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Symmetry of the icosahedron group is a basic principle producing the analytical description of the fullerene by

means of the theory of molecular orbitals. Further development of the fullerene model requires consideration of the

half-integer statistics of the electron states. Double group of the icosahedron describes both statistics cases, but we

use only fermions case, in other words, the spinor representation of the icosahedron group. In this representation,

it is possible to remove restriction defining the parity of the wave function coordinate part and to build a table

of characters for arbitrary meaning of the total momentum. Symmetry of the icosahedron produces algebraic

structure of the residue ring on the modulo 5, when using momentum projection on chosen axis. If the momentum

projection equals both ±5/2 the states come into one representation. If the momentum projection by absolute

value is higher 5/2, the wave function occupies state with several entangled spinor.
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1. Introduction

It will be demonstrated below that fullerene and

graphene, its two-dimensional counterpart, both feature

unusual topological properties. It is known that a one-

sided surface [1] (Möbius strip) made of graphene turns

a conductor into a topological insulator (current may flow

only along the edge of the strip). Rolling a strip into a

tube, one may switch the conducting properties between

conductor, semi-conductor and insulator (depending on the

way of splicing [2]).

Fullerene and its two-dimensional counterpart exhibited

unusual properties. For example, Rb3C60 becomes super-

conducting at 30K [3]. The most intriguing property of

a fullerene molecule is its icosahedral symmetry. This

symmetry type has long existed only hypothetically. The

discovery of molecule C60 [4] opened up the opportunity

to examine experimentally the properties associated with

this point symmetry. The symmetry properties allow

one to characterize the structure of electron levels of

π electrons for atoms positioned at the nodes of a

truncated icosahedron. The vibrational structure of the

molecule is also governed by the same symmetry. While

the phonon subsystem may be considered in integer

statistics, the wave properties of electrons follow half-

integer statistics. Therefore, the icosahedral group was

expanded to incorporate this type of statistics. The obtained

object was called the double icosahedral group. If the

influence of spins on the positioning of electron energy

levels is neglected, the common icosahedral group yields

ten symmetry representations. Sixty π electrons form

60 different level types. Thirty of them are occupied

(two electrons per level with account for spin). The

remaining ones are unoccupied. The representation the-

ory provides an opportunity to predict the type of each

level (i.e., its energy and to what representation does

it correspond). The representation dimension specifies

the degree of degeneracy of an energy level (number of

sublevels with the same energy). The consideration of

fermions in the double icosahedral group complicates the

analysis. The number of levels increases twofold: there

are now 120 of them. Sixty lower ones are occupied

if the molecule is in the ground state. Wave functions

are characterized by spinors; energy levels (with exchange

forces being neglected) are conserved. However, the

elements of representations are new. This leads to novel

unexpected results of the topological nature. However,

in order to reveal these features, we had to construct a

complete table of wave functions (only the first 60 elements

for occupied levels of the system are presented here)
within the spinor representation of the double icosahedral

group. The non-uniqueness of expansion in new group

representations is lifted via the application of a weak spin–
orbit interaction.

2. Problem formulation

The model of a molecule with an icosahedral symmetry

(C12 and C60) is considered. One carbon atom is located at

each vertex; the lower index denotes the number of atoms.

The first case is that of a regular icosahedron; the second

one is a truncated icosahedron. The Hückel molecular
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orbital approach is applicable in both cases. In the fist

case, the Hamiltonian for the molecular orbital method

characterizes the interaction between nearest neighbors

with the use of a single coupling constant. The tabular

representation of the Hamiltonian features only the bond

topology of a molecule. The matrix rank may be reduced

to 6 by separating the solutions in symmetry with respect

to the center of inversion. Molecule C12 features an

icosahedral symmetry. The complete icosahedral group has

120 elements. Its subgroup covering all rotations about

axes of the fifth, the third, and the second orders contains

half as much elements (i.e., 60). Isomorphism between

the subgroup of rotations and alternating group A5 may

be established. Therefore, the icosahedral group may be

analyzed in algebraic and geometric terms. We chose the

second option. The dimension of the group of vertices

C12 is lower than the dimension of the icosahedral group

itself. This provides an opportunity to examine how the

irreducible representations are occupied. Interestingly, a

dual regular dodecahedron has the same symmetry, but

more (20) vertices. Since the icosahedral group has

5× 2 = 10 classes of conjugate elements, ten irreducible

representations are possible. The analysis of alternating

group A5 suggests a set of representations of dimension 1,

3, 3, 4, 5. Each representation in the set may be either even

(index g) or odd (index u). In the geometric approach,

the fifth-order axis gives rise to five types of circular

symmetry of the form eimϕ, where integer m = 0,±1,±2.

The representations differ in sets of numbers m. Rep-

resentation A has only m = 0. Representation T1 has a

dimension of 3 and m = 0,±1, while T2 has a dimension

of 3 and m = 0,±2. Representation G has a dimension

of 4 with m = ±1,±2. Representation H covers the entire

set of five numbers. In quantum mechanics, these numbers

are projections of the orbital moment onto an axis. Solving

the eigenproblem for a matrix of rank 6 in the molecular

orbital model, one finds two representations (Ag and Hg)
in the even case with λeven = 2± 3 and two representations

(T1u and T2u) in the odd case with λodd = ±
√
5. The total

dimension of spaces in both cases is 6. Representation G
is lacking. The analysis of molecule C60 within the

molecular orbital model also leads to the solution of the

eigenproblem for matrices of rank 6. The difference consists

in the fact that two different coupling constants need to be

introduced to characterize a truncated icosahedron, since

the edge length of a pentagon differs from the length of a

hexagon edge that connects the pentagons. The Hamiltonian

matrix for a molecule of 60 vertices has rank 60, which

is again reduced to 6 by choosing the symmetry via

quantum number m and parity of the solution. Since the

number of vertices corresponds to the order of group A5,

the total number of actualized representations matches, in

accordance with the representation theory, the group order;

i.e., 12 + 32 + 32 + 42 + 52 = 60. Specifically, T1 and T2

appear three times: two times as an odd representation

and one time as an even representation. The so-called

spontaneous symmetry breaking occurs, since 3 may be

represented as a sum of two integers only in this way:

3 = 2 + 1. Likewise, 5 = 2 + 3 and representation H
appears five times (three times as an even one). Represen-
tation Ag appears once, and Au is lacking. Representation G
is present twice as an even one and twice as an odd

one.

Thus, the transition from an icosahedron to a truncated

icosahedron in the molecular orbital model allows one to fill

nine out of ten lines of the character table of the icosahedral

group along the dimension of irreducible representations.

Only representation Au is lacking in the group of 60 vertices

arranged at the sites of carbon atoms of molecule C60

and, consequently, featuring icosahedral symmetry. The

character table allows one to introduce the scalar multipli-

cation operation. Different irreducible representations are

orthogonal, and a square of the irreducible representation

modulus is equal to the group order. Any object in the

space of representations may also be expanded in irreducible

representations.

The table of representations may be used to characterize

both the vibrations of atoms in a fullerene molecule [5]
and the electron states of the π-electron system for

carbon atoms bound into a fullerene molecule. In the

simplest version of the theory, two electrons with op-

posite spins are located at each level obtained within

the model. As always, they are filled from the bottom

of the well. Electron spins do not interact with each

other.

The idea of a double group belongs to Bethe [6]. He

introduced operation R that denotes rotation by 360◦ .

While rotation by 2π is a unit operation for common

point groups from Ih, this rotation in double symmetry

group ID
h produces a different result for new irreducible

representations Tσ (ID
h ) ⊂ T(ID

h ). Only transformation R
repeated twice is a unit operation for them. It means

that R2 = 1 and R = −1 for new representations, which is

indicative of half-integer statistics. Thus, the values in cells

of the character table produced by new operation R that

are generated by representations A, T1, T2,G, H ⊂ T(ID
h )

are the same as the ones obtained without this oper-

ation. The characters of new representations change

sign after operation R is performed. The dimensions

of new irreducible representations are integer numbers:

2, 2, 4, 6. The sum of their squares again yields the

number of vertices: 22 + 22 + 42 + 62 = 60. We will

call this part of irreducible representations of the double

group a spinor one Tσ (ID
h ), since the wave functions

of free nonrelativistic particles with spin 1
2

(SU(2) sym-

metry) are represented via spinor spherical functions [7].
The following designations were chosen for representa-

tions from Tσ (ID
h ): Ŵ6 ≡ Ŵ1/2, Ŵ7 ≡ Ŵ7/2 and Ŵ8 ≡ G3/2,

Ŵ9 ≡ I5/2. Their orthogonality to irreducible represen-

tations of the icosahedral group T(Ih) is ensured only

over an extended set of classes of conjugate elements

(operations). Owing to the parity of representations, the

operation of rotation about second-order axes yields a

zero value in the corresponding column of the character

table. The total number of (even and odd) irreducible
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representations is as follows: 2 two-dimensional in each

irreducible representation, 4 four-dimensional, and 6 six-

dimensional. It is expected that the case with parity is

symmetric.

3. Irreducible representations of the
icosahedral group

A truncated icosahedron has B = 12× 5 = 60 vertices,

P = 30 + 12× 5 = 90 edges, and Ŵ = 20 + 12 = 32 faces.

Placing a carbon atom at each vertex of a truncated icosa-

hedron, one obtains a model of fullerene C60. To monitor

the wave function state at 60 vertices within the Hückel

molecular orbital theory, we may limit ourselves to the same

number of interacting and the least tightly bound π electrons

and assume that one π electron is located at each node.

Since the icosahedral group contains 120 elements (60 of

which correspond to rotations), the number of vertices

of a truncated icosahedron is insufficient to implement a

complete 10× 10 character system (Table 1). The number

of representations and classes of conjugate transformations

is 10 (with P inversion taken into account). Classes are

formed from a unit transformation, rotations about the fifth-

order axis 12C5, 12C2
5 (here, 12 is the number of elements

in a class), and rotations about the third- and second-

order axes C3,C2. The other classes include inversion

alongside with rotation [8]. The space dimension of each

irreducible representation is listed in the column for unit

transformation E . The total number of wave functions

(electron states) matches the rank of the Hamiltonian

matrix (i.e., the number of vertices). The dimension of

space of representations T(Ih) is specified by this number.

The repetition factors in the decomposition into irreducible

representations denote the number of times a given rep-

resentation appears in T(Ih). If we use the notation where

the repetition factor precedes a representation, the following

composition of irreducible representations corresponds to

fullerene: 1Ag , 2T1u, 2T2u, 1T1g , 1T2g , 2Gu, 2Gg , 2Hu,

3Hg . If parity is neglected, we obtain 1A, 3T1, 3T2, 4G,

5H ; the repetition factor of an irreducible representation is

equal to its dimension (the number of vertices matches the

order of alternating group A5), and the total dimension of

representations matches the order of the group. Irreducible

representation Au is also lacking.

Let us direct axis z so that it passes through the

center of a truncated icosahedron and the center of a

pentagon face (see the figure). The Cartesian set of axes

is defined so that the symmetry axis of the template figure

(highlighted) of six points is projected to axis x . Rotated

about axis z by an angle divisible by 2π/5, this figure

covers all points of the body in the upper half-space.

Specifying just six vertices at the indicated fragment of a

truncated icosahedron, one may characterize all states of

the system with the use of two quantum numbers setting

the properties of symmetry with respect to the fifth-order

axis and inversion with respect to the icosahedron center.

Table 1. Character table of irreducible representations of the

icosahedral group T(Ih), r = (1 +
√
5)/2 is the root of equation

r2 = r + 1. Indices g and u denote even and odd representations

with respect to central inversion P

T(Ih) E 12C5 12C2
5 20C3 15C2 P 12S3

10 12S10 20S3 15σv

Ag +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

T1g +3 +r 1− r 0 −1 +3 r 1− r 0 −1

T2g +3 1− r r 0 −1 +3 1− r r 0 −1

Gg +4 −1 −1 +1 0 +4 −1 −1 +1 0

Hg +5 0 0 −1 +1 +5 0 0 −1 +1

Au +1 +1 +1 +1 +1 −1 −1 −1 −1 −1

T1u +3 +r 1− r 0 −1 −3 −r r − 1 0 +1

T2u +3 1− r r 0 −1 −3 r − 1 −r 0 +1

Gu +4 −1 −1 +1 0 −4 +1 +1 −1 0

Hu +5 0 0 −1 +1 −5 0 0 +1 −1

1
2

4

3

s

5

6

z

Diagram of fullerene and the template for the group of rotations

from Ih .

We denote the first and the second quantum numbers

as m and p. Representations Ag , T1g , T2g . . . are symmetric

with respect to inversion, and quantum number p assumes

the value of 1. An antisymmetric combination of wave

function values with respect to inversion corresponds to

representations T1u, T2u, Gu,Hu, and quantum number p
assumes the value of −1. Quantum number m specifies

the factor outside a wave function ηm = exp(i 2π
5

m), which

characterizes oscillations of this wave function at each

rotation of the template. There are a total of five nontrivial

variants or states (with m = 0,±1,±2). Irreducible rep-

resentations differ in the set of combinations of the state
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Table 2. Formulae for characters of irreducible representations of

the icosahedral group

Ih representation Formula for character χ(ϕ)

A 1

T1 1 + 2 cosϕ

T2 1 + 2 cos 7ϕ

G 2 cos 3ϕ + 2 cos 4ϕ

H 1 + 2 cosϕ + 2 cos 2ϕ

Table 3. Character χ table for irreducible representations of the

double icosahedral group, C i are five different classes of conjugate

rotations from the icosahedral group

T(ID
h ) C i P ×C i R ×C i R × P ×C i

T(Ih) χ(T(Ih)) χ(T(Ih))

Tσ (ID
h ) χ(Tσ (ID

h )) −χ(Tσ (ID
h ))

of number m. Representation Ag contains only the state

with m = 0. Representation H includes all the possible

states. Representation G is set by four projections with

m = ±1,±2, and representation T1 is specified by three

projections with m = 0,±1. Representation T2 is the most

unusual one: it has no ±1 projections (i.e., m = 0,±2).
Thus, number m corresponds to the projection of orbital

moment L = 2 onto axis z for the irreducible representation

of the group of rotations SO(3) [9]. Note that this projection
is specified by a set of integer numbers that do not exceed 2

in modulus (icosahedral group). A character table for orbital

moment l may be obtained for a given set of rotations that

preserves the positioning of a truncated icosahedron. A

representation from SO(3) with a given orbital moment is

a direct sum of a series of irreducible representations of

an icosahedron (the representations are equivalent only at

L ≤ 2).

Their values for characters at the left-hand side of Table 1

(without inversion operation P) may be represented by

the formulae from Table 2 as functions of angle, where

ϕ = 0, 2π
5
, 4π

5
, 2π

3
, π.

4. Irreducible representations of the
double icosahedral group

The idea of a double symmetry group has been put

forward long ago [6]. In the present study, we follow

the approach from [10], which applies these ideas to the

icosahedral group. Bethe introduced operation R to denote

rotation by 2π. In the context of elements of integer

statistics, it matches the common rotation and thus does not

alter the character; in half-integer statistics, the sign changes

relative to an element of the table without this operation

(Table 3). In the first case, these are the representations

listed earlier in Table 1 (irreducible representations A, T1,

T2, G, H). If we could use the notation of continuous

Lie groups, the second part of representations would

feature symmetry SU(2); however, we examine finite

point groups. Elements of irreducible representations in

the second case are denoted as Ŵ6 ≡ E1/2, Ŵ7 ≡ E7/2 and

Ŵ8 ≡ G3/2, Ŵ9 ≡ I5/2. The author of [10] proposed to

consider operation R for T(Ih) representations as the motion

along a normally spliced strip without a twist. In the

second case for elements of irreducible representations from

Tσ (ID
h ), the strip is twisted into a one-sided surface (Möbius

strip). A point returns to its initial position only after two

turns.

The potential of the initial set of classes of conju-

gate elements (without operation R) was demonstrated

in [11,12]. A truncated character table of the double

icosahedral group is constructed by splitting elements of

different statistics with respect to parity. Specifically,

only even representations Ag , T1g , T2g , Gg , and Hg are

taken from Table 1, and odd irreducible representations

are taken from Table 4. These are two two-dimensional

(Eu1/2 and Eu7/2), one four-dimensional (Gu3/2), and one

six-dimensional (Iu5/2) representations. Representations of

different parity are orthogonal in the truncated character

table constructed over ten classes of conjugate elements

only. The orthogonality of representations of the same

parity is lost in it; this helps relate these representa-

tions to each other. Table 4 is the character table of

irreducible representations from the set with half-integer

statistics Tσ (ID
h ) over the initial set of ten classes of

conjugate elements. The remaining part of the character

table of this representation is determined based on Ta-

ble 3.

The values for characters at the left-hand side

of Table 4 (without inversion operation P) may

be represented by the formulae from Table 5.

Formulae may now be used to perform operations

on characters. The character of a direct product

of groups is specified at each group element as a

product of characters. It follows from Table 5 that

factor 2 cos(ϕ/2) is present in all representations and

may be factorized. The factor in curly brackets is

associated with representations from the icosahedral

group T(Ih) with integer statistics; i.e., E1/2 = A ⊗ E1/2.

Representations T1u and Hg correspond to states with

integer orbital moments L = 1, 2. The direct product

of representation E1/2 with them is a sum of the

following representations: E1/2 ⊗ T1 = E1/2 ⊕ G3/2

and E1/2 ⊗ H = G3/2 ⊕ I5/2. Since two trigonometric

expressions match (cos 4ϕ + cos 7ϕ = cosϕ + cos 2ϕ)
over the family of icosahedron rotations,

I5/2 ⊕ (E7/2 ⊕ I5/2) = E1/2 ⊗ {G ⊕ T2}. These examples

demonstrate that representation G ⊕ T2 with orbital

moment L = 3 multiplied by a representation with

Optics and Spectroscopy, 2022, Vol. 130, No. 7
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Table 4. Character table for Tσ (ID
h ) irreducible representations from the double icosahedral group with half-integer statistics

Tσ (ID
h ) E 12C5 12C2

5 20C3 15C2 P 12S3
10 12S10 20S3 15σv

Eg1/2 +2 +r r − 1 +1 0 +2 +r r − 1 +1 0

Eg7/2 +2 1− r −r +1 0 +2 1− r −r +1 0

Gg3/2 +4 +1 −1 −1 0 +4 +1 −1 −1 0

Ig5/2 +6 −1 +1 0 0 +6 −1 +1 0 0

Eu1/2 +2 +r r − 1 +1 0 −2 −r 1− r −1 0

Eu7/2 +2 1− r −r +1 0 −2 r − 1 r −1 0

Gu3/2 +4 +1 −1 −1 0 −4 −1 +1 +1 0

Iu5/2 +6 −1 +1 0 0 −6 +1 −1 0 0

Table 5. Character formulae for irreducible representations Tσ of group ID
h and expansion of certain tensor products of representations

Tσ (ID
h ) Formula for character χ(ϕ)

E1/2 2 cos(ϕ/2) = 2 cos(ϕ/2){1}

E7/2 2 cos(7ϕ/2) = 2 cos(ϕ/2){2 cos 3ϕ − 2 cos 2ϕ + 2 cosϕ − 1}

G3/2 2 cos(ϕ/2) + 2 cos(3ϕ/2) = 2 cos(ϕ/2){2 cosϕ}

I5/2 2 cos(ϕ/2) + 2 cos(3ϕ/2) + 2 cos(5ϕ/2) = 2 cos(ϕ/2){2 cos(2ϕ) + 1}

E1/2 ⊗ T2 = I5/2 2 cos(ϕ/2)(1 + 2 cos 7ϕ) = 2 cos(ϕ/2)(1 + 2 cos 2ϕ)
E1/2 ⊗ G = I5/2 ⊕ E7/2 4 cos( ϕ

2
)(cos 3ϕ + cos 4ϕ) = 4 cos( ϕ

2
)(cos 3ϕ + cosϕ)

E1/2 ⊗ T1 = E1/2 ⊕ G3/2 2 cos(ϕ/2)(1 + 2 cosϕ)
E1/2 ⊗ H = G3/2 ⊕ I5/2 2 cos(ϕ/2){2 cos 2ϕ + 2 cosϕ + 1}

Table 6. Expansion of a representation with a given half-integer moment J into a direct sum of irreducible representations from the

double icosahedral group

Modulus of total moment J = L + S Sum of representations in Tσ (ID
h ) Sum of dimensions in Tσ (ID

h )

J = 1/2 E1/2 2

J = 3/2 G3/2 4

J = 5/2 I5/2 6

J = 7/2 E7/2 ⊕ I5/2 2 + 6

J = 9/2 G3/2 ⊕ I5/2 4 + 6

J = 11/2 E1/2 ⊕ G3/2 ⊕ I5/2 2 + 4 + 6

J = 13/2 E1/2 ⊕ E7/2 ⊕ G3/2 ⊕ I5/2 2 + 2 + 4 + 6

J = 15/2 G3/2 ⊕ 2I5/2 4 + 2× 6
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spin 1
2

is split into two representations with half-integer

moment L ± 1
2
→ JL± 1

2
. These representations are

entangled with each other. Irreducible representations

in the SO(3) rotation group differ in moment J,
and their characters are specified [13] by formula

χJ(Cϕ) = sin [(2J + 1)ϕ/2] / sin(ϕ/2), where ϕ is the

angle of rotation of operator Cϕ . Expansions in irreducible

representations are listed in Table 6. The parity of the

coordinate part of the representation matches the parity of

number L.
The characterization of properties of electron states

of fullerene with a half-integer moment may now be

performed using the data from [8], where the closest

approximation of representations from T(Ih) with spher-

ical functions was obtained. These data may now be

applied in expanding the representations from T(ID
h ) in

spinors.

5. Spinor representation

A free nonrelativistic electron with total moment

J = L + S may be characterized by spinors using the

3 j Wigner symbol method. Since spin assumes values

σ = ±1/2, the wave function of an electron is defined by

a set of quantum numbers j, l = j ∓ 1/2, m. Here, l is the
orbital moment and j, m are the half-integer total moment

and its projection onto axis z . Thus, the wave function is a

sum of two components [14]:

ψm
jl = (−1)l− j+1/2c jl,+mϕl,m−1/2(r)χ(↑)

+ c jl,−mϕl,m+1/2(r)χ(↓).

When l = j − 1/2, c jl,+m =
√

j+m
2 j and ϕl,m∓1/2 =

= Yl,m∓1/2 are spherical functions. If l = j + 1/2,

c jlm =
√

j−m+1
2 j+2

, the coordinate function retains its form,

but a minus sign emerges at the first term. We express

spinor ψm
jl ≡ |mjl〉 in the two-component form as





(−1)l− j+1/2c jl,mYl,m−1/2

c jl,−mYl,m+1/2



 .

As was already noted, the Hamiltonian for a π electron in

the state with symmetry characterized by the icosahedral

group may be characterized by a 6× 6 matrix. The

dimension of this matrix for the double icosahedral group

increases by a factor of 2, since two spinor components

are present. It can be seen in the figure that vertex 6

of the template has a bond with a vertex in the lower

hemisphere (denoted with a red star). In order to calculate

the interaction of vertex 6 along a bond with the vertex

in the lower hemisphere, one needs to derive the wave

function value from the initial template using the operations

of rotation about axis z and inversion. Note that spin is an

axial vector. In the case of inversion, such vectors do not

change their sign and preserve the value of projection onto

axis z . Therefore, under inversion, each spinor component

may transform only via itself:

P

(

ψ↑

ψ↓

)

→ ±i

(

ψ↑

ψ↓

)

. (1)

The constant for a fermion after two applications of

inversion is −1. In the case of rotation about axis z , each
spinor component also transforms only via itself:

Uz (ϕ) =

(

eiϕ/2 0

0 e−iϕ/2

)

.

Only the rotation about axes x or y flips the spin. Therefore,

the Hamiltonian with symmetry of the double icosahedral

group may be presented in the block-diagonal form:

ĤD

(

ψ↑

ψ↓

)

=





Ĥ 0

0 Ĥ





(

ψ↑

ψ↓

)

. (2)

Since the spectrum of eigenvalues of diagonal blocks of the

Hamiltonian is defined by a set of irreducible representations

from T(Ih), the solution in T(ID
h ) may be constructed with

the same eigenvalue when one and the same irreducible

representation is taken for the upper and lower parts of

the spinor (if the dimension of irreducible representations

is higher than 1, the wave functions themselves differ). All
that is lacking is to find normalizing factors.

Thus, as in the case of icosahedral group Ih, the

eigenproblem is a problem with a 6× 6 matrix. The

matrix Hamiltonian contains only real numbers. Unit

transformation U may be used to transform Hamiltonian

Ĥ = U+HU to form (3) [8,9] (see below).
The spectrum of eigenvalues follows from the equation in

which determinant det(Ĥ − λE) is equated to zero. Here,

cm = cos( 2πm
5

), sm = sin( 2πm
5

) and ηm = exp(i 2π
5

m), and

ηm + η−m = 2cm. The matrix of the unitary transformation

is

U =





E 0 0

0 T 0

0 0 T



 , E =

(

1 0

0 1

)

, T =
1√
2

(

1 i
1 −i

)

.

The first 18 irreducible representations in the spinor

representation of the icosahedral group are listed in Table 7.

The solution is easy to find at L ≤ 2, since the repre-

sentation has a solution in the form of a single spinor.

Projections ± 5
2

are present only in representation Ig5/2!

Nontrivialities emerge already in the examination of an

orbital moment equal to 3. The representation with orbital

moment L = 3 expands into a sum of two irreducible

representations Gu ⊕ T2u, which differ in the set of available

projections. Representation Gu has no zero projection,

and T2u has no projections with m = ±1. In addition,

it was already demonstrated that E1/2 ⊗ T2 = I5/2 and

E1/2 ⊗ G = I5/2 ⊕ E7/2.
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Ĥ =















−α2cm −(2− α) 0 0 0 0

−(2− α) 0 −α
√
2 0 0 0

0 −α
√
2 −(2− α)cm (2− α)sm −α 0

0 0 (2− α)sm (2− α)cm 0 −α
0 0 −α 0 −α − (2− α)pc3m (2− α)ps3m

0 0 0 −α (2− α)ps3m α + (2− α)pc3m















. (3)

Let us consider the case of L = 3. The projection of

orbital moment m = 2 onto axis z is indistinguishable over

the set of rotations of the icosahedral group from the

projection of moment m = −3. This is the property that

underlies the algebra of the residue ring modulo a prime

number (5). Therefore, when the total moment emerges

based on the orbital moment equal to (or higher than) 3,

the representation is formed by at least two spinors with

different projections of the total moment. Let us consider a

combination of spinors of the form

(

−
√

3

5

∣

∣

∣

5/2

5/2,3

〉

+

√

2

5

∣

∣

∣

−5/2

7/2,3

〉

)

=







√

1
7

(
√

3
5

Y3,2 +
√

2
5

Y3,−3

)

Tu
√

6
7

(

−
√

3
5

Y3,3 +
√

2
5

Y3,−2

)

Ḡu






. (4)

The upper spinor component takes the form of represen-

tation Tu; the lower one, of Ḡu, where the bar indicates

inversion of coordinate z . The combination of spinors

(

√

6

7

∣

∣

∣

5/2

5/2,3

〉

+

√

1

7

∣

∣

∣

5/2

7/2,3

〉

)

=

(

0

Y3,3

)

allows one to transform the lower spinor component to

representation Tu (
√
5 is the normalization factor):

1√
5







(
√

3
5

Y3,2 +
√

2
5

Y3,−3

)

Tu

2
(

−
√

2
5

Y3,3 +
√

3
5

Y3,−2

)

Tu







=

√

7

5
×
{

(

−
√

3

5

∣

∣

∣

5/2

5/2,3

〉

+

√

2

5

∣

∣

∣

−5/2

7/2,3

〉)

+

√

2

35

(

√

6

7

∣

∣

∣

5/2

5/2,3

〉

+

√

1

7

∣

∣

∣

5/2

7/2,3

〉)

}

.

If we use the combination of spinors

(

√

1

7

∣

∣

∣

−5/2

5/2,3

〉

+

√

6

7

∣

∣

∣

−5/2

7/2,3

〉

)

=

(

0

Y3,−2

)

,

the spinor representation has a different coefficient in the

lower spinor part:
√

7

10

(

−
√

3

5

∣

∣

∣

5/2

5/2,3

〉

+

√

2

5

∣

∣

∣

−5/2

7/2,3

〉

)

+

√

1

10

(

√

1

7

∣

∣

∣

−5/2

5/2,3

〉

+

√

6

7

∣

∣

∣

−5/2

7/2,3

〉

)

=

√

1

10







(
√

3
5

Y3,2 +
√

2
5

Y3,−3

)

Tu

3
(

−
√

2
5

Y3,3 +
√

3
5

Y3,−2

)

Tu






.

This ambiguity demonstrates that two orthogonal vectors

may be chosen based on these two combinations. The

results for these and other versions of spinors are listed

in Tables 7−10.

Since E1/2 ⊗ G = I5/2 ⊕ E7/2, the initial representa-

tion 5Gu(3) decomposes into two representations: two-

dimensional E7/2 and six-dimensional I5/2. The projections

of total moment m j = ±3/2 are duplicated in both repre-

sentations. This refers to representations 25−26 and 29−30.

The selection of split is rather tentative in this case, since

the representations have equal level energies. This indeter-

minacy will be lifted below. The orthogonality of a set of

elements of representations is ensured by construction. Note

that complexities in the representation arise primarily due

to the omission of certain axial projections of the moment

in the base representation. For example, representation 19

constructed based on 4T2u(3) has no projections of the

orbital moment equal to ±1. Therefore, the coefficient

of the lower component of the wave function at Y3,1

should be zero. This is achieved using a superposition

of the form
√
3/7|1/25/2,3〉 −

√
4/7|1/27/2,3〉. The other cases

are similar. Thus, this example (Table 8) tells us that

the representations for L = 3 are superpositions of spinors

with J = 5/2 and J = 7/2. They are entangled to establish

group properties of the system. Note that both components

(upper and lower) of the coordinate part of the wave

function should be solutions of the Hamiltonian with one

and the same energy. This translates into a requirement that

they belong to one and the same representation. Certain

topological restrictions are applied as a result: pure j j
representations are lacking. An additional electron–atom

interaction is produced due to the fact that an electron

has a spin and the associated magnetic moment. The

motion of an electron in the electrostatic field of an

atomic nucleus induces a magnetic field in the coordinate

system of this electron. The magnetic field is a vector

product of the electron velocity and the electric field of

the nucleus. The field is directed along the radius vector,

and vector product [r× v] yields the orbital moment of

the electron. This is the reason why this interaction

is called the spin–orbit one. The following estimate is

obtained for the spin–orbit interaction with account for

screening of the nucleus by other electrons in molecule

C60 [15]:

V =
~
2

m2c2

(

dU
dr

)

∣

∣

∣

r=1.4aB

ls

R f
= Ry

aB

R f

α2

2
(j2 − l2 − s2).
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Table 7. Irreducible representations of the double icosahedral group ID
h , L ≤ 2

Representation Wave function (and expansion in spinors)

T(Ih)(L) Tσ (ID
h ) 9m

jl ≡ |mj,l〉

1Ag(0) Eg1/2 1.

(

Y00

0

)

= |1/21/2,0〉 2.

(

0

Y00

)

= |−1/2
1/2,0 〉

2T1u(1) Eu1/2 3.

( −√
1/3Y1,0√
2/3Y1,1

)

= |+1/2

1/2,1〉 4.
( −√

2/3Y1,−1√
1/3Y1,0

)

= |−1/2

1/2,1 〉

2T1u(1) Gu3/2 5.

(

√
2/3Y1,0√
1/3Y1,1

)

= |+1/2

3/2,1〉 6.
(

√
1/3Y1,−1√
2/3Y1,0

)

= |−1/2

3/2,1〉

7.

(

Y1,1

0

)

= |+3/2
3/2,1〉 8.

(

0

Y1,−1

)

= |−3/2
3/2,1 〉

3Hg(2) Gg3/2 9.

( −√
2/5Y2,0√
3/5Y2,1

)

= |+1/2

3/2,2〉 10.
( −√

3/5Y2,−1√
2/5Y2,0

)

= |−1/2

3/2,2 〉

11.

( −
√
1/5Y2,1√
4/5Y2,2

)

= |+3/2
3/2,2〉 12.

( −
√
4/5Y2,−2√
1/5Y2,−1

)

= |−3/2
3/2,2 〉

3Hg(2) Ig5/2 13.

(

√
3/5Y2,0√
2/5Y2,1

)

= |+1/2
5/2,2〉 14.

(

√
2/5Y2,−1√
3/5Y2,0

)

= |−1/2
5/2,2 〉

15.

(

√
4/5Y2,1√
1/5Y2,2

)

= |+3/2

5/2,2〉 16.
(

√
1/5Y2,−2√
4/5Y2,−1

)

= |−3/2

5/2,2 〉

17.

(

Y2,2

0

)

= |+5/2
5/2,2〉 18.

(

0

Y2,−2

)

= |−5/2
5/2,2 〉

Here, aB = ~
2

me2 is the Bohr radius, Ry = e2

2aB
is the

energy unit (Rydberg), α = e2

~c is the fine-structure con-

stant, and R f /aB = 6.62 is the radius of a fullerene

molecule in atomic units. Since 〈l2〉 = L(L + 1),
〈s2〉 = 3/4, and the difference between the values of

〈j2〉 for states with total moments J = 5/2 and J = 7/2

(L = 3) is 7, the maximum energy splitting of sub-

levels of different spinor representations does not ex-

ceed

1V = Ry
7aB

R f

α2

2
= 0.4meV. (5)

Estimate (5) allows for the fact that different sublevels

have different weight coefficients in spinor superpositions.

The table reveals the set of eigenfunctions for occu-

pied electron states in fullerene. Spinors with moments

J = L − 1/2⊕ J = L + 1/2 become entangled almost with-

out exception. If we take the spin–orbit interaction into

account, degeneracy may be lifted. The expansion of

the initial representation (e.g., E1/2 ⊗ H = G3/2 ⊕ I5/2) will

proceed in this case in such a way that the energy

of elements within new representations is kept equal.

The arbitrariness of choice of subspaces G3/2 ⊕ I5/2 due

to the matching of energies of levels persists until we

introduce spin–orbit splitting. The inclusion of the spin–
orbit interaction provides an opportunity to introduce

an invariant that defines the energy level within new

representations (this invariant is set by summing the

squares of nonzero amplitudes of spinors in the con-

sidered representation with weights ξ1,2 depending on

moment J):

ξ1,2 =
1

2

(

J(J + 1) − L(L + 1) − 3/4
)

=
−L − 1

2
,

L
2
,

Inv = ξ1
∑

p

|αp
L−1/2,L|2 + ξ2

∑

r

|αr
L+1/2,L|2. (6)

The Inv = const condition needs to be satisfied for all

wave functions from the same representation in order for

Hamiltonian perturbation V to preserve the icosahedral

symmetry and the energy degeneracy of levels within the

representation. This problem turned out to be solvable. The

results are presented in the tables. For example, the wave

function for line number 41 (Table 9) is

1

3

√

1

15

(

−
(

c
√
60− s

√
40
)∣

∣

1/2
7
2
,4
〉 + (

√
32s +

√
75c)

∣

∣

1/2
9
2
,4
〉

+ 3
√
7s
∣

∣

−9/2
9
2
,4

〉
)

.

(7)
Here, parameters c = cos β and s = sin β

Inv =
1

135

((

−5

2

)

(60c2 + 40s2 − 40
√
6cs)

+ 2(32s2 + 75c2 + 40
√
6sc + 63s2)

)

=
1

3
(2s2 + 4

√
6sc)

= 2 = 2(c2 + s2) ⇒ 2s2 − 2
√
6cs + 3c2 = 0,

s/c =
√

3/2. (8)
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Table 8. Continuation of Table 7. Irreducible representations of the double icosahedral group ID
h with L = 3 and expansion in spinors

9m
jl =

∑

α jlm|mj,l〉

Representation Wave function (and expansion in spinors)

T(Ih)(L) Tσ (ID
h ) 9m

jl =
∑

α jlm|mj,l〉

4T2u(3) Iu5/2 19.

( −Y3,0

0

)

=
√
3/7|1/25/2,3〉 −

√
4/7|1/27/2,3〉

Inv = 0 20.

(

0

Y3,0

)

=
√
3/7|−1/2

5/2,3〉 +
√
4/7|−1/2

7/2,3〉

21. 1√
5

(

0√
3Y3,2 +

√
2Y3,−3

)

=
√

3
5
(
√

5
7
|3/25/2,3〉 +

√

2
7
|3/27/2,3〉) +

√

2
5
|−7/2
7/2,3 〉

22. 1√
5

(√
2Y3,3 −

√
3Y3,−2

0

)

=
√

3
5
(
√

5
7
|−3/2
5/2,3 〉 +

√

2
7
|−3/2
7/2,3 〉) +

√

2
5
|7/27/2,3〉

23.

1√
10

(√
3Y3,2 +

√
2Y3,−3√

3Y3,−2 −
√
2Y3,3

)

=
√

1
2
× {(−

√

27
35
|5/25/2,3〉

√

8
35
|5/27/2,3〉) + (−

√

3
35
|−5/2

5/2,3〉 +
√

32
35
|−5/2

7/2,3 〉)}

24.

1√
10

(√
2Y3,−3 +

√
3Y3,2√

2Y3,3 −
√
3Y3,−2

)

=
√

1
2
× {(−

√

27
35
|−5/2

5/2,3 〉

−
√

8
35
|−5/2
7/2,3 〉) + (

√

3
35
|5/25/2,3〉 +

√

32
35
|−5/2
7/2,3 〉)}

5Gu(3) Eu7/2 25. 1√
10

( −
√
5Y3,1

−
√
2Y3,2 +

√
3Y3,−3

)

= 1√
10

(−
√
7|3/27/2,3〉 +

√
3|−7/2

7/2,3 〉)

Inv = 3
2

26. 1√
10

( −
√
2Y3,−2 −

√
3Y3,3

−
√
5Y3,−1

)

= 1√
10

(−
√
7|−3/2

7/2,3〉 −
√
3|7/27/2,3〉)

5Gu(3) Iu5/2 27.

(

0

Y3,1

)

= 1√
7
(
√
4|1/25/2,3〉 +

√
3|1/27/2,3〉)

Inv = − 1
2

28.

( −Y3,−1

0

)

= 1√
7
(
√
4|−1/2

5/2,3 〉 −
√
3|−1/2

7/2,3 〉)

29.

1√
10

(

√
5Y3,1

−
√
2Y3,2 +

√
3Y3,−3

)

= 1√
2

× {(−
√

8
7
|3/25/2,3〉 +

√

9
35
|3/27/2,3〉) +

√

3
5
|−7/2
7/2,3〉}

30.

1√
10

( −
√
2Y3,−2 −

√
3Y3,3√

5Y3,−1

)

= 1√
2

× {(−
√

8
7
|−3/2
5/2,3 〉 +

√

9
35
|−3/2
7/2,3 〉) −

√

3
5
|7/27/2,3〉}

31.

1√
10

(

√
3Y3,−3 −

√
2Y3,2

−
√
2Y3,−2 −

√
3Y3,3

)

=
√

1
2
× {(−

√

32
35
|−5/2
5/2,3 〉

−
√

3
35
|−5/2
7/2,3 〉) + (−

√

8
35
|5/25/2,3〉 −

√

27
35
|5/27/2,3〉)}

32.

1√
10

( −
√
2Y3,2 +

√
3Y3,−3√

3Y3,3 +
√
2Y3,−2

)

=
√

1
2
× {(

√

32
35
|5/25/2,3〉

−
√

3
35
|5/27/2,3〉) + (−

√

8
35
|−5/2

5/2,3 〉 +
√

27
35
|−5/2

7/2,3 〉)}

It follows from expression (7) that the root of equation

s/c is multiple, c =
√
2/5, s =

√
3/5. We then insert the

obtained root into (6). Following simplification, we find

1

5

(
√
18
∣

∣

1/2
9
2
,4
〉 +

√
7
∣

∣

−9/2
9
2
,4

〉
)

.

Likewise, wave function 45 (Table 9) is defined as

1

3
√
15

{

(
√
40c +

√
60s)

∣

∣

1/2
7
2
,4
〉 + (

√
32c −

√
75s)

∣

∣

1/2
9
2
,4
〉

+ 3c
√
7
∣

∣

−9/2
9
2
,4

〉
}

. (9)
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Table 9. Continuation of Table 7. Irreducible representations ID
h for L = 4

Representation Wave function (and expansion in spinors)

T(Ih)(L) Tσ (ID
h ) 9m

jl =
∑

α jlm|mj,l〉

6Gg(4) Eg7/2 33. 1√
30

(

√
7Y4,1 −

√
8Y4,−4

−
√
14Y4,2 + Y4,−3

)

= (−
√

7
10
|3/27
2
,4
〉 +
√

3
10
|−7/2
7
2
,4

〉)

Inv = − 5
2

34. 1√
30

(

√
14Y4,−2 + Y4,3

−(
√
7Y4,−1 +

√
8Y4,4)

)

= −
√

7
10
|−3/2
7
2
,4

〉 −
√

3
10
|7/27
2
,4
〉

Ig5/2 35.

√

1
15

(

0√
7Y4,1 −

√
8Y4,−4

)

=
√

7
15

(
√

5
9
|1/27
2
,4
〉 +
√

4
9
|1/29
2
,4
〉) −

√

8
15
|−9/2
9
2
,4

〉

Inv = 5
6

36.

√

1
15

( −
√
7Y4,−1 −

√
8Y4,4

0

)

=
√

7
15

(
√

5
9
|−1/2
7
2
,4

〉 −
√

4
9
|−1/2
9
2
,4

〉) −
√

8
15
|9/29
2
,4
〉

37.

√

1
30

(

√
7Y4,1 −

√
8Y4,−4

(
√
14Y4,2 − Y4,−3)

)

=
√

1
30

× {(
√

7
3
|3/27
2
,4
〉 + 2

√

14
3
|3/29
2
,4
〉) + ( 7

3
|−7/2
7
2
,4

〉 − 2
3

√
8|−7/2

9
2
,4

〉)}

38.

1√
30

(

√
14Y4,−2 + Y4,3√
7Y4,−1 +

√
8Y4,4

)

=
√

1
30

× {(−
√

7
3
|−3/2
7
2
,4

〉 + 2
√

14
3
|−3/2
9
2
,4

〉) + ( 7
3
|7/27
2
,4
〉 + 2

3

√
8|7/29

2
,4
〉)}

39.

1√
30

(

√
14Y4,2 −Y4,−3

Y4,3 +
√
14Y4,−2

)

= 1√
30

× {(−
√

7
9
|5/27
2
,4
〉

+8
√

2
9
|5/29
2
,4
〉) + (3

√

7
9
|−5/2
7
2
,4

〉 + 6
√

2
9
|−5/2
9
2
,4

〉)}

40.

1√
30

(

√
14Y4,2 −Y4,−3

−(Y4,3 +
√
14Y4,−2)

)

= 1√
30

× {(−3
√

7
9
|5/27
2
,4
〉

+ 6
√

2
9
|5/29
2
,4
〉) − (

√

7
9
|−5/2
7
2
,4

〉 + 8
√

2
9
|−5/2
9
2
,4

〉)}

7Hg(4) Gg3/2 41.

√

1
15

(

c
√
15Y4,0

s(
√
8Y4,1 +

√
7Y4,−4)

)

= 1
5
{
√
18|1/29

2
,4
〉 +

√
7|−9/2

9
2
,4

〉}

c =
√
2/5, s =

√
3/5

Inv = 2 42.
√

1
15

(

s(
√
8Y4,−1 −

√
7Y4,4)

c
√
15Y4,0

)

= 1
5
{
√
18|−1/2

9
2
,4

〉 −
√
7|9/29

2
,4
〉}

s = 2c 43. 1√
15

(

c(
√
8Y4,1 +

√
7Y4,−4)

s(Y4,2 +
√
14Y4,−3)

)

= 1
5
{2|3/29

2
,4
〉 +

√
21|−7/2

9
2
,4

〉}

s = 2c 44. 1√
15

(

s(Y4,−2 −
√
14Y4,3)

c(
√
8Y4,−1 −

√
7Y4,4)

)

= 1
5
{2|−3/2

9
2
,4

〉 −
√
21|7/29

2
,4
〉}

Ig5/2 45.

1√
15

( −s
√
15Y4,0

c(
√
8Y4,1 +

√
7Y4,−4)

)

= 1

3
√

15
× {(

√
40c +

√
60s)|1/27

2
,4
〉

+ (
√
32c −

√
75s)|1/29

2
,4
〉 + 3c

√
7|−9/2

9
2
,4

〉}, s
c =

√

3
2

Inv = − 4
3

46.

√

1
15

(

c(
√
8Y4,−1 −

√
7Y4,4)

−s
√
15Y4,0

)

= 1

3
√

15
× (−(c

√
40 + s

√
60)|−1/2

7
2
,4

〉

+ (c
√
32− s

√
75)−1/2

9
2
,4

〉 − 3c
√
7|9/29

2
,4
〉)

s = 2c 47.

1√
15

(

s(
√
8Y4,1 +

√
7Y4,−4)

−c(Y4,2 +
√
14Y4,−3)

)

= 1

3
√

15
{(−

√
6(2s + c)|3/27

2
,4
〉

+
√
3(4s − c)|3/29

2
,4
〉) − (

√
14(2s + c)|−7/2

7
2
,4

〉 +
√
7(4c − s)|−7/2

9
2
,4

〉)}
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Table 10. Continuation of Table 7. Irreducible representations ID
h for L = 4, 5

Representation Wave function (and expansion in spinors)

T(Ih)(L) Tσ (ID
h ) 9m

jl =
∑

α jlm|mj,l〉

7Hg(4) Ig5/2 48.

1√
15

(

c(Y4,−2 −
√
14Y4,3)

−s(
√
8Y4,−1 −

√
7Y4,4)

)

= 1

3
√

15
{−(

√
6(c + 2s)|−3/2

7
2
,4

〉

+
√
3(4s − c)|−3/2

9
2
,4

〉) +
√
14(c + 2s)|7/27

2
,4
〉 −

√
7(4c − s)|7/29

2
,4
〉}, s

c = 2

Inv = − 4
3

49.

1√
30

(

(
√
14Y4,−3 + Y4,2)

(Y4,−2 −
√
14Y4,3)

)

= 1√
30

× {(−
√
8|−5/2

7
2
,4

〉 +
√
7|−5/2

9
2
,4

〉) − 1
3
(8
√
2|5/27

2
,4
〉 +

√
7|5/29

2
,4
)}

50.

1√
30

(

(
√
14Y4,−3 + Y4,2)

−(Y4,−2 −
√
14Y4,3)

)

= 1√
30

× { 1
3
(−8

√
2|−5/2

7
2
,4

〉 +
√
7|−5/2

9
2
,4

〉) + (
√
8|5/27

2
,4
〉 +

√
7|5/29

2
,4
〉)}

8Hu(5) Gu3/2 51.

1√
10

(

c(
√
5Y5,−5 +

√
5Y5,5)

s(
√
3Y5,−4 −

√
7Y5,1)

)

= 1√
10×11

{−7√
5
|−9/2
9
2
,5

〉

+
√
32|−9/2

11
2
,5
〉 +

√
22|11/211

2
,5
〉 −
√

21
5
(
√
6|1/29

2
,5
〉 +

√
5|1/211

2
,5
〉)}, s

c =
√

3
2

Inv = 3
4

52.

1√
10

(

s(
√
7Y5,−1 +

√
3Y5,4)

c(
√
5Y5,−5 +

√
5Y5,5)

)

= 1√
10×11

{ 7√
5
|9/29
2
,5
〉

+
√
32|9/211

2
,5
〉 +

√
22|−11/2

11
2
,5

〉 −
√

21
5
(
√
6|−1/2

9
2
,5

〉 −
√
5|−1/2

11
2
,5
〉)}

53.

1√
10

(

c(
√
3Y5,−4 −

√
7Y5,1)

s(−
√
6Y5,−3 −

√
4Y5,2)

)

= c√
10×11

{−
√
3(7|−7/2

9
2
,5

〉 + 5
√
2|−7/2

11
2
,5
〉) − 2

√
7|3/29

2
,5
〉 − 15|3/211

2
,5
〉}, s = 2c

54.

1√
10

( −s(
√
4Y5,−2 −

√
6Y5,3)

c(−
√
7Y5,−1 −

√
3Y5,4)

)

= c√
10×11

{+
√
3(−7|7/29

2
,5
〉 + 5

√
2|7/211

2
,5
〉) + 2

√
7|−3/2

9
2
,5

〉 − 15|−3/2
11
2
,5
〉}

Iu5/2 55.

1√
10

( −s(
√
5Y5,−5 +

√
5Y5,5)

c(
√
3Y5,−4 −

√
7Y5,1)

)

= 1√
10×11

{−
√
33|11/211

2
,5
〉

−
√

14
5
(
√
6|1/29

2
,5
〉 +

√
5|1/211

2
,5
〉) + ( 6

√
6√
5
|−9/2
9
2
,5

〉 +
√
3|−9/2

11
2
,5
〉)}, s

c =
√

3
2

Inv = − 1
2

56.

1√
10

( −c(
√
7Y5,−1 +

√
3Y5,4)

s(
√
5Y5,−5 +

√
5Y5,5)

)

= 1√
10×11

{
√
33|−11/2

11
2
,5

〉

+
√

14
5
(
√
6|−1/2

9
2
,5

〉 −
√
5|−1/2

11
2
,5
〉) + ( 6

√
6√
5
|9/29
2
,5
〉 −

√
3|9/211

2
,5
〉)}, s

c =
√

3
2

57.

1√
10

(

s(
√
3Y5,−4 −

√
7Y5,1)

c(
√
6Y5,−3 +

√
4Y5,2)

)

= c√
10×11

{
√
3(−4|−7/2

9
2
,5

〉 + 5
√
2|−7/2

11
2
,5
〉) + (6

√
7|3/29

2
,5
〉 − 10|3/211

2
,5
〉)}, s

c = 2

58.

1√
10

( −c(
√
4Y5,−2 −

√
6Y5,3)

s(
√
7Y5,−1 +

√
3Y5,4)

)

= c√
10×11

{+
√
3(4|7/29

2
,5
〉 + 5

√
2|7/211

2
,5
〉) + (6

√
7|−3/2

9
2
,5

〉 + 10|−3/2
11
2
,5
〉)}, s

c = 2

59. 1
5

(

(−
√
3Y5,−3 −

√
2Y5,2)

2(−
√
2Y5,−2 +

√
3Y5,3)

)

= −
√

11
5
|−5/2
11
2
,5
〉 + 1√

11
(
√
6|5/29

2
,5
〉 + 2

5
|5/211

2
,5
〉)

60. 1
5

(

2(
√
3Y5,−3 +

√
2Y5,2)

(−
√
2Y5,−2 +

√
3Y5,3)

)

=
√

11
5
|5/211

2
,5
〉 + 1√

11
(−

√
6|−5/2

9
2
,5

〉 + 2
5
|−5/2
11
2
,5
〉)
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The calculation of the invariant yields

Inv =
1

135

((

−5

2

)

(40c2 + 60s2 + 40
√
6cs)

+ 2(32c2 + 75s2 − 40
√
6sc + 63c2)

)

=
1

3
(2c2−4

√
6sc)

= −4

3
= −4

3
(c2 + s2) ⇒ 2s2 − 2

√
6cs + 3c2 = 0,

s/c =
√

3/2. (10)

It is evident that the roots of equations derived from invari-

ants in formulae (8) and (10) are compatible. Note that the

invariants of representations with moment L = 4 (namely,

Gg3/2, (dim = 4) and Ig5/2, (dim = 6)) are interrelated by a

formula with a zero right-hand side: 2× 4 + (− 4
3
) × 6 = 0.

Therefore, the value of the invariant is determined un-

ambiguously from the representation for wave function

number 49 (or 50) where the wave function is represented

by a superposition of spinors with projections m = ± 5
2
of

moment J . The upper and the lower components of the

wave function representation take the form (accurate to

within the normalization factor) set by the corresponding

representation of the icosahedral group obtained earlier

in [8]. The designations of this initial representation are

presented in the first column of the table. The second

column lists the representations of the spinor icosahedral

group and the invariant values (in certain lines, the ratios

of values s and c for wave functions from the third column

and the same line are also indicated here to reduce the size

of the table). The expression for the wave function and its

expansion in spinors are given in the third column. Thus,

the inclusion of weak spin–orbit interaction provides an

opportunity to decompose unambiguously two-dimensional

spaces, which emerge in transition from the icosahedral

group to the double icosahedral group, into one-dimensional

ones, which lie in their irreducible representations. All the

sublevels of these new representations are degenerate in

energy. The energy splitting between adjacent represen-

tations obtained by performing an operation of the form

E1/2 ⊗ H = G3/2 ⊕ I5/2 is small, since fullerene has a large

radius.

6. Conclusion

Thus, we examined the first 60 wave functions of

(occupied) electron states of fullerene lying below the

Fermi level. Each state with a projection of total moment

of ± 1
2
,± 3

2
is represented by a two-dimensional space in

the spinor representation. The inclusion of the spin–
orbit interaction provides an opportunity to decompose

such spaces into two one-dimensional ones by referring

the corresponding subspaces to their representations (e.g.,
G3/2 or I5/2; see the example of wave functions 41 and 45

above). Note that the corresponding states for moments

with a projection of ± 5
2

are indistinguishable in the

icosahedral symmetry field. Therefore, the two-dimensional

space corresponding to them falls completely within one

representation (functions 49−50). Functions 41 and 45 do

not only belong to different representations, but also have

slightly different energy levels. The difference is 0.36meV.

It bears reminding that kT = 25 meV at room temperature.

With the moment of inertia of a fullerene molecule C60

(I = 10−43 kg ·m2, ε = ~
2/2I = 3.3 · 10−4 meV) taken into

account, approximately 275 rotational states should be

occupied at this temperature (i.e., N(N + 1)ε = 25), and

the rotational transition quantum is on the order of 0.2meV

(2Nε = 0.2). A molecule in the excited state with an

electron from state 41 (or 45) migrating to a band above

the Fermi level gains the capacity to oscillate between states

41 and 45 owing to the interaction via quantum exchange

between spin-electron and rotational states (if the rotational

temperature of the molecule is on the order of 100meV,

which is needed to establish resonance between them). A

similar effect is observed for all electron states split due to

the spin–orbit interaction. Since the characteristic energy of

vibrational quanta falls within the 20−200meV range, the

influence of vibrational states of a molecule on spin–orbit
processes is immaterial.

The wave function is decomposed into a sum of spinors.

In the general case, this sum includes spinors having

both values of total moment J = L ∓ 1/2 (but the same

projections of the moment onto axis z ). Thus, owing to

the molecule topology, wave functions contain spinors in

entangled states. Note also that the sum includes sets

of moment projections coinciding in a ring modulo 5.

For example, projection − 9
2

is included alongside with

projection 1
2
in the case of wave function 41. An attempt at

classifying the wave functions of the icosahedral group (the
double one included) has already been made in [16], but the
influence of the spin–orbit interaction was neglected there,

and certain functions in [16] are inconsistent with classical

studies [3,17] (e.g., for T2u(L = 3)). The notation adopted

in the present study allows one to classify wave functions

both by means of spherical harmonics and with the use of

the classical spinor definition [14]. It is worth reminding

that the form of representations of the icosahedral group

was determined by solving exactly the Hamiltonian matrix

and projecting the point solution to the space of spherical

functions. The coefficients of expansion in spherical

functions were determined using the pseudoinverse matrix

method. This is the best approximation in the sense of the

least squares technique. All coefficients turned out to be

roots of ratios of integer numbers. The set of eigen wave

functions of the Hamiltonian allows one to construct matrix

elements for the excitation cross sections of electron states

above the Fermi level.
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