomed. Opt., 26 (6), 066501 (2021). DOI:

10.1117/1.JBO.26.6.066501

[2] S. Jen, H. Dai, G. Gonella. J. Phys. Chem. C, 114 (10), 4302
(2010). DOI: 10.1021/jp910144c

[3] J.I. Dadap, K.B. Eisenthal. J. Phys. Chem. B, 118 (49), 14366
(2014). DOI: 10.1021/jp507834s

[4] S. Viarbitskaya, V. Kapshai, P. van der Meulen, T. Hansson.

Phys. Rev. A, 81 (5), 053850 (2010). DOI: 10.1103/Phys-
RevA.81.053850

[5] V.N. Kapshai, A.A. Shamyna. Opt. Spectrosc., 123 (3), 440
(2017). DOI: 10.1134/S0030400X17090144.

[6] A.G.F. de Beer, S. Roke, J.I. Dadap. J. Opt. Soc. Am. B, 28

(6), 1374 (2011). DOI: 10.1364/JOSAB.28.001374
[7] J.I. Dadap. Phys. Rev. B, 78 (20), 205322 (2008). DOI:

10.1103/PhysRevB.78.205322

[8] A.A. Shamyna, V.N. Kapshai. Opt. Spectrosc., 126 (6), 645
(2019). DOI: 10.1134/S0030400X19060225.

[9] V.N. Kapshai, A.A. Shamyna. Opt. Spectrosc., 126 (6), 653
(2019). DOI: 10.1134/S0030400X19060134.

[10] A.A. Shamyna, V.N. Kapshai. Opt. Spectrosc., 126 (6), 661
(2019). DOI: 10.1134/S0030400X19060237.

[11] S. Ding, Z. Luo, Y. Xie, G. Pan, Y. Qiu, K. Chen, L. Zhou,

J. Wang, H. Lin, Q. Wang. Nanoscale, 10 (124), 124 (2018).
DOI: 10.1039/c7nr06293a

[12] G.M. Mangalgiri, P. Manley, W. Riedel, M. Schmid. Scientific

Rep., 7, 4311 (2017). DOI: 10.1038/s41598-017-03721-w
[13] J.I. Dadap, J. Shan, T. Heinz. J. Opt. Soc. Am. B, 21 (7), 1328

(2004). DOI: 10.1364/JOSAB.21.001328
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