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function (ELF) is applied. It is demonstrated that the expression for RELF differs from the expression for ELF with
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1. Introduction

The study of physical and chemical properties of su-

perheavy elements (SHEs) with nucleus charge Z ≥ 104

is a relevant and important task. Different theoretical

methods are used at present to determine the electron

configurations of the ground states of SHEs and to calculate

the physical and chemical properties of these elements,

such as ionization potentials, electron affinity, polarizability,

etc. [1–10]. These data are needed to interpret and predict

various properties of SHEs.

The calculation results demonstrate that relativistic effects

exert a considerable influence on the structure of atomic

valence shells of SHEs. As a result, the properties of SHEs

may differ from those of their less heavy homologues. For

example, it was found in [3] that an oganesson atom (Og,
Z = 118) features a positive electron affinity while having

an electron configuration of a noble gas. This implies that

Og, in contrast to its lighter homologues, may form negative

charged ion.

Another example of unusual SHE characteristics is the

behavior of the electron localization function (ELF) in an

Og atom. The electron localization function has been first

introduced in [11] to visualize the structure of electron shells

in atoms and chemical bonds in molecules. The authors

of [12] examined the electron structure by analyzing the

ELF behavior of an Og atom in the valence region. It was

concluded that the spatial structure of the valence shells

becomes diffuse due to strong relativistic effects; electron

states are delocalized and manifest themselves as states of a

homogeneous electron gas. However, it was demonstrated

in [13] that it is too premature to identify the states of

valence shells of Og with states of a homogeneous electron

gas. The diffusion of the spatial structure of shells is related

to the strong relativistic contraction of the shells 7s and

7p1/2, which results in overlapping of the distributions of

their electron density with the density of the shell 6d . It

is important to note that the electron states of individual

shells are not subject to diffusion. The results of calculation

of characteristics associated with the spatial distribution of

electron density of individual shells reveal no noticeable

delocalization of the states of valence shells.

The analysis of the total one-electron density does not

provide reliable information regarding the properties of

localization of electron states in the valence region of

neutral atoms, since the wave functions of different shells

overlap strongly. This is the reason why several attempts

at developing a method relying on other characteristics,

where the localization properties of valence states would

be manifested more clearly, have been made. One method

of this kind is based on the ELF analysis. ELF calculations

were performed in [11,14–17] with the use of nonrelativistic

Hartree–Fock and density functional methods. The authors

of [12,13] performed ELF calculations for superheavy

elements within the so-called
”
semirelativistic“ approach:

a relativistic one-particle density determined using the

relativistic Dirac–Fock method was used in a nonrelativistic

expression for ELF [11].

The primary goals of the present study are to derive a

completely relativistic expression for ELF and to analyze

the localization properties of valence electrons in SHEs.

The article is organized as follows. The derivation of an

expression for the relativistic electron localization function

(RELF) of the general form is carried out in Section 2.
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A completely relativistic expression for RELF is obtained

within the four-component Dirac–Fock approach in Sec-

tion 3. Section 4 presents the results of calculations and the

analysis of localization properties of electron states of an

Og atom and other SHEs. The key findings are summarized

in the Conclusion, and some details of the derivation of

expressions for RELF obtained in Section 3 are presented

in the Appendix.

Unless stated otherwise, the atomic system of units

(~ = e = m = 1) is used below.

2. Relativistic electron localization
function

The electron localization function is one of the tools

for qualitative analysis of the structure of electron shells.

The determination of nonrelativistic ELF [11] relies on the

antisymmetry property of many-electron wave function 9;

specifically, this leads to a zero probability density of finding

two electrons with parallel spins at one point in space.

Therefore, the more localized the state of a given electron

is, the lower is the probability density of finding another

electron with the same spin in the immediate vicinity.

The probability density of finding one electron at point r1
and another one at point r2 is written as

P2(r1, r2) =
∑

τ

ρ2(r1, τ , r2, τ |r1, τ , r2, τ ), (1)

where index τ designates spinor components (in the

nonrelativistic approximation) or Dirac bispinor components

(in the relativistic case). Quantity ρ2 in expression (1) is a

second-order reduced density matrix

ρ2(r1, τ1, r2, τ2|r′1, τ ′
1 , r

′
2, τ

′
2 ) =

=
∑

i jkl

Ŵi j,klϕ
∗
i (r1, τ1)ϕ

∗
j (r2, τ2)ϕk(r

′
1, τ

′
1 )ϕl(r

′
2, τ

′
2 ), (2)

where Ŵi j,kl is a second-order reduced density matrix in the

basis of one-electron functions ϕi(r, τ ),

Ŵi j,kl =
1

2
〈9 | a+

i a+
j a lak | 9〉. (3)

Quantities Ŵi j,kl satisfy the following relations:

∑

i, j

Ŵi j,i j =
N(N − 1)

2
(4)

and

Ŵi j,kl = −Ŵ ji,kl = −Ŵi j,lk = Ŵ ji,kl = Ŵkl,i j

= Ŵlk, ji = −Ŵkl, ji = −Ŵlk,i j . (5)

Thus, the following equation is obtained for the joint

probability-density distribution for two electrons P2(r1, r2):

P2(r1, r2) =
∑

τ

×
∑

i jkl

Ŵi j,klϕ
∗
i (r1, τ )ϕ∗

j (r2, τ )ϕk(r1, τ )ϕl(r2, τ ). (6)

It follows from the antisymmetry relations (5) that

P2(r1, r2) turns to zero at r1 = r2,

P2(r, r) = 0. (7)

Let us determine conditional probability density Pc(r1, r2).
It corresponds to the probability of finding a second electron

at point r2 under the condition that the first electron is

located at r1,

Pc(r1, r2) =
P2(r1, r2)

ρ(r1)
. (8)

Here, ρ(r) is the one-particle spatial density,

ρ(r) =
∑

τ

ρ1(r, τ |r, τ ), (9)

where ρ1 is a first-order reduced density matrix. Follow-

ing [11], we introduce the function D(r) in the following

way. We expand Pc(r, r + s) into a Taylor series in s,

perform averaging over angles, and take the first nonzero

term. The result is

〈Pc(r, r + s)〉θs ,φs ≃
1

3!
s2D(r), (10)

where

D(r) =
1

2
11Pc(r, r1)|r1=r =

1

2ρ(r)
11P2(r, r1)|r1=r .

(11)
Inserting expression (6) for function P2(r, r1) into Eq. (11),
we find

D(r) =
1

2ρ(r)

∑

τ

∑

i jkl

Ŵi j,klϕ
∗
i (r, τ )ϕk(r, τ )

× 11[ϕ
∗
j (r1, τ )ϕl(r1, τ )]

∣

∣

∣

r1=r
. (12)

Antisymmetry properties (5) allow one to rewrite the

expression (12):

D(r) =
1

ρ(r)

∑

τ

∑

i jkl

Ŵi j,klϕ
∗
i (r, τ )ϕk(r, τ )

× ∇ϕ∗
j (r, τ ) · ∇ϕl(r, τ ). (13)

The electron localization function is specified by the

following expression [11]:

η(r) =

(

1 +

[

D(r)

D0(r)

]2
)−1

, (14)

where D0(r) is function D(r) for a homogeneous electron

gas. It is evident from the definition (14) that ELF assumes

values within the range from zero to unity, and larger η(r)
values correspond to a wave function that is more localized

in a given region (and vice versa). The value of η(r) = 0.5

corresponds to a uniform electron gas distribution.
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3. Atomic relativistic electron localization
function in the Dirac–Fock
approximation

3.1. Dirac–Fock approximation

The following equality holds true for the single-

determinant many-electron wave function:

Ŵi j,kl =
1

2
(δikδ jl − δilδ jk). (15)

Equation (13) may then be rewritten in the form

D(r) =
1

ρ(r)

∑

τ

[

ρτ (r)
∑

j

|∇ϕ j(r, τ )|2 − 1

4

∣

∣∇ρτ (r)
∣

∣

2
]

,

(16)
where

ρ(r) =
∑

τ

ρτ (r) , ρτ (r) =
∑

i

|ϕ∗
i (r, τ )|2. (17)

In the nonrelativistic limit, the function D(r) takes the form

D(nr)(r) =
1

2

∑

j

|∇ϕ
(nr)
j (r, τ )|2 − 1

8

∣

∣∇ρ(nr)(r)
∣

∣

2

ρ(nr)(r)
, (18)

where ϕ
(nr)
j (r, τ ) and ρ(nr)(r) are nonrelativistic Hartree–

Fock orbitals and the one-electron density, respectively.

Following [14], we refer to the function D(nr)(r) as the

nonrelativistic Pauli kinetic energy density. Semirelativistic

function D(sr)(r) may also be defined. In its calculations,

we use a nonrelativistic expression for the Pauli kinetic

energy density, where the one-electron functions ϕ
(nr)
j (r, τ )

and the density ρnr(r) are substituted with their relativistic

counterparts

D(sr)(r) =
1

2

∑

j

|∇ϕ j(r, τ )|2 − 1

8

∣

∣∇ρ(r)
∣

∣

2

ρ(r)
. (19)

3.2. Central-field approximation

In the central-field approximation, we substitute index

i , which designates Dirac–Fock orbitals ϕi(r, τ ), with a

pair of indices a and µa , where a designates relativistic

atomic shells and µa is the projection of the total angular

momentum. Relativistic shell a in a central field is

characterized by a set of quantum numbers na , la , ja or

na , ̹a , where na is the principal quantum number, la is the

orbital quantum number, ja is the total angular momentum,

and ̹a = (−1) ja+la +1/2 is the relativistic angular quantum

number. One-particle density ρτ (r) in the configuration-

average approximation may then be written as

ρτ (r) =
∑

a,µa

qa

2 ja + 1
|ϕaµa (r, τ )|2, (20)

where qa is the number of electrons in shell a .

Index τ , which designates Dirac bispinor components,

is also substituted with a pair of indices λ and σ . Index

λ corresponds to the large φ
(L)
aµa (λ = 1) and small φ

(S)
aµa

(λ = 2) bispinor components, and σ = ±1/2 is the spin

variable. The Dirac one-electron function ϕaµa (r, τ ) may

then be written as

ϕλ
aµa

(r, σ ) =

{

φ
(L)
aµa (r, σ ), λ = 1,

φ
(S)
aµa (r, σ ), λ = 2.

(21)

In the central-field approximation, we have

φ(L)
aµa

(r, σ ) =
Pa(r)

r
�̹aµa (r, σ ),

φ(S)
aµa

(r, σ ) = i
Qa(r)

r
�−̹aµa (r, σ ). (22)

Here, �̹aµa (r, σ ) is a two-component spherical spinor

(Pauli spinor),

�̹µ(r, σ ) = �l jµ(r, σ ) =
∑

m,ms

C jµ
lm, 1

2
ms

Ylm(θ, φ)χms (σ ),

(23)
where χms (σ ) is the spin function. The following is obtained

for density ρτ (r) in the central-field approximation:

ρτ (r) = ρλ
σ (r) =

1

r2
∑

a

qa

2 ja + 1

×











P2
a(r)

∑

µ

∣

∣�̹µ(r, σ )
∣

∣

2
, λ = 1,

Q2
a(r)

∑

µ

∣

∣�−̹aµa (r, σ )
∣

∣

2
, λ = 2.

(24)

The summation theorem applies to spherical harmonics [18].
A similar relation also holds true for spherical spinors

(Appendix A),

∑

µ

∣

∣�la jaµa (r, σ )|2 =
1

2

2 ja + 1

4π
. (25)

It follows that ρλ
σ (r) is independent of σ and angles,

ρλ
σ (r) =

1

2
ρλ(r), (26)

where

ρλ(r) =
4π

r2
∑

a

qa

{

P2
a(r), λ = 1,

Q2
a(r), λ = 2.

(27)

The total spherically symmetric one-particle density is

ρ(r) =
∑

λ=1,2

ρλ(r) =
1

4πr2
∑

a

qa [P
2
a(r) + Q2

a(r)]. (28)

In the central-field approximation, the expression (16) may

be rewritten as

D(r) =
∑

λ=1,2

[

W λ(r)T λ(r) − 1

8

|∇ρλ(r)|2
ρ(r)

]

, (29)
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where W λ(r) is the weight function of the form

W λ(r) =
ρλ(r)

ρ(r)
. (30)

Quantity T λ(r) in the formula (29) is given by

T λ(r) =
∑

a

qa tλa(r), (31)

where

tλa(r) =
1

2

1

2 ja + 1

∑

µa ,σ

|∇φλ
aµa

(r, σ )|2. (32)

Note that T (L)(r) has the meaning of kinetic energy density

in the nonrelativistic approximation.

Relativistic expression (29) for function D(r) may be

rewritten with this notation in the form

D(r) =
∑

a

qa ta(r) −
1

8

∑

λ=1,2

W λ(r)
|∇ρλ(r)|2

ρ(r)
, (33)

where

ta (r) =
∑

λ=1,2

W λ(r)tλa (r). (34)

At λ = 1, summation over µa and σ in the formula (32)
yields (Appendix B)

t(L)
a (r) =

1

8π

∑

l=la±1

(

C l0
la0,10

)2
F2

a,l(r)

=
1

8π

1

2la + 1

[

la F2
a,la−1(r) + (la + 1)F2

a,la +1(r)
]

, (35)

where

Fa,l(r) =
1

r

[

d
dr

+
la(la + 1) − l(l + 1)

2r

]

Pa(r). (36)

Following this summation, functions tλa(r) and, conse-

quently, function D(r) become independent of angular

variables. An expression for t(S)a (r) may be derived from

Eq. (32) by substituting the large radial component of P(r)
with Q(r) and quantum number l with l, where

l = 2 j − l =

{

l + 1, ̹ < 0,

l − 1, ̹ > 0.
(37)

In the nonrelativistic limit, the contribution of the small

component (λ = 2) in expression (29) for function D(r)
turns to zero. The result is

D(nr)(r) =
∑

a

qa t(nr)a (r) − 1

8

|∇ρ(nr)(r)|2
ρ(r)

, (38)

where t(nr)a (r) is the nonrelativistic limit (c → ∞) of the

expression (35) for t(L)
a (r), and ρ(nr)(r) is the nonrelativistic

one-particle density.

As was already noted, the semirelativistic Pauli kinetic

energy density D(sr)(r) is defined by a nonrelativistic

expression with relativistic one-electron functions and the

relativistic one-particle density,

D(sr)(r) =
∑

a

qa t(sr)a (r) − 1

8

|∇ρ(r)|2
ρ(r)

, (39)

where

t(sr)a (r) =
∑

λ=1,2

tλa(r). (40)

3.3. Relativistic function D for a homogeneous
electron gas

Function D(r) for a homogeneous electron gas, which is

designated as D0(r), does not contain a gradient of the total

density ρ0, since the density ρ0 is constant. Then,

D0(r) =
∑

λ=1,2

W λ(r)T λ
0 (r), (41)

where

T λ
0 (r) =

1

2

∑

|k|≤kF

∑

σ,ms

|∇φλ
kms

(r, σ )|2. (42)

Here, φλ
kms

(r, σ ) are four-component Dirac plane waves

normalized to unity in a box with volume V ,







φ
(L)
kms

(r, σ ) = Nk√
V
exp(ik · r)δσ,ms ,

φ
(S)
kms

(r, σ ) = Nk√
V
exp(ik · r) c(σ ·k)

Ek+c2 δσms ,
(43)

where k is the wave vector of the plane wave, σ are

the Pauli matrices, and Ek =
√

c4 + c2k2 is the relativistic

energy of the plane wave. Normalization factor Nk is given

by

Nk =
1√
V

√

Ek + c2

2Ek
. (44)

In the same way as in the nonrelativistic case, Fermi wave

vector kF is related to density ρ0 by expression

kF = (3π2ρ0)
1/3. (45)

An explicit expression for T (L)
0 (r) is derived in Appendix C

by summing over k in the formula (42),

T (L)
0 (r) =

3

20
(3π2)2/3ρ5/3

0

+
c5

32π2

[
√

1 + x2(2x3 − 3x) + 3 ln |x +
√

1 + x2|
]

,

(46)
where

x =
kF

c
. (47)

The contribution of the small component is

T (S)
0 (r) =

3

10
(3π2)2/3ρ5/3

0 − T (L)
0 (r). (48)
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Figure 1. The radial one-particle density of the Og atom.

Switching from a homogeneous electron gas to the calcu-

lation of atomic RELF in the Dirac–Fock approximation,

one should substitute the constant density ρ0 with the one-

particle density ρ(r).

Quantity D(nr)
0 (r) has the meaning of the kinetic energy

density in the nonrelativistic approximation,

D(nr)
0 (r) = T (nr)

0 (r) =
3

10
(3π2)2/3[ρ(nr)(r)]5/3. (49)

The semirelativistic formula for calculation of D(sr)
0 (r) is

an expression similar to Eq. (49) with the relativistic one-

particle density,

D(sr)
0 (r) = T (sr)

0 (r) =
3

10
(3π2)2/3[ρ(r)]5/3. (50)

4. Results and discussion

The relativistic (solid black curve) and nonrelativistic

(dashed red curve) radial one-particle densities for an Og

atom normalized to a number of electrons are presented in

a logarithmic scale in Fig. 1. The ground state configuration

for oganesson is [Rn] 5 f 146d107s27p6, where [Rn] is the

ground state configuration of a rhenium atom. It can be

seen from Fig. 1 that the structures of shells with the

quantum numbers n = 6 and n = 7 have no discernible

differences in both cases. This proves the fact that the

degree of localization of valence electrons in heavy and

superheavy atoms cannot be probed by analyzing the one-

particle density.

In the present study, we used three methods for the

ELF calculation. In the completely relativistic calculation,

the functions D(r) and D0(r) were determined using the

relativistic formulae (33) and (41), respectively, with the

relativistic one-electron functions and the relativistic one-

particle density, and η(r) was calculated in accordance

with (14). In the semirelativistic approach, nonrelativistic

expressions (39) and (50) for D(sr)(r) and D(sr)
0 (r), relativis-

tic one-electron functions, and the relativistic one-particle

density were used. The formula for the corresponding

function η(sr)(r) is

η(sr)(r) =



1 +

[

D(sr)(r)

D(sr)
0 (r)

]2




−1

. (51)

The completely nonrelativistic function η(nr)(r) was calcu-

lated using the nonrelativistic expressions (38) and (49),

η(nr)(r) =



1 +

[

D(nr)(r)

D(nr)
0 (r)

]2




−1

. (52)

The ELF calculations for an Og atom have been performed

for the first time in [12]. The curve obtained in this study

matches exactly the results presented later in [13] (with an

allowance for the substitution of logarithmic scale log10(r)
with ln(r)). The ELF calculations in both the studies were

performed in semirelativistic and nonrelativistic approaches.

The semirelativistic η(sr)(r) and nonrelativistic η(nr)(r)
ELF functions for an Og atom calculated in the present

study are presented in a logarithmic scale in Fig. 2.

These data differ from the ρ(r) plot in Fig. 1 in that

the ELF functions have well-pronounced maxima in the

regions of localization of individual shells (especially in the

nonrelativistic version). However, the semirelativistic ELF

becomes diffuse in the valence region, and its values, in

contrast to those of nonrelativistic ELF, are close to 0.5,

which the value of the ELF for the homogeneous electron

gas. It was concluded in [12] that this observation provides

evidence of a strong influence of relativistic effects and

indicates that the electron density distribution in the valence

region of an Og atom is similar to the distribution of a

homogeneous electron gas. In our view, this assertion is

insufficiently substantiated: the observation of η(r) = 0.5

in a certain region does not necessarily imply that the

distribution density corresponds to a homogeneous electron

gas. Therefore, it appears too early to conclude that the

shell structure is lacking in the valence electron density

distribution for SHEs.

Additional data may be obtained by analyzing other

parameters characterizing the degree of localization of

valence states. Relativistic and nonrelativistic values of root-

mean-square radii (RMS) and standard deviations (STD)
of individual shells are listed in Table 1. The standard

deviation is a root of the variance of the electron density

distribution of shells and characterizes the widths of these

distributions. It follows from the comparison of relativistic

and nonrelativistic STD values that the distribution widths

have no appreciable differences, although it was suggested

in [12] that relativistic effects are the ones disrupting the

valence shell structure. It also follows from Table 1 that

the shell 7p features a very large spin-orbit splitting (on
the order of 11 eV) and that the energies and RMS radii of

the shells 7s1/2 and 7p1/2 shift noticeably toward the shell

6d . Thus, the electron density distributions of these shells

Optics and Spectroscopy, 2022, Vol. 130, No. 7
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Figure 2. The semirelativistic η(sr)(r) (blue dash-and-dot curve)
and nonrelativistic η(nr)(r) (dashed red curve) electron localization

functions for the Og atom. The ground state configuration is [Rn]
5 f 146d107s27p6 .

Table 1. Comparison of the one-electron energies ε (eV), root-
mean-square radii RMS (a.u.), and standard deviations STD (a.u.)
for the Og (Z = 118) atom calculated using the relativistic Dirac–
Fock method and the nonrelativistic Hartree–Fock method. The

relativistic and nonrelativistic values have lower indices
”
rel“and

”
nr,“, respectively.

Shell εrel εnr RMSrel RMSnr STDrel STDnr

6s1/2 −8.966 −5.735 0.813 1.076 0.275 0.335

6p1/2 −7.041 −4.369 0.854 1.143 0.294 0.362

6p3/2 −4.210 −4.369 1.061 1.143 0.363 0.362

6d3/2 −1.763 −2.021 1.266 1.340 0.462 0.446

6d5/2 −1.496 −2.021 1.341 1.340 0.491 0.446

7s1/2 −1.296 −0.774 1.839 2.560 0.647 0.832

7p1/2 −0.736 −0.394 2.079 2.998 0.750 1.016

7p3/2 −0.306 −0.394 2.969 2.998 1.139 1.016

start overlapping in the relativistic case, which is the reason

why ELF is close to 0.5 in this region. However, it can be

seen from Table 1 that the widths of the electron density

distributions of the shells 7s1/2 and 7p1/2 decrease due to

relativistic effects.

Figure 3 presents a comparison of electron localization

functions determined using the relativistic and semirelativis-

tic methods. In the semirelativistic approach, the relativistic

one-electron functions and the relativistic one-particle den-

sity are inserted into nonrelativistic ELF expression (51). It
can be seen from Fig. 3 that the difference between these

two approaches is insignificant (especially in the valence

region).
Figure 4 presents the results of calculation of the

relativistic and nonrelativistic ELF for an atom with the

charge number Z = 121. The ground state configuration

of this element is defined as [Og] 8s28p1. The SHE

with Z = 121 is similar to an Og atom in that the relativistic
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Figure 3. The relativistic η(r) (solid black curve) and semirel-

ativistic η(sr)(r) (blue dash-and-dot curve) electron localization

functions for the Og atom.
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Figure 4. The relativistic η(r) (solid black curve) and nonrela-

tivistic η(nr)(r) (dashed red curve) electron localization functions

for the SHE with Z = 121. The ground state configuration is [Og]
8s28p1.

shells 7s1/2 and 7p1/2 shift (due to strong contraction)
toward the core and overlap noticeably with the shell 6d
localization region. The relativistic ELF in the region of

localization of the shells with n = 6 and 7 becomes close

to η(r) = 0.5 as a result, but this does not imply that the

electron density distribution in this region is close to the

density distribution of a homogeneous electron gas. Note

also that a well-pronounced peak with an ELF value in

excess of 0.5 corresponds to the less localized shells 8s1/2
and 8p1/2 .

Figure 5 shows the relativistic and nonrelativistic ELF

curves for a superheavy element with Z = 164. According

to our calculations, the ground state configuration of this

element is [Og] 5g188s28p26 f 147d10. It can be seen that

the nonrelativistic ELF has eight well-pronounced maxima
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Figure 6. The relativistic η(r) (solid black curve) and semirela-

tivistic η(sr)(r) (blue dash-and-dot curve) electron localization func-

tions for the SHE with Z = 164. The ground state configuration is

[Og] 5g188s28p26 f 147d10 .

corresponding to the eight values of the principal quantum

number (n = 1 included) for elements of eight period of

Periodic Table. However, owing to the strong contraction,

the valence shells ns1/2 and np1/2 shift toward the outer

core in the relativistic case, and the number of ELF maxima

decreases. This implies that the grouping of shells by the

principal quantum number n is disrupted.

In addition, it follows from Fig. 6, where relativistic and

semirelativistic electron localization functions are compared

(with region n = 1 included), that the electron density

distributions of the shells 2s1/2 and 2p1/2 overlap strongly

due to a significant reduction in the RMS radius of the

shell 2p1/2. As a result, the ELF value in this region is

close to 0.5. Naturally, this does not imply that the electron

density distribution of such strongly bound core shells is

similar to the density distribution of a homogeneous electron

gas. It can also be seen from Fig. 6 that the relativistic and

semirelativistic ELF curves are close to each other. This

justifies the use of the semirelativistic approximation in ELF

calculations for SHEs.

Table 2 lists the values of the one-electron energies

ε, root-mean-square radii, and widths of one-electron

distributions for the element with Z = 164 calculated using

the relativistic Dirac–Fock method and the nonrelativistic

Hartree–Fock method. It can be seen that the one-electron

energy of the shell 2p1/2 is significantly lower than the

energy of the shell 2s1/2 and is much closer to the energy of

the state 1s1/2 . This is due to the fact that the energies and

RMS radii of the shells ns are affected to a much greater

extent by the inclusion of the nuclear-density distribution

over the nucleus volume than the shells np1/2. This effect

is especially pronounced in elements with nuclear charge

Z > 137, where the shells 2s1/2 and 2p1/2 interchange.

5. Conclusion

The electron localization functions for the SHEs with

Z = 118 (Og), Z = 121, and Z = 164 is determined using

the relativistic and semirelativistic methods. In the semirel-

ativistic approach, the relativistic one-electron functions and

the relativistic one-particle density are inserted into the

nonrelativistic ELF expression. The comparison reveals that

the difference between these two approaches is insignificant

(especially in the valence region).

It follows from the analysis of the obtained results that

the shell structure is disrupted in the SHEs due to strong

relativistic effects. Owing to the strong contraction of

the shells s and p and the large spin-orbit splitting of p
shells, states with the same principal quantum number may

be localized in different spatial regions. This may lead

to differences in the number of ELF maxima and their

noticeable shift in relativistic and nonrelativistic cases and

thus affect directly the physical and chemical properties of

SHEs. However, the results of analysis of widths of electron

density distributions of the individual shells suggest that the

individual electron states do not become delocalized.

Note also that, while the ELF value for a homogeneous

electron gas is 0.5, the observation of a similar ELF

value does not necessarily imply that the electron density

distribution in a certain region is close to the density

distribution for a homogeneous electron gas. Specifically,

the core states 1s1/2 and 2p1/2 start overlapping significantly

for the SHE with nucleus charge Z = 164; as a result, the

ELF value in this region becomes close to 0.5. However,

the distribution of strongly bound core electrons cannot be

similar to the distribution for a homogeneous electron gas.

Optics and Spectroscopy, 2022, Vol. 130, No. 7



Application of the Relativistic Electron Localization Function to Study the Electronic Structure... 843

Table 2. Comparison of the one-electron energies ε (eV), root-mean-square radii RMS (a.u.), and standard deviations STD (a.u.) for

the SHE with nuclear-charge number Z = 164 calculated using the relativistic Dirac–Fock method and the nonrelativistic Hartree–Fock
method. The relativistic values have lower index

”
rel,“, while nonrelativistic have index

”
nr“.

Shell εrel εnr RMSrel RMSnr STDrel STDnr

1s1/2 −770626.72 −333188.07 0.0039 0.0106 0.0028 0.0053

2s1/2 −196253.06 −64568.81 0.0152 0.0409 0.0080 0.0156

2p1/2 −342974.87 −63434.00 0.0054 0.0348 0.0039 0.0144

2p3/2 −66182.23 −63434.00 0.0310 0.0348 0.0137 0.0144

8s1/2 −64.384 −10.721 1.446 3.352 0.460 1.125

8p1/2 −63.185 −5.991 1.378 4.198 0.447 1.450

5g7/2 −268.365 −454.162 0.388 0.355 0.147 0.129

5g9/2 −249.662 −454.162 0.398 0.355 0.150 0.129

6 f 7/2 −64.393 −124.259 0.914 0.829 0.327 0.283

6 f 9/2 −52.001 −124.259 0.966 0.829 0.349 0.283

7d3/2 −15.957 −28.915 1.801 1.705 0.656 0.574

7d5/2 −7.172 −28.915 2.363 1.705 0.968 0.574
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Appendix

A. Summation theorem for spherical spinors

Let us examine a sum of spherical spinors

∑

µ

�∗
l jµ(r, σ )�l jµ(r, σ ) =

∑

ma ,msa

C jµ
lma ,

1
2

msa

×
∑

mb ,msb

C jµ
lmb,

1
2

msb

Y∗
lma

(r)χmsa
(σ )Ylmb (r)χmsb

(σ ). (A1)

The following relation holds true for a product of spherical

harmonics [18]:

Y∗
la ma

(r)Ylbmb(r) =
∑

L,M

√

2L + 1

4π

×
√

2lb + 1

2la + 1
C la0

lb0,L0
C la ma

lb mb,LMY ∗
LM(r), (A2)

where the terms with even la + lb + L produce a nonzero

contribution.

Taking into account the orthonormality relation for the

spin functions,

χmsa
(σ )χmsb

(σ ) =
∑

msa ,msb

δmsa σ
δmsbσ

, (A3)

one may obtain the following equality:

∑

µ

�∗
la jµ(r, σ )�lb jµ(r, σ ) =

=

√

2lb + 1

2la + 1

∑

L,M

√

2L + 1

4π
C la0

lb0,L0

×
∑

ma ,mb,µ

C jµ
la ma ,

1
2
σ
C jµ

lb mb,
1
2
σ
C la ma

lb mb,LMY∗
LM(r). (A4)

The summation over momentum projections yields [18]
∑

ma ,mb ,µ

C jµ
la ma ,

1
2
σ
C jµ

lb mb,
1
2
σ
C la ma

lbmb ,LM = (−1)lb+L+ j+1/2

× (2 j + 1)

√

2la + 1

2
C

1
2
σ

LM, 1
2
σ

{

la lb L
1
2

1
2

j

}

. (A5)

It follows from the triangle relationship for Clebsch–Gordan
coefficients at the right-hand side of equality (A5) that

L = 0, 1. In the present case, la = lb = l and L + 2l is even;
therefore, only L = 0 satisfies the parity rule. Considering

that
{

la lb 0
1
2

1
2

j

}

= (−1)la + j+1/2 δla lb
√

2(2la + 1)
,

C
1
2

msb

00, 1
2

msa
= δmsa msb

, (A6)

one may find

∑

µ

�∗
l jµ(r, σ )�l jµ(r, σ ) =

1

2

2 j + 1

4π
. (A7)

The summation over σ leads to the summation theorem for

spherical tensors [18],

∑

µ,σ

�∗
l jµ(r, σ )�l jµ(r, σ ) =

2 j + 1

4π
. (A8)

Optics and Spectroscopy, 2022, Vol. 130, No. 7



844 I.I. Tupitsyn, M.Y. Kaygorodov, D.A. Glazov, A.M. Ryzhkov, D.P. Usov, V.M. Shabaev

B. Kinetic energy density

Let us consider contribution t(L)
a of the large component

to the kinetic energy density of some shell a ,

t(L)
a (r) =

1

2

1

2 ja + 1

∑

µa ,σ

|∇φaµa (r, σ )|2. (B1)

The gradient of the wave function φaµa (r, σ ) is defined as

∇φaµa (r, σ ) = ∇q
Pa(r)

r
�̹aµa (r, σ )

=
∑

l=la±1

∑

j,µ

√

(2la + 1)(2 ja + 1)(−1)
1
2
+ ja−la

×C l0
la0,10

C jµ
jaµa ,1q

{

j l 1
2

la ja 1

}

Fa,l(r)�l jµ(r, σ ), (B2)

where function Fa,l(r) is given by

Fa,l(r) =

[

d
dr

+
la(la + 1) − l(l + 1)

2r

]

Pa(r). (B3)

We the insert expression (B2) into (B1) and take into

account that
∑

µa ,q

C jµ
jaµa ,1qC j′µ′

jaµa ,1q = δ j j′δµµ′ . (B4)

The result is

t(L)
a (r) =

1

2
(2la + 1)

∑

σ

∑

l,l′=la±1

∑

j,µ

C l0
la0,10

C l′0
la0,10

×
{

j l 1
2

la ja 1

}{

j l′ 1
2

la ja 1

}

× Fa,l(r)�l jµ(r, σ )Fa,l′(r)�l′ jµ(r, σ ). (B5)

The indices l and l′ assume the values of la ± 1, and j = j ′.
Therefore, l = l′.
With the summation theorem for the spherical

spinors (A8) taken into account, we then obtain

t(L)
a (r) =

1

8π
(2la + 1)

∑

l=la±1

[

C l0
la0,10

]2

× F2
a,l(r)

∑

j

(2 j + 1)

{

j l 1
2

la ja 1

}2

. (B6)

The sum over j at the right-hand side of the equality (B6)
is equal to [18]

∑

j

(2 j + 1)

{

j l 1
2

la ja k

}2

=
1

2la + 1
, (B7)

which finally yields

t(L)
a (r) =

1

8π

∑

l=la±1

[

C l0
la0,10

]2
F2

a,l(r). (B8)

C. Relativistic function D0(r)

The relativistic function D0(r) for a homogeneous elec-

tron gas is given by

D0(r) =
∑

λ=1,2

wλ(r)T λ
0 (r), (C1)

where

T λ
0 (r) =

1

2

∑

k≤kF

∑

ms

|∇φλ
kms

(r, σ )|2

=
�

2(2π)3

∑

ms

∫

k≤k f

d3k|∇φλ
kms

(r, σ )|2. (C2)

The contribution of the large component (λ = 1) is

T (L)
0 (r) =

1

(2π)3

∫

k≤kF

d3kk2 N2
k

=
1

2π2

kF
∫

0

dkk4 Ek + c2

2Ek
=

k5
F

20π2
+

c
2π2

kF
∫

0

dk
k4

2
√

c2 + k2
.

(C3)
The integral over k is calculated explicitly [19],

kF
∫

0

dk
k4

√
c2 + k2

=
c4

8

×
[
√

1 + x2(2x3 − 3x) + 3 ln
∣

∣x +
√

1 + x2
∣

∣

]

, (C4)

where

x =
kF

c
. (C5)

The final result is

T (L)
0 (r) =

k5
F

20π2
+

c5

32π2

×
[
√

1 + x2(2x3 − 3x) + 3 ln
∣

∣x +
√

1 + x2
∣

∣

]

. (C6)
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