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Introduction

A laser pulse of relativistic intense (> 1018W/cm2)
generates a current of relativistic electrons in the target,

which, in turn, generate coherent and incoherent secondary

radiation. This radiation is distributed over a wide interval

of frequencies (from the initial optic range to gamma-

quanta) and caused by a number of different physical

mechanisms of its generation. For the potential use of

the secondary radiation the important case is when many

secondary harmonics of different frequencies in the spatial-

time representation are put together in a train of ultrashort

(10−18 s) attopulses [1]. These pulses are the only possible

tool for instantaneous radiography and control of electron

wave packets dynamics at subfemtosecond (subatomic)
times [2], which makes it possible to investigate time

dynamics and to control chemical and biological reactions.

Attosecond pulses are resulted from the interaction of

intense laser radiation with solid and gaseous targets and

in the ideal case, they should have a close-to-rectangular

frequency spectrum starting from the initial laser frequency

up to the frequency corresponding to the inverse length of

the attopulse. Consequently, among the possible physical

mechanisms of secondary radiation generation we need to

identify the mechanism to generate attopulses that results in

the most low-sloped frequency spectrum of the radiation.

The following mechanisms are known for the radiation

of fast electrons at their relativistic oscillations in a thin

target:

1. Transition radiation when electrons cross the plasma

boundary. Radiation spectrum of a single electron [3]
can be represented as a quasi-power spectrum with

an power spectrum exponent of q = −3/2. Averag-

ing over different (data calculated by the
”
particle-in-

cell“ — PIC-method) energy distributions of fast elec-

trons shows that spectral index of the transition radi-

ation (−q) falls in the interval from 4/3 to 2 (the
Maxwellian distribution yields −q ∼ 4/3). Slope of the

spectrum ∼ ω−4/3 is low, however the transition radi-

ation is incoherent in relation to the number of fast

electrons and suppressed in relation to coherent mecha-

nisms.

2. Braking radiation on target nuclei. It has a low-

slope (independent on frequency, q ∼ 0) spectrum, but is

incoherent in relation to both the number of fast electrons

and target nuclei. Consequently, the braking radiation is

relevant for explanation of the
”
substrate“ of attopulses (the

X-ray background), however it is ranked below coherent

mechanisms in intensity.

3. Coherent
”
synchrotron“ emission (CSE) [4] of electron

bunches in the skin-layer of laser plasma. CSE is responsible

for the spectrum of radiation reflected from the plasma

and coherent in relation to the number of fast electrons

that makes it the main channel of the secondary radiation

in terms of power. The CSE spectrum is of power-type

∼ ω−4/3 [4], just as the spectrum of transition radiation,

but CSE intensity is greater than that of transition radiation

by a factor equal to the number of electrons in the bunch

(i.e. by several orders of magnitude). Note, that in earlier

models of CSE electron bunches were
”
replaced“ by a

single relativistically oscillating plasma boundary [5], which

resulted in a stronger drop of spectrum ∼ ω−8/3 . Since CSE

is the main coherent channel of the secondary radiation,

attopulses formed by the CSE mechanism have maximum
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intensity, and the laser pulse is efficiently converted into a

train of attopulses.

In this study the CSE is considered for the case of thin

(units of nanometers) target near the transparency threshold.

It is known that in this case [6] the energy of fast electrons

oscillation increases as compared to the case of thick targets.

This allows achievement of higher ratio of laser radiation

conversion into train of attopulses. In contrast to the case

of CSE in a thick target considered before [4,7], where

attopulse spectrum asymptotics was analytically considered

in the region of high frequencies (much higher than the

laser frequency), in the case of thin target it turns to be

possible to build up full spectrum of the reflected and passed

through the target radiation. As a result, the conversion

is determined more accurately than in [7], where full

spectrum was replaced by its high-frequency asymptotics

in the whole frequency range. In the region of high

frequencies the power spectrum exponent of the thin target

attopulse spectrum is in line with [7,8]. In addition to

refining the intensity of low spectral harmonics affecting

(defining) the conversion, in this work we optimized

the target thickness providing maximum conversion ratio

to attopulse at a given laser intensity. A formula for

optimum target thickness as a function of incident intensity

is derived. It is shown that in the optimum case the ratio

of conversion to the attopulses propagating in the direction

of the incident radiation is less than to the attopulses of the

mirror direction. An explanation of this phenomenon by

the asymmetry (forward-backward) of electron oscillations

in the target within the field of laser pulse is given. To

verify the analytical calculations, 1D and 2D PIC-modelling

of attopulse spectra and values of the conversion ratio

is carried out that confirms the quantitative relationships

of the model. It should be noted that the numerical

modelling of [9] demonstrated the emergence of a single

attopulse in case of laser radiation reflection from the

thin target. However, the absence of analytical model in

this work and calculations with non-optimum parameters

of the laser pulse and target resulted in low conversion

ratios. In [10,11] methods of numerical modelling were

used to select the target thickness in order to achieve

maximum conversion ratio at given parameters of the laser

pulse, but there were no analytical model and physical

explanation of the obtained results. The suggested work

is a further development of the ideas of [7–11] in order to

build up an analytical model of attopulse generation by a

single or several laser targets and to improve, on the basis

of the model conclusions, the ratio of conversion of the

laser pulse with given intensity and length into a train of

attopulses.

The dynamics of electrons in a plasma
target of finite thickness

Let us consider the incidence of a linearly polarized laser

pulse onto a plasma layer of a finite thickness (the target).

y

z

x

E

x0

ne

Figure 1. The geometry of interaction between the laser pulse

and the target.

Assume the plasma layer consisting of a set of infinitely

thin electron and ion layers. We neglect the motion of

ions, assuming the length of laser pulse short as compared

with the inverse ion plasma frequency. We assume laser

beam diameter greater than the plasma layer thickness and

consider the problem in a one-dimensional approximation.

Assume x axis is normal to the target, y axis is along the

direction of pulse polarization vector as shown in Fig. 1.

Let use write the equation for target electron dynamics

in self-consistent electromagnetic fields. One-dimensional

definition of the problem allows single integration over

initial distribution of charges in Lienard-Wiechert potentials,

determination of electromagnetic fields of the layer using

the laws of electron motion and, as a result, writing dynamic

equations containing only the external field, velocities and

coordinates of electrons.

Electromagnetic field components of a plasma layer

with initial profile of particle density ne(x0) = Zni(x0) are

determined using the Green function of one-dimensional

wave equation:

Ex(x , t) = − 2πe

∞
∫

−∞

ne(x0) sign (x − s(t′, x0))dx0

+ 2πe

∞
∫

−∞

ni(x0) sign (x − x0)dx0,

Ey(x , t)=−2πe

∞
∫

−∞

ne(x0)
vy (t′, x0)/c

1−sign (x−s(t′, x0))ṡ (t′, x0)/c
dx0

− ∂A(ext)
y (x , t)

c∂t
,

(1)
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Hz (x ,t)=−2πe

∞
∫

−∞

ne(x0)
sign(x − s(t′, x))vy (t′, x0)/c
1−sign (x−s(t′, x0))ṡ(t′, x0)/c

dx0

− ∂A(ext)
y (x , t)
∂x

,

In (1) s(t, x0) — motion law of infinitely thin electron layer

with initial coordinate x0, A(ext)
x ,y (x , t) — vector potential

of the external (laser) field, vx ,y(t, x0) — projections of

electron velocity in the thin layer with initial coordinate

x0. Retarded time t′(x , x0, t) in (1) is determined from the

retardation equation:

t − t′ − |x − s(t′, x0)|
c

= 0.

Target thickness l f is included as a parameter in the initial

profile of target density ni(x0).
Motion laws s(t, x0), vx ,y(t, x0) are determined from

the motion equations where fields (1) are taken in the

location of the electron layer x = s(t, x0), which is resulted

in an integro-differential equation for s(t, x0) and vy(t, x0)
functions:

d
dt

mevy(t, x0)
√

1− v2
y/c2 − ṡ2(t, x0)/c2

= −2πe2
∞
∫

−∞

ne(x
′
0)

× vy(t′, x ′
0)/c

1−sign (s(t, x0) − s(t′, x ′
0))ṡ(t′, x ′

0)/c
dx ′

0

− ∂eA(ext)
y (s(t, x0), t)

c∂t
+

2πe2ṡ(t, x0)

c

∞
∫

−∞

ne(x
′
0)

× sign (s(t, x0) − s(t′, x ′
0))vy(t′, x ′

0)/c
1− sign (s(t, x0) − s(t′, x ′

0))ṡ(t′, x ′
0)/c

dx ′
0

− ṡ(t, x0)

c
∂eA(ext)

y (s(t, x0), t)
∂x

,

d
dt

me ṡ(t, x0)
√

1− v2
y/c2 − ṡ2(t, x0)/c2

= −2πe2
∞
∫

−∞

ne(x
′
0) sign (s(t, x0) − s(t′, x ′

0))dx ′
0

+ 2πe2
∞
∫

−∞

ni(x
′
0)sign (s(t, x0) − x ′

0)dx ′
0

− 2πe2vy(t, x0)

c

∞
∫

−∞

ne(x
′
0)

× sign (s(t, x0) − s(t′, x ′
0))vy(t′, x ′

0)/c
1− sign (s(t, x0) − s(t′, x ′

0))ṡ(t′, x ′
0)/c

dx ′
0

+
vy(t, x0)

c
∂eA(ext)

y (s(t, x0), t)
∂x

, (2)

The retardation equation in system (2) is as follows

t − t′ − |s(t, x0) − s(t′, x ′
0)|

c
= 0 (3)

and yields the dependence of retarded time t′(x0, x ′
0, t).

Terms of sum with integrals over dx ′
0 in system (2) describe

the effect of thin electron layers of the target on each other

(self-action). Note that if the integrals are approximated by

sums, system (2) is equivalent to equations for dynamics

of fields and quasiparticles of collisionless 1D PIC-code.

Equations of system (2) describe the following physical

processes:

The second (lower) equation describes nonlinear oscilla-

tions s(t, x0) of the thin electron layer under the action of

the ponderomotive pressure force of the external field (the
last term in the sum in the right part), the ponderomotive

pressure force of the layer scattered by the target (the
third term in the sum), the force of longitudinal ambipolar

(Coulomb) field of ions (the second term in the sum)
and the force of longitudinal ambipolar field of neighboring

electron layers (the first term in the sum in the right part).
The ambipolar field of ions has a structure of potential well

where nonlinear oscillations of the electron layer take place

under the action of ponderomotive pressure force.

The first equation of the system is an equation for

the transverse velocity of electrons, in terms of which,

according to (1), the scattered transverse field is expressed,

and therefore it is equivalent to an equation for the field

scattered by the target. The attopulse of the scattered field

arises due to longitudinal relativistic oscillations of electron

layers in the target. The motion with near-light speeds

results, due to the Doppler effect, in emergence of high-

frequency harmonics of the scattered radiation correspond-

ing to the emergence of attosecond pulses. The ratio of

laser radiation conversion into attopulses is defined by the

amplitude s(t, x0) and speed ṡ(t, x0) of the longitudinal

nonlinear oscillations. The conversion reaches its maximum

at the nonlinear resonance between the driving force of

ponderomotive pressure and self-oscillations of electrons in

the field of ion core. Consequently, the main purpose of

this study is to determine the parameters to realize the

nonlinear resonance and to determine the conversion ratio

corresponding to this resonance.

System (2) is simplified in the extreme cases of thick

(l f ≫ ls) and thin (l f <ls ) target, where ls is thickness of

skin layers. The case of semi-infinite l f → ∞ target is

considered in [9]. In this extreme case it is sufficient

to consider the motion (oscillations) of electrons in the

skin layer on the target front side of the target. The

transverse field in this case is a standing wave in vacuum

and exponentially decays in the plasma. The potential of

ions near the boundary is approximated by a parabolic

potential (harmonic oscillator). Spectral intensity of the

secondary radiation in this model is determined in [12]. The
efficiency of conversion into attopulse in this case is far from

its maximum possible value [7,8], because the semi-infinite

plasma significantly screens the laser field on its surface.
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The case of thin (less than or an order of skin layer

thickness) target was considered in [13], however, in [13]
the effect of target ion core field on the motion of electron

layer was not taken into account. As it is shown in

the following text, the resonance between forces of the

ambipolar field and ponderomotive pressure significantly

increases the attopulse intensity, therefore the calculation

of attopulse parameters and conversion ratio taking into

account the effect of ion field is a relevant task and

a further development of [13]. Physical cause of the

increase in conversion efficiency of thin target is its lower

screening effect on the laser field, which increases the

energy and current of fast electrons and the secondary

radiation intensity, respectively. Note that the approximation

of thin target assumes that there is no pre-pulse before

the main pulse, and a steep leading edge (super-Gaussian
longitudinal profile) of the main pulse. Currently, a high

contrast (suppression of the pre-pulse) is obtained through

the use of the
”
plasma mirror“technique, and methods to

improve the leading edge steep are considered in [14]. When

high-contrast pulses with a steep leading edge are used, a

thin target can not break fast enough to a sufficient degree

within the time interval of the first several laser cycles, and

the following solutions to system (2) are correct.

In the extreme case of infinitely thin target, the motion

laws s(t, x0) and vy(t, x0) in (2) can be considered

independent on the initial coordinate (all electron layers of

the target move equally and x0 = 0 for all layers). Then

integrals in (2) can be calculated:

e

∞
∫

−∞

ne(x0)dx0 = enel f = σe, (4)

which results in dependence of solution to (2) on the di-

mensionless parameter ε0 = πne l f /nσ λ, and not separately

from the density ne and thickness l f of the plasma layer.

In the approximation of thin layer in (2) the retardation is

insignificant as well: t′(x0 = 0, x ′
0 = 0, t) = t . So, we get

sign(s(t, x0 = 0) − s(t′, x ′
0)) = 0, and thus, in the second

equation of (2), the force of ambipolar field of neighboring

electron layers and ponderomotive pressure of the scattered

radiation disappears. The integro-differential equations (2)
become differential equations in full derivatives and allow

solution and analysis. In our previous work [15] these

differential equations were used as a basis to consider

the dynamics of thin target, but the spectrum of scattered

radiation was not calculated.

An opposite extreme case is the case of thick target

but not the semi-infinite target [12]. The difference from

the model of [12] in this case consists in the presence of

two target boundaries instead of one boundary. Numerical

analysis of such targets using PIC-modelling shows that

an increase in target thickness leads to weakening and

degradation of the attopulse. Therefore in the following

text an investigation of attopulse parameters for the extreme

case of thin target is provided and conditions are found that

make it possible to neglect the target blooming and attopulse

degradation.

The analytical model of attopulse
generation in a thin target

To solve system (2) for the extreme case of thin target,

it is convenient to introduce the following dimensionless

variables

a = |e|Ay/mec2, τ = ωt,

vy (τ , x0 = 0)/c = uy(τ ), ωs(τ , x0 = 0)/c = X(τ ),

ε0 = πne l f /ncrλ = ω2
pl f /2ωc, θ = τ − X ,

where ω — frequency of the laser radiation, new unknown

functions

p =
uy

√

1− u2
y − Ẋ2

, (5)

Ŵ =
1− Ẋ

√

1− u2
y − Ẋ2

and a new argument θ = τ − X , which is a phase of

incident electromagnetic wave. Functions (5) correspond

to conservation laws of single (ε0 = 0) electron in the field

of traveling laser wave: Ŵ = const, P = p − a (ext)(θ)=const
y at

ε0 = 0. In variables (5) equations of motion (2) in the

approximation of layer with a thickness of ε0 can be written

as follows:

Ŵ
d p
dθ

= −ε0p + Ŵ
da (ext)

y (θ)

dθ
,

(Ŵ2 + p2 + 1)

(

dŴ
dθ

+ ε0 f am(X)

)

= −2ε0p2, (6)

2Ŵ2 dX
dθ

= 1 + p2 − Ŵ2,

where a (ext)
y (θ) = a0 sin(θ) exp(−(θ)4/2(ωtL)

4) — ampli-

tude of incident super-Gaussian laser pulse,

f am(X) =

{

−X2c/ωl f , |X | < ωl f /2c,

−sign (X), |X | > ωl f /2c
(7)

— force of the ambipolar field between electron and ion

layers. The potential corresponding to force (7) of the

ambipolar field between thin layers of electrons and ions

has the form of potential well, which is a parabola (if the
offset of the electron layer does not exceed half thickness

of the ion layer) with branches changing to inclined straight

lines when the ion and electron layers become separated by

a vacuum gap |X(θ)| > ωl f /2c . Equations (6) are more

convenient for solution than the equations in [15], because
they do not contain relativistic roots and are polynomials

of a degree not more than three in unknown functions and

their derivatives. In particular, the expansion of system (6)
in harmonics of laser frequency is performed in a more

simple way than expansion of the initial system in [15].
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Also, an important difference between equations (6) and

those of [13] should be noted, i.e. the presence of two

frequencies of nonlinear oscillations: the laser frequency (a
fixed value) and the frequency of nonlinear oscillations of

electrons in the ambipolar field (7) of ions (this frequency

depends on amplitude of oscillations). In [13] there is no the

second frequency, and equations (6) are considered in the

approximation of X = 0, Ẋ = 0 (there are no longitudinal

oscillations of the electron layer). As a result, solution to (6)
in [13] can be represented as a series in only odd harmonics

of laser frequency, and spectrum of the secondary radiation

is also composed of a set of odd harmonics. As shown in

the following text, longitudinal oscillations of electron layer

are considerable, they can be relativistic (dimensionless

speed Ẋ ∼ 1) and yield even harmonics (harmonics of

ponderomotive force), not taken into consideration in [13].
Since the longitudinal oscillations of the electron layer in

the ambipolar field of ions have their own frequency, two

incommensurable frequencies in general yield aperiodic

solutions to (6) and a quasicontinuous spectrum of radiation.

The most important issue for investigation is the nonlinear

resonance between oscillations of the ponderomotive pres-

sure force with double laser frequency and the frequency

of longitudinal oscillations of electron layer in the potential

well of the ion core. The longitudinal velocity at resonance

is equal to its maximum value, which results in a maximum

Doppler drift of the secondary radiation and generation

of the highest frequencies among those of the attopulse

spectrum.

Thus, to obtain parameters (including those of the

spectrum) of attopulses, it is necessary to solve system (6),
determine components of the transverse electromagnetic

field of the target by formulae (1) in the thin layer ap-

proximation, and analyze them, including the investigation

of their Fourier spectrum.

System (6) has no analytical solution for arbitrary

values of two external parameters a0, ε0 and is integrated

numerically. However, it is possible to find analytical

solutions to (6) for the following two extreme cases: a0 < 1

and ε0 < 1. At a0 < 1 and arbitrary ε0 (nonrelativistic
velocities of motion, low shift of the electron layer, absence

of attopulse) solution to (6) is as follows:

uy (τ ) =
a0

1 + ε20
sin τ +

εa0

1 + ε20
(cos τ − e−ε0τ ),

X(τ ) =
ε0a2

0

2(1 + ε20)�
2

(1− cos�τ )

+
a2
0

2(1 + ε20)(�
2 − 4)

sin 2τ

+
ε0a2

0

2(1 + ε20)(�
2 − 4)

(cos 2τ − cos�τ ),

�2 = ω2
p/ω

2, |X(τ )| ≤ ωl f /2c. (8)

It can be seen from (8), that at a0 < 1 transverse oscilla-

tions occur at the first harmonic (at odd harmonics if further

expanded), while longitudinal oscillations occur at the

second harmonic (at even harmonics if further expanded).
Also, it can be seen that longitudinal oscillations of the

electron layer are excited at two independent frequencies:

plasma frequency (� in (8)) and double laser frequency

(
”
2“ in (8) in arguments of trigonometric functions). At

� = 2 a resonance takes place between the frequencies —
build-up of longitudinal layer oscillations. At ε0 < 1 (target
thickness tends to zero) an analytical solution can be

obtained at arbitrary a0:

p(θ) = a0 sin θ + ε0a0(cos θ − e−ε0θ),

Ŵ(θ) = 1− ε0

∫

2a2
0 sin

2 θ

2 + a2
0 sin

2
θ

dθ

+
�2a2

0

4

∫

(θ − (1/2) sin 2θ)dθ = 1− 2ε0θ

+ ε02
√
2
arctg(tgθ

√

1 + a2
0/2)

√

2 + a2
0

+
�2a2

0

8

(

θ2 +
cos 2θ

2

)

,

(9)

Ẋ(θ) =
1 + p2(θ) − Ŵ2(θ)

1 + p2(θ) + Ŵ2(θ)
, uy(θ) =

2p(θ)Ŵ(θ)

1 + p2(θ) + Ŵ2(θ)
,

Solution to (9) at a0 ≫ 1 describes the electron layer

flying away from the ion core, oscillating transversally and

longitudinally at velocities of:

Ẋ(θ) ≈ a2
0 sin

2 θ

2 + a2
0 sin

2
θ
, (10)

uy(θ) ≈
2a0 sin θ

2 + a2
0 sin

2
θ
.

It follows from (8), (10) that in extreme cases, uy(τ ),
p(θ) functions at high τ > 1/ε0 times contain oscillations

only at the first harmonic (if further expanded — at odd

harmonics). X(τ ), Ŵ(θ) functions contain oscillation only at

the second and the zeroth harmonics (if further expanded —
at even harmonics).
Numerical solution at arbitrary a0, ε0 demonstrates both

velocity oscillations uy , Ẋ at laser harmonics and emergence

of new combined frequencies. A characteristic numerical

(MCAD) solution to (6) at ε0 = 6, a0 = 9 is shown in Fig. 2.

It can be seen at Fig. 2 that under the action of a pulse

with a steep leading edge, first the transverse oscillations

of electron layer arise followed by longitudinal oscillations.

Velocities of these oscillations achieve relativistic values as

early as during first cycles of the laser pulse. At the

pulse maximum the oscillations are nonlinear, aperiodic,

contain high-frequency harmonics. After the end of pulse

the longitudinal oscillations are continued (system (6) has

no dissipative terms).
Calculations at the same laser intensity (a0 = 9) and a

thinner (ε0 = 9) target, as well as at a thicker target, demon-

strate a resonant dependence of longitudinal oscillation

Optics and Spectroscopy, 2022, Vol. 130, No. 6



Efficient generation of attopulses at the interaction of intense laser radiation with ultrathin targets 753

0 10020 6040 80
–1.0

1.0

0

0.5

–0.5

τ

u
(τ

),
 X

(τ
)

y

.

u (τ)y

X(τ)

.

Figure 2. Longitudinal Ẋ(τ ) (blue curve) and transverse uy (τ )
(red curve) velocities of the electron layer for the following

parameters of target and laser pulse: ε0 = 6; a0 = 9. Pulse

duration is 12 cycles.

maximum velocity on the parameter of ε0: maximum values

of Ẋ(τ ) at ε0 = 1 and at ε0 = 9 are less than those shown

in Fig. 2 at ε0 = 6. It is shown below that the duration

and spectrum of the attopulse are defined by the maximum

velocity of longitudinal oscillations in the backward direction

Ẋmax = β(a0, ε0).
For a single electron β(a0, ε0 = 0) =

= a2
0/(2 + a2

0), its velocity is directed forward (10).
Maximum of the β(a0, ε0) function is related to the

nonlinear resonance of longitudinal forces acting on the

electron layer. The motion law X(τ ) and the longitudinal

velocity Ẋ(τ ) are defined by the second equation of

systems (2), (6). This equation at high oscillation

amplitudes, |X(τ )| > ωl f /2c , describes electron oscillation

in a potential field U(x) = 2πe2nel f |x | of a thin ion core

(term ∼ f am in (2)) under the action of ponderomotive

pressure force uy
∂a (ext)

y (X(τ ),τ )

∂X(τ ) , oscillating at a frequency of

2ω. When there is no laser field (a (ext)
y = 0, uy = 0), the

second equation in systems (2), (6) describes relativistic

nonlinear oscillation in the potential of U(x) = 2ie2ne l f |x |.
From (6) at a (ext)

y = 0, uy = 0 it is easy to find frequency

of these oscillations as a function of maximum velocity

β(a0, ε0):

�U (a0, ε0) =
π

2
ε0ω

√

1− β2(a0, ε0)

β2(a0, ε0)
. (11)

Note that with decrease in oscillation amplitude,

|X(τ )| < ωl f /2c , frequency (11) becomes the frequency

of plasma oscillations �U → �. The red polyline in Fig. 3

shows dependence of β(ε0), that follows from the numerical

solution to system (6) at a0 = 9. It can be seen that

at ε0 ∼ 6−7 there is a local maximum of longitudinal

oscillation velocity of the electron layer. Black polyline

and red horizontal line in Fig. 3 show that the range of

ε0 ∼ 6−7 corresponds to the coincidence of frequencies, i.e.

a nonlinear resonance (�U ≈ 2ω) between two forces in the

second equation of system (6). Thus, at low (ε0 ≪ 1) and

high ε0 the law of electron motion contains oscillations with
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Figure 3. Dependence of maximum velocity β(ε0; a0 = 9) of lon-
gitudinal oscillation of a thin target (velocity is directed backward)
on the target thickness ε0 . Red polyline — numerical (MCAD)
solution to (6), blue line — approximation by equation (12).
Black polyline — dependence of frequency ratio �U/2ω (between
the frequency of electron oscillation in the field of ion core and

the frequency of ponderomotive force) on ε0 at a0 = 9. Red

horizontal line corresponds to the case of frequency coincidence —
a resonance of ponderomotive and ambipolar forces.

significantly different frequencies, �U ≪ 2ω and �U ≫ 2ω.

These frequencies become equal at the resonance. To

achieve maximum conversion of laser pulse into attopulse,

maximum amplitudes of the velocity of electron longitudinal

oscillation are needed Ẋmax → 1, i.e. the case of resonance

is optimum. The fundamental harmonic of oscillation at

the resonance has a frequency of 2ω, while the oscillation

of transverse velocity uy(τ ), in accordance with (6) has a

frequency of ω.

Thus, the main regularities of the attopulse spectrum

should be reproduced for the law of electron layer motion

(solution to system (5)):

X(τ ) = X0 +
β(a0, ε0)

2
sin 2τ , β → 1,

uy(τ ) = u0y sin(τ + δ), u0y =
√

1− β2 + (π/2− δ)2,

β(a0, ε0) =
(ε20 + 1)a2

0

2 + (ε20 + 1)a2
0 + 0.4ε40a0

. (12)

The analytical expression for β(a0, ε0) is shown in Fig. 3.

It should be emphasized that (12) is not a rigorous solution

to initial equations (6), but just qualitatively corresponds

it if maximum velocity β(a0, ε0) of longitudinal oscillation

coincides with numerical solution to (6) (blue and red

curves in Fig. 3). In particular, there are no high-frequency

harmonics of longitudinal and transverse velocities in (12),
that can be seen in Fig. 2. However, the high-frequency

harmonics of fields (1) are not lost, because velocities

in (12) are ultrarelativistic.

By using (12) to obtain Fourier spectrum of the Ey

component of electric field (1) (the magnetic field differs
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only in sign and has the same spectrum):

eEy (X , σ )

mc
= −ε0

∞
∫

−∞

uy(τ )ei ̟
ω

(τ+|X−X(τ )|)dτ , (13)

the spectral energy distribution per unit area can be

calculated:
dε
d̟

= c|Ey(x , ̟)|2. (14)

As can be seen from (13), X coordinate is not included

in spectrum (14). However, the spectrum is dependent in

the sign of X (face and rear sides of the target). At integer
n = ̟ formula (14) yields intensity of the n-th harmonic of

the laser radiation.

By substituting (12) in (13), (14), we obtain an analytical

formula for the spectrum of attopulse energy:

dε
d̟

=
c(enel f )

2

ω2
u2

oy

(

cos2 δ

[

J n−1
2

(

nβ
2

)

− J n+1
2

(

nβ
2

)]2

+ sin2 δ

[

J n−1
2

(

nβ
2

)

+ J n+1
2

(

nβ
2

)]2)

, n = ̟/ω.

(15)
Dimensionless spectrum (15)

P(n) =

(

dε
d̟

)

/

(

c(enel f )
2

ω2
u2

oy

)

at different β(a0ε0) is shown in Fig. 4. Comparison of

the analytical spectrum obtained by formulae (15), (12)
with the analytical spectrum obtained by substituting to

general formulae (13), (14) the laws of target motion X(τ ),
uy(τ ) obtained by numerical (using MCAD) integration of

system (6), has shown that approximation (12) is sufficient

to calculate the spectrum of radiation in the region of

resonance between ponderomotive and ambipolar forces.

Also, formula (15) is matched well with the spectrum of

radiation obtained at the same parameters by numerical 1D-

modelling using the LPIC code. Thus, the approximations

made to derive motion equations (6) and
”
solutions“ (12) to

them are correct and the obtained spectra correspond to the

spectra of numerical calculations. Note that analytical (15)
and numerical spectra of target radiation contain the zeroth

harmonic n = 0. It means the unipolarity (the presence of

an other than zero time-averaged field component [16]) of

the electromagnetic pulse reflected from and passed through

the target. The unipolar (n = 0) component has a time

duration in the order of the laser pulse length and does

not contribute to the attosecond pulse. Also, note that

P(n = 0) → ∞, which is related to the infinite interval of

integration over time in (13). When integrating the action of

laser pulse over time, value of P(n = 0) is finite. For other

harmonics P(n) is independent on the length of laser pulse

at large number of its cycles.

Let us derive a high-frequency asymptotics (15) at

n → ∞, δ = 0. For this purpose, we need to use the
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Figure 4. Analytical spectrum taking into account only

fundamental harmonics in motion laws at different maximum

velocities. Lightcyan line β = 0.98, δ = π/2, dotted line —
asymptotics of P(n) ≈ 0.72/n. Red line β = 0.98, δ = 0, blue

line — asymptotics of P(n) ≈ 0.4n−4/3 . Green line β = 0.9,

δ = 0, n — harmonic number, ordinate scale is in units of

P(n) = (dε/d̟)/(c(ene I f )
2u2

oy/ω
2).

asymptotics of Bessel functions at n ≫ 1:

J n−1
2

(

nβ
2

)

= J n−1
2

(

(n − 1)

2
β

(

1 +
1

n − 1

))

−−−→
n≫1

−−−→
n≫1

1√
π

(

4

n−1

)1/3

Ai

((

n−1

4

)2/3(

1− β2

(

1 +
1

n−1

)2))

.

(16)
At high arguments of two Airy functions of asymptotics of

J n−1
2
, J n+1

2
are close to each other, therefore the difference

of these functions in (15) is expanded in Taylor series. As

a result, in the frequency interval of n2/3(1− β) ≪ 1 the

difference is (J n−1
2

− J n+1
2

) ∼ n−2/3, and expression (15) —

∼ n−4/3. At n2/3(1− β) > 1 spectrum (15) exponentially

decays with growth of n. Asymptotics of the spectrum

∼ ̟−4/3 at n2/3(1− β) ≪ 1 and β → 1 is in compliance

with [8].
Asymptotics 0.4n−4/3 for spectrum (15) is shown in

Fig. 4 with blue line. It can be seen that it describes

spectrum (15) at β → 1, δ = 0. Comparison of Fig. 4 with

results of numerical modelling by the LPIC code shows

that formula (15) correctly describes the spectrum and

its changes when approaching to the point of maximum

conversion at δ = 0. At the same time, the parameter

of β(a0, ε) must be taken from solution to system (6).
β(a0 = 0, ε0) function is shown in Fig. 3. Note, that at

δ = π/2 the spectrum is more gently sloping (blue curve in

Fig. 4) and has an asymptotics of 0.7n−1. However, the case

of δ = π/2 corresponds to thick targets and is not optimum

in terms of conversion to attopulses.

The electric field Ey (squared absolute value) of at-

topulses in time domain (1), obtained by numerical solu-

tion (5) in the MCAD software program, has the profile

shown in red in Fig. 5. Peaks of the red curve in Fig. 5

are the attopulses of the radiation reflected from the target.

They follow one after another with a period close to half
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of that of the laser pulse (the period of ponderomotive

pressure force). The number of attopulses is equal to the

double number of laser pulse periods (the ponderomotive

force oscillates at a double laser frequency). It can be

seen in Fig. 5 that the period of attopulses repetition is

not a constant value: time interval between them varies.

Maximum faults (changes) of the period take place at an

optimum value of parameter ε0, when runouts occur at

nonlinear resonance between the ponderomotive pressure

and the force of ambipolar field. The field of a single

attopulse in zoomed-in scale is shown in the insert in Fig. 5

and has a characteristic length of τa ≈ 21/2π(1 − β)3/2/ω,
where β(a0, ε0) is maximum velocity (forward and back-

ward, in units of s) of the electron layer where the

attopulses are considered. The evaluation of duration

follows from spectrum asymptotics (16) and properties

of the Airy function, which decreases exponentially if its

argument ((n − 1)/4)2/3(1− β2(1 + 1/(n − 1))2) > 1. At

n = ̟∗/ω ≫ 1 and β ≈ 1 frequency of
”
steep“ spectrum

is ̟∗ ∼ 21/2ω/(1− β)3/2, which corresponds to the above-

mentioned characteristic duration of attopulse. Ampli-

tude of the attopulse field (peak height in Fig. 5) is

2πσe/(1− β(a0, ε0)), which follows from formula (1). The
results of numerical PIC-calculation shown in Fig. 5 as

a black line, at the same parameters of laser and target,

show that the thin target approximation is valid for several

first cycles of the pulse. Then the attopulse in the LPIC-

22.0 27.622.8 25.223.6 26.8
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Figure 5. Squared absolute value of dimensionless (eEy/meωc)
electric field (1) of attopulses in time domain for attopulses

propagating backwards, at a0 = 9, ε0 = 4. The calculation is

performed for a0 = 9, ε0 = 4 and a Gaussian incident pulse with

a length of 8 cycles. Red color — model of thin target, black

color — LPIC-calculation. The red section in the insert shows

spatial length (in µm) of a single attopulse with an amplitude

normalized to unity.

calculation disappears, while in the model it is still there.

The analysis of electron density of target in the LPIC-

calculation shows that the attopulse degradation takes place

due to its spreading and transformation of the thin electron

layer into a cloud of electrons. In other words, a little

dispersion of initial coordinates of electrons (within the

initial thickness of the target) due to fast divergence of phase

trajectories of individual particles results in a significant (by
ten folds) dispersion of electron coordinates after several

cycles. Therefore, in the second half of an eight-cycle

pulse the approximation of thin target model does not

work, the spread target no longer generates the attopulses

(Fig. 5), though high-frequency harmonics are still there

in the spectrum of reflected radiation. By decreasing the

length of pulse down to ∼ 4−5 cycles, it is possible to avoid

degradation of attopulse and increase the conversion ratio.

As shown below, it is possible to increase the conversion

ratio of a
”
long“ (more than four cycles) pulse using several

targets positioned in series.

Conversion ratio of laser pulse into
attopulse

Let us consider a sequence of attopulses with a Gaussian

waveform and a given length τa (Fig. 5):

Ey(t) =

N
∑

i=1

C i exp

(

− (t − ti)
2

τ 2
a

)

, τa ≪ ti − ti−1. (17)

Fourier spectrum of such a sequence is as follows:

Ey (̟) = τa
√
π exp

(

− (̟τa)
2

4

) N
∑

i=1

C i e
i̟ti . (18)

If attopulses have equal amplitude C and follow one after

another with a regular period of T , the coefficient before

the Gaussian exponent in (18) results only in modulation of

the spectrum by harmonics of the period:

N
∑

i=1

C i e
i̟ti = C

ei̟NT − 1

ei̟T − 1
,

∣

∣

∣

∣

C
ei̟NT − 1

ei̟T − 1

∣

∣

∣

∣

2

= |C|2 sin
2
̟NT/2

sin2 ̟T/2
→ πN|C|2

∞
∑

n=0

δ(̟T/2− nπ). (19)

The characteristic form (the steep of spectrum envelope at

high frequencies) is defined only by the Gaussian exponent

in the complete spectrum of attopulses:

dε
d̟

= c|Ey(̟)|2

= cπ2N|C|2τ 2
a exp

(

− (̟τa)
2

2

) ∞
∑

n=0

δ(̟T/2− nπ).

(20)
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Integral of spectrum (20) over all frequencies (the energy

of attopulses) is as follows:

∞
∑

n=0

cπ2N|C|2τ 2
a exp

(

− (2πnτa/T )2

2

)

= cπN|C|2τa

√

π/2 = cπ2N|C|2τ 2
a ̟

∗ exp

(

− (̟∗τa)
2

2

)

= ̟2 dε
d̟∗

, ̟∗ =
0.37

τa

√

π/2

(21)
and equal to the area of a rectangle with a height of dε

d̟∗
(we

mean the spectrum envelope) and a width of ̟∗, where

̟∗ = 0.37
τa

√
π/2. Let us determine the conversion ratio κ to

attopulse as a ratio of energy (21) to the full energy of the

laser pulse:

κ =
̟∗ dε

d̟∗√
πcE2

0 tL/8π

=
8π1/2ε20̟

∗

a2
0ωtL

∣

∣

∣

∣

∞
∫

−∞

uy(τ )ei ̟∗

ω
(τ+|X−X(τ )|)dτ

∣

∣

∣

∣

2

, (22)

where frequency ̟∗ = τ −1
a

√
π/2. Ratio (22) demonstrates

maximum for ε0, and for normal incidence it has a

value comparable with the conversion ratio [7], which

is introduced by another way: it is the energy of all

frequencies starting from the given lower limit frequency

of attopulse ̟∗:

κR =

∞
∫

̟∗

dε
d̟ d̟

√
πcE2

0 tL/8π
=

8π1/2ε20
a2
0ωtL

ω
∫

̟∗/ω

d(̟/ω)

×
∣

∣

∣

∣

∞
∫

−∞

uy(τ )ei ̟
ω

(τ +|X−X(τ )|)dτ

∣

∣

∣

∣

2

. (23)

Both ratios (22), (23) can be determined either analytically,

using motion equation (6), or using the numerically ob-

tained (PIC-modelling) spectra of the secondary radiation.

On the basis of spectrum (15), at δ = 0 an analytical

formula can be presented for the conversion ratio we use:

κ(a0, ε0) =

=

c(ene l f )
2

ω2 u2
oy n∗

[

J n∗−1
2

(

n∗β(a0,ε0)
2

− J n∗+1
2

(

n∗β(a0,ε0)
2

)

]2

√
πcE2

0 tL/8π
,

(24)

n∗ = (τaω)−1
√

π/2,

β(a0, ε0) =
(ε20 + 1)a2

0

2 + (ε20 + 1)a2
0 + 0.4ε40a1

0

.

Geometrically ratio (22) is an area of a rectangle

(highlighted with black color in Fig. 4), and ratio (23) is

1 23.05.4 14.29.8 18.6
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Figure 6.
”
Backward“ conversion ratio as a function of parameter

ε0 . Orange circles — 1D-calculation at a0 = 9. Black line —
formula (24), blue line — formula (22) and MCAD-calculation for

functions of X(τ ), uy (τ ).

an area under the spectrum
”
tail“ (also highlighted with

black color in Fig. 4), normalized to the full energy of laser

pulse.

The black rectangle in Fig. 4 shows conversion ratio (22)
to attopulse of the 40-th harmonic (τa = 2π/40ω). Value of
conversion ratio in Fig. 4 is κ ≈ 10−3. Conversion ratio (23)
to the spectrum

”
tail“ higher than the 40-th harmonic is

κR ≈ 7 · 10−4 in this case. Thus, different definitions (22),
(23) of the conversion ratio yield values comparable in order

of magnitude. In our view, definition (22) in a greater

degree meets the physical meaning, i.e. extraction of the

attopulse spectrum (
”
rectangular“ in Fig. 4) in the general

spectrum of reflected and passed through radiation.

Ratio (22) can be considered separately in front of

the target (backward reflected attopulses) and behind the

target (passed through attopulses). At a given laser

intensity (parameter a0) ratio (22) has a maximum over

ε0 with fixed values of other parameters of the problem.

The maximum conversion corresponds to the nonlinear

resonance in motion equations (6) of the analytical model.

Note, that ratio (23) introduced in [7] defined the

conversion into the hard part of the spectrum, however the

spectrum itself can be not corresponding to an attopulse.

For example, in thick targets conversion ratio (23) can be

significant, but the field of harmonics does not put together

into an attopulse, but is a saw-tooth oscillation, which high-

frequency part is related to large slope angle of the saw

”
teef“.

Figure 6 shows the dependence of conversion ratio into

the backward reflected attopulse on ε0 determined by

formula (24) for a0 = 9, ̟∗/ω = 40 and a laser pulse with

rectangular time profile of 12 cycles. Maximum conversion

ratio as calculated by formula (24) at a0 = 9 is 8 · 10−4.

Note, that in the radiation passed through the target the

ratio of conversion into attopulse is as low as 2.3 · 10−5 (the
formula for conversion ratio into passed through attopulse

is obtained by the τ + |X − X(τ )| → τ − |X − X(τ )| re-
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placement in the exponent power in (22)). To verify the

obtained results at the same parameters of the laser pulse,

1D-calculations by the LPIC code [17] were performed with

different values of ε0, and the result of these calculations is

shown in Fig. 6 as well (orange circles).
It can be seen from Fig. 6 that the model reproduces 1D-

calculations to determine values of optimum ε0 to achieve

maximum conversion into the attopulse spectrum. The

maximum amplitude of the attopulse spectrum for a0 = 0

is realized at ε0 ∼ 6 with little changes of ε0 parameter

(9 → 6 → 4) needed in the model to pass over the con-

version maximum. Note, that the maximum conversion

ratio over the target thickness was obtained numerically

in [9,10] using EPOCH PIC-code. In calculations of [10],
maximum conversion corresponded to the dimensionless

parameter of ned/ncrλa0 = 0.2. In the maximum in Fig. 6

this parameter ned/ncrλa0 = ε0/πa0 = 6/9π ≈ 0.2. Thus,

the built-up model (22) for the conversion ratio corresponds

to 1D PIC-calculations of [9,10].
The 1D-calculation and model (6), (22) in the region

of optimum ε0 yield a significant (by order of magnitude)
exceedance of the

”
backward“ conversion ratio over the

”
forward“conversion ratio. This is related to a greater speed

of electron layer oscillation in the case of backward motion

as compared to the forward motion, and suppression of

the forward-generated attopulse, respectively. Note, that

in the numerical modelling of [18], the backward reflected

attopulse also had a greater intensity and a lower duration.

Also, it should be noted that approximation (12) of solutions
to system (6) does not take into account the difference

between
”
forward-backward“ oscillations and can not be

used to calculate parameters of the passed-through attopulse

(numerical integration of (6) is needed).
The number of hard quanta in the attopulse can be

evaluated as

Nγ ≈ κεL(1− β2)3/2

~ω
= NLκ(1− β2)3/2. (25)

As can be seen from (25), the conversion ratio over

number of quanta Nγ/NL differs from the conversion ratio

over energy by the factor of (1− β2)3/2. The investigation

of κ(ε0)(1− β2(ε0))
3/2 function shows that its maximum

is located at the same value of ε0 as maximum of κ(ε0),
β(ε0) functions, and the dependence of Nγ(ε0) has a profile

similar to that shown in Fig. 6.

2D PIC-calculation of attopulse

For thin (tens of nanometers) targets the one-dimensional

approximation is performed well, because the ratio between

target thickness and laser beam diameter is very low. To

illustrate correctness of the 1D-calculation, a 2D-calculation

by the code [19] was performed. Parameters of the

2D-calculation are the same as in the 1D-calculation:

a0 = 9, ε0 = 4. Diameter of the laser spot dL = 3.2µm

(4 wavelengths), pulse duration is 33 fs. Figure 7, a shows

square of the field strength (intensity) of the reflected and

passed through waves for five thin targets (shown with

figures) and contribution of the first target to the field

of the reflected pulse is highlighted separately with red

color. First reflected cycles from each target (marked

with figures corresponding to targets) form attopulses and

are described by the thin layer model presented above.

The coefficient of reflection of subsequent cycles of the

laser pulse from each target decreases with time (due to

expansion of the electron density), therefore the
”
tail“ of

the pulse is weakly reflected from each target. However,

the use of several targets allows the entire pulse length

to be involved and increases the resulted conversion ratio.

Due to absorption and reflection of the laser pulse by each

target the amplitude of attopulses decreases with increase in

number of the target. As a result, the attopulses numbered

in accordance with targets in Fig. 7, a are arranged in

a row by decreasing amplitude. Figure 7, a shows that

an amplitude filter (that does not change pulse duration)
makes it possible to separate several (according to the cut-

off level) attopulses from the whole reflected train. The

spatial duration of an individual attopulse in Fig. 7, a is

∼ 40 nm, that is shown in Fig. 7, b, which is a fragment

of Fig. 7, a with zoomed resolution. If attopulse amplitudes

are cut off at a level of 0.5 of the laser amplitude, then

the ratio of conversion into energy of attopulses for five

targets in Fig. 7, a reaches ∼ 0.01, which is an order of

magnitude higher than the conversion ratio of a single target.

Figure 8 shows 2D-distribution of field of the attopulse

reflected from a single target (highlighted with red color in

Fig. 7, a). A 2D-effect (which is absent in the consideration

presented above) is the curving of the attopulse front edge

and emergence of angular divergence. In formula (12)
the offset X(τ ) of the target electron density is found

at oscillation under the action of ponderomotive pressure

force. In dimension units the amplitude of this offset is:

1x = cβ(a0, ε0)/2ω = β(a0, ε0)λL/4π. Appropriately, the

characteristic angle of attopulse divergence θatto is:

θatto ≈ arctg (β(a0, ε0)λL/2πdL). (26)

The presented evaluation is valid for a flat front of the

laser pulse incident on the target (the target is positioned

exactly in the focus of the optical system). Curvature of

the incident pulse front is added to evaluation (26) and

increase or decrease the divergence depending on sign. For

the experimental investigation of the attopulse, the backward

reflection to the optical system of the laser is inconvenient,

and it is reasonable to direct the attopulse along other

directions. Figure 9, a shows that a small tilt of the target

has a little effect on parameters of the attopulse, but allows

directing it at another angles. To improve the conversion

ratio, in Fig. 9, a a generation of attopulse from two tilted

(with a tilt angle of 22.5◦) targets spaced by a distance of

2µm was considered. It can be seen that two
”
parallel“

attopulses are formed. Thus, by applying several targets

positioned at different angles, it is possible to separate

Optics and Spectroscopy, 2022, Vol. 130, No. 6



758 A.A. Andreev, K.Yu. Platonov

0 155 25
–0.01

1.00

0.90

0.29

10 20
z, µm

f/
f 0

0.09

0.39

0.19

0.70

0.50

0.80

0.60

1
2

3

4

5

1 234 5

2.5 3.12.7 3.5
–0.01

1.00

0.90

0.29

2.9 3.3
z, µm

f/
f 0

0.09

0.39

0.19

0.70

0.50

0.80

0.60

a b

Figure 7. (a) Attopulses (square of the electric field strength) from five thin targets positioned in series. Attopulse of the first target is

highlighted with red color on the general background. Blue color shows positions of five targets. (b) Attopulse of the first target is in

zoomed spatial resolution. Spatial duration (red horizontal section) of the reflected attopulse ∼ 40 nm, that has passed ∼ 70 nm. Ordinate

scale — in units of amplitude of the incident pulse.
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Figure 8. 2D-distribution of electric field of attopulse. Scale in units of incident laser field. The insert shows 1D-section of intensity over

the axis of laser beam (y = 12.5 µm). Parameters of 2D-calculation: a0 = 9, ε0 = 4, dL = 3.2 µm, τL = 33 fs. The target is located at

z = 12.5 µm.

the attopulse into individual parts, shifted by defined time

intervals, and direct them at different angles. The diffraction

of radiation to directions other than the mirror direction in

Fig. 9, a (spherical waves) is related to the edge-effects at

the edges of the laser spot. Figure 9, b shows distribution of

the electron charge density (scale in units of critical density)
at the moment of time of 26 fs from the beginning of the

laser pulse of 33 fs. At the edges of the laser spot a local
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Figure 9. (a) 2D-distribution of electric field of the attopulse from two tilted (angle 22.5◦) targets spaced by 2 µm. Scale in units of

incident laser field. (b) Electron charge density (scale in units of critical density) at the moment of time of 26 fs from the beginning of the

laser pulse of 33 fs. Other parameters of the 2D-calculation are shown in Fig. 8.

curving and a modulation of the electron density can be

seen, that resulted in Fig. 9, a in a scattering of waves to

directions other than the mirror direction. Note, that a

2D PIC-calculation of the conversion ratio into attopulse

as compared with 1D PIC-calculation was carried out in [9].
It was shown that two-dimensional effects do not change

values of parameters of target and laser pulse, which are

optimum for the maximum conversion at a laser pulse

diameter of several micrometers.

Conclusions

We investigated the spectrum of coherent secondary

radiation (train of attopulses) arising as a result of in-

teraction of a relativistic-intensity laser pulse with a thin

(in the order of thickness of the skin-layer) solid target.

Both the reflected radiation and the passed through the

target secondary radiation are considered, including low

(units of laser frequency) harmonics. It is shown that

the secondary radiation is generated by relativistic electrons

moving under the action of transverse field (incident and

reflected laser pulses) and longitudinal field of the ion core

of the thin target having a form of effective potential well

for electrons. With a dimensionless amplitude a0 > 1 of the

laser field and a dimensionless thickness ε0 ≈ 0.7a0 of the

target (partially transparent target) a coincidence takes place
between frequencies (resonance) of the electron oscillation

under the action of oscillating (at a frequency of 2ωL)
ponderomotive pressure of the laser pulse and nonlinear

oscillations of relativistic electrons in the potential well of

the ion core of the thin target. The case of resonance

is an optimum for the generation of maximum intensity

secondary radiation with a maximum energy of X-ray

quantum and a minimum length of attopulse, respectively.

The efficiency of attopulse generation in conditions of

resonance is comparable with or supersedes that for gas

targets [20]. In previous studies [8,18] the attopulse

generation by solid targets was investigated in a region far

from the resonance, because non-transparent targets were

considered with a large (as compared with the skin-layer)
thickness.

The secondary (reflected and passed through) radiation

contains narrow and high peaks (the attopulses) and a

smoother part — the substrate. The attopulses can be

separated from the substrate by an amplitude filter (similar

to a plasma mirror that improves contrast). In the region

of resonance in this study we have derived a formula

for optimum thickness of the target as a function of the

incident intensity and a scaling formula for the ratio of laser

pulse energy conversion into the energy of attopulses. The

conversion ratio to attopulses in this study is defined as

a ratio between the area of attopulse radiation spectrum (a
rectangular profile with a spectrum width of ∼ τ −1

a ) and the

area of full radiation spectrum. This definition is different

from the conversion ratio in [7], defined as a ratio between

the energy in the exponential
”
tail“ (ω > τ −1

a ) of the

secondary radiation spectrum and the energy of laser pulse.

However, the ratio in [7] only defines the relative intensity

of high-frequency harmonics of the spectrum which do not

necessarily form an attopulse in the space-time domain.

Our definition of conversion ratio makes it possible a more

precise than in [7,8] determining of the ratio of a laser pulse

conversion into a train of attopulses of a given duration.

Maximum conversion ratio for a single target is determined

(∼ 10−3) and the possibility of its improvement up to ∼ 0.1

using several successively positioned targets is shown. It is

shown that in the optimum case the ratio of conversion to

the attopulses propagating along the direction of the incident

radiation is less than that into the attopulses of mirror
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direction, which is related to the asymmetry (forward-
backward) of target electron oscillations in the field of laser

pulse and ion core. To verify the analytical calculations, 1D

and 2D PIC-modelling of attopulse spectra and conversion

ratio values was performed that confirmed the quantitative

relationships of the considered model.
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