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2 LPEM, Ecole Supèrieure de Physique et de Chimie Industrielles,

Paris, France

E-mail: yu.kitaev@mail.ioffe.ru

(Received September 20, 2011)

We determined the magnetic symmetry groups (Shubnikov groups) of the wurtzite-type crystals doped with

magnetic atoms periodically distributed at cation sites. The magnetic groups of doped crystals with ferro- or

antiferromagnetic properties arise from the P63mc (C4
6v ), P3m1 (C1

3v), C3
s (Cm) or C1

1 (P1) ordinary space groups.

Those arising from the P63mc or P3m1 group can present macroscopic ferromagnetic polarization only along the

wurtzite symmetry axis whereas those arising from the C3
s (Cm) group can present ferromagnetic polarization only

in the symmetry plane and those arising from the C1
1 (P1) group can present polarization along any direction.

Actual structures do not keep in general long-range order for magnetic atom distribution but the samples with

macroscopic polarization should present local symmetries close to those listed above. Therefore, orientation of easy

magnetization can provide information about the most frequent local symmetry.
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1. Introduction

After the pioneering work by Dietl et al. [1], a great

amount of works has been devoted to Diluted Magnetic

Semiconductors (DMSs) (for a review see [2,3]). Indeed,

DMSs allow imagining electron devices where information

is carried by electron spin instead of electric charge.

Such a technique has been named spin electronics or

spintronics. After Dietl, spins of magnetic atoms hosted

in semiconductor lattice can align due to interaction with

free-carrier spins, mainly hole spins.

Among the magnetic diluted semiconductors, the

wurzite-type ones (GaN, ZnO etc) attract great attention. In
the model, III–V semiconductors, as for example GaN, do

not need to be p-doped since magnetic atoms themselves

act as acceptors. On the contrary, II–VI semiconductors,

as ZnO for example, cannot offer such a simple way

for doping since magnetic atoms reside at Zn cation

sites, therefore are isoelectronic with the replaced atoms.

Later, another model has been proposed [2] where an

important contribution to magnetic properties arises from

grain boundaries. ZnO layers with magnetic atoms can be

grown by various methods [2,3]. It seems reasonable to

assume that the grain-boundary surface per unit volume

in the crystal depends on the quality of the layer and

should decrease when crystallographic quality is improved,

for example by using MBE growth technique, even if this

technique can also induce a columnar structure parallel

to the wurtzite c-axis which is also the growth direction

[4]. In addition, Raman experiments have revealed spectral

lines indicating the presence of ZnCo2O4 or Co3O4 spinel

structures in numerous samples. Such spinel crystals

have a cubic structure and have generally antiferromagnetic

properties [5–8]. Spinel structures have been observed also

in ZnO samples with Mn or Fe atoms [8,9]. Last, theoretical
considerations have lead to the idea that Zn vacancies in

pure ZnO could behave as magnetic centers with a spin

value equal to unity [10].
Distribution of magnetic atoms (Co, Ni, Mn, . . . ) over

cation sites in ZnO is a key point for studying possible

intrinsic magnetic properties of crystals. The term intrinsic

means that hereafter we do not take into account lattice

defects as, for example, vacancies, interstitial atoms, grain

boundaries, dislocations or inclusion of other crystal struc-

tures. To elucidate the relationship between the distribution

of magnetic atoms and magnetic properties of samples,

we propose hereafter an approach based on symmetry

properties of wurtzite lattices with magnetic atoms. To

make it possible to use the results of group theory, it is

necessary to deal with periodic structures i. e., to assume

that magnetic atoms are periodically distributed over cation

sites of the wurtzite lattice. Obviously, such a distribution

cannot fit completely actual structures. Indeed, the actual

structures certainly do not keep long-range order for

the magnetic-atom distribution but it seems reasonable to

assume that at short range, i. e., few unit-cell lengths, the

actual local-structure symmetry is not far from that of

a periodic-structure symmetry. Thus, magnetic properties

should depend on the involved region in the crystal. A clear

anisotropy of magnetization properties with respect to the

crystallographic axes has been put into evidence in MBE

grown samples [4]. It demonstrates that some symmetry

properties are kept in actual samples at least at short range.

The symmetry properties should of course arise in part from

wurtzite lattice symmetry of host ZnO crystals but also from

magnetic-atom-distribution symmetry since the symmetry
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of doped crystals is the intersection of both. Note that,

in a model with a random distribution of Co atoms over

cation sites, Co–O–Co sequences should become more and

more numerous when increasing the amount of magnetic

atoms. This is consistent with the existence of different local

symmetries in a given sample. In our model, we neglect

possible lattice distorsions arising from the size of magnetic

atoms as compared to that of Zn atoms.

The symmetry of magnetic crystals is described by the so-

called black and white Shubnikov groups [11,12], whereas

that of diamagnetic and non-magnetic crystal is described

by grey Shubnikov groups and ordinary space groups,

respectively. The tables of Shubnikov groups have been

compiled by Litvin [13] but, to our knowledge, no results

appeared in the literature for application of Shubnikov

groups for the description of magnetic properties of the

wurtzite-type materials.

Decreasing Co concentration makes it necessary to

increase wurtzite unit-cell volume by an integer factor.

This can be made using the retreval tools on the Bilbao

Crystallographic Server [14,15]. One can construct the

group-subgroup relationships between the parent wurtzite

structure and the derivative structures obtained by various

substitutions of atoms in the cation sublattice. Such an

approach allows determining, for a given Co concentration,

the possible magnetic structures with the direction of the

magnetization.

The present paper is organized as follows: in section 2

we model the decrease of Co concentration in the host

lattice ZnO and determine the corresponding space groups;

in section 3, the Shubnikov group construction is presented

and the magnetic groups for wurtzite-type crystals are

determined; in section 4 the restrictions imposed by site

symmetry of magnetic atoms are derived, in section 5

possible configurations of magnetic moments are obtained.

The results are discussed in section 6. Finally, section 7

contains a summary of results.

2. Modeling of Zn1−xCoxO crystal
symmetry

The set of space groups for the wurtzite-type structures

depends on the distribution of magnetic impurities over

the sites of the host lattice ZnO. The distribution of Co

atoms among the cation sites in Zn1−xCoxO remains still

unknown. We can model all possible types of magnetic

impurity orderings in the host lattice and analyze the corre-

sponding magnetic groups using the following procedure.

First, we start from the virtual wurtzite-type structure

with all Zn atoms being replaced by Co. Second, we

decrease step-by-step the Co concentration in the host lattice

to be as low as 0.1%.

This can be made using the retrieval tools on the

Bilbao Crystallographic Server [14,15] within the procedure

proposed by Megaw [16] and Bärnighausen [17]. Their

procedure describes structural relationships between crystal

structures based on symmetry relations between the struc-

tures’ space groups. Starting from a highly symmetrical

structure type (aristotype) and reducing the space-group

symmetry less symmetric structure types (hettotypes) are

obtained. In doing this, the splitting schemes of the

occupied Wyckoff positions are taken into account. Such

trees of group-subgroup relations are known also as the

Bärnighausen trees [18,19].

We start from the parent wurtzite structure and obtain

the derivative magnetic structures substituting atoms in the

cation sublattice by magnetic impurity atoms. The main

structure restriction imposed is that the positions of atoms

in space do not change, i.e. they occupy the sites of

the wurzite structure. As a result, we neglect all the

derivative structures in the tree being the result of atomic

displacements.

Using the MAXSUB program of the Bilbao Crystallo-

graphic Server we can find all possible maximal subgroups

of the P63mc (N186) group. There are 4 maximal

subgroups without multiplication of the unit cell Cmc21
(N36), P3m1 (N156), P31c (N159), and P63 (N173)
as well as one subgroup P63cm (N185) and 5 subgroups

P63mc (N186) with the multiplication of the parent crystal

unit cell along different directions. Thus, at the first step we

obtain several branches of the group-subgroup relation tree.

Repeating this procedure several times, we obtain structures

with lower concentrations of impurity belonging to different

branches of the tree and having different distributions of

magnetic atoms.

However, among the maximal subgroups we should take

into account only those ones for which 2b position of

P63mc (N186) is splitted into several ones, i.e. we consider

structures which can be obtained by various replacements

of cations while keeping the positions of atoms being fixed.

Looking at the Wyckoff position splitting schemes,

we find that among the above maximal subgroups only

P3m1 (N 156) and P63mc (N 186) with the multiplica-

tion of the unit cell correspond to a splitting of the

2b Wyckoff position occupied by cation atoms. Other

maximal subgroups correspond either to structures with

non-characteristic orbits or to structures formed by displace-

ments of cations within the primitive unit cell. The complete

group-subgroup relationship tree (Bärnighausen tree) for the
wurtzite-type parent structure is shown in figure. Below, we

shall consider separate branches in detail.

2.1. T h e P63mc > P63mc . . . > P63mc b r a n c h . To

decrease uniformly the impurity concentration, we can

consider, at the first step, the group - subgroup pair

P63mc(N 186) > P63mc(N 186) with the transformation

matrix (including the translation column part) which relates

the coordinate system of the subgroup to that of the

supergroup:






1 0 0

0 1 0

0 0 2k + 1













0

0

0






.
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Group-subgroup relationship tree (Bärnighausen tree) for the wurtzite-type parent structure
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Table 1. Site symmetries of cation atoms in derivative structures

Derivative

structure groups
Cation site symmetries

P63mc 2b (3m), 6c (m)
P3m1 1b(3m), 1c(3m), 3d(m), 6e (1)
Cm 2a(m), 4b(1)

Thus, we increase the unit cell along the z -direction.
The 2b Wyckoff position of the group splits into

2b1 + 2b2 + . . . + 2b2k+1 positions of the subgroup. Any

combination of these positions could be occupied by

Co atoms. If only one position is occupied, let 2b1,

the resulting structure corresponds to x = 1/(2k + 1) con-

centration of Co atoms with 2(2k + 1) cation atoms per

primitive cell.

At the second step, we consider the group — subgroup

pair P63mc(N 186) > P63mc(N 186) with the following

transformation matrix






2 0 0

0 2 0

0 0 1













0

0

0






.

In this case, we double the unit cell both along x
and y directions. The 2b1 + 2b2 + . . . + 2b2k+1 Wyckoff

positions of the group split into 2b1 + 2b2 + . . . + 2b2k+1

+ 6c1 + 6c2 + . . . + 6c2k+1. At the next step, we

double again the unit cell: the 2b1 + 2b2 + . . .

. . . + 2b2k+1 + 6c1 + 6c2 + . . . + 6c2k+1 positions split

into 2b1 + 2b2 + . . . + 2b2k+1 + 6c1 + 6c2 + . . . + 6c2k+1

+ 6c(2k+1)+1 + 6c(2k+1)+2 + . . . + 6c3(2k+1) + 12d1 + 12d2

+ . . . + 12d2k+1.

The 2b1 position being occupied by Co atoms, the

resulting structure corresponds to x = 1/16(2k + 1) con-

centration of Co atoms.

Thus, the Co atoms in the P63mc family can occupy

2b (site symmetry group 3m), 6c (m) or 12d (1) positions.

All possible site symmetries for magnetic impurities are

presented in Table 1.

2.2. T h e P63mc > P3m1 . . . > P3m1 > Cm b r a n c h .

Among the other maximal subgroups only P3m1 (N156)
corresponds to a splitting of the 2b Wyckoff position

occupied by cation atoms. The remaining subgroups

correspond either to structures with non-characteristic orbits

or to structures formed by displacements of cations within

the primitive unit cell.

For the group — subgroup pair

P63mc(N186) > P3m1(N156), the transformation matrix

is:






1 0 0

0 1 0

0 0 1













0

0

0






.

Thus, the unit cell does not change along the z -direction.
The 2b Wyckoff position of the group splits into 1b + 1c

positions of the subgroup. Any of these positions, let 1b,
could be occupied by Co atoms. The structure corresponds

to x = 1/2 concentration of Co atoms with 2 cation atoms

per primitive cell.

At the second step, we consider the group — subgroup

pair P3m1(N 156) > P3m1(N 156) with the following

transformation matrix







1 0 0

0 1 0

0 0 2k













0

0

0






.

Thus, we increase the unit cell along the z direc-

tion. The 1b + 1c Wyckoff positions of the group split

into 1b1 + 1b2 + . . . 1b2k + 1c1 + 1c2 + . . . 1c2k positions

of the subgroup. Again, any of these positions, let 1b1,

could be occupied by Co atoms. The resulting structure

corresponds to x = 1/4k concentration of Co atoms.

Next, the reduce the concentration of Co atoms within

the xy -plane, we consider the group — subgroup pair

P3m1(N 156) > P3m1(N 156) with the following trans-

formation matrix







2 0 0

0 2 0

0 0 1













0

0

0






.

Hence, we double the unit cell both along x and y di-

rections. The 1b1 + 1b2 + . . . 1b2k + 1c1 + 1c2 + . . . 1c2k

Wyckoff positions of the group split into 1b1 + 1b2 + . . .

. . . + 1b2k + 1c1 + 1c2 + . . . 1c2k + 3d1 + 3d2 + . . . 3d4k

positions of the subgroup. If the 1b1 position would be

occupied by Co atoms, the resulting structure corresponds

to x = 1/8k concentration of Co atoms.

At the next step, we double again the unit cell along x and

y directions. 1b1 + 1b2 + . . . 1b2k + 1c1 + 1c2 + . . . 1c2k

Wyckoff positions split into the 1b1 + 1b2 + . . . 1b2k + 1c1

+1c2 + . . . 1c2k + 3d1 + 3d2 + . . . 3d4k ones while each 3d
position splits into 3d1 + 3d2 + 6e positions.

Thus, the Co atoms in the P3m1 family can occupy 1b
(site symmetry group 3m), 1c (3m), 3d (m) or 6e (1)
positions.

The next step is the group — subgroup pair

P3m1(N 156) > Cm(N 8) with the following transforma-

tion matrix






2 0 0

1 1 0

0 0 1













0

0

0






.

Each 1b and 1c Wyckoff position of the group splits

into 2a positions of the subgroup, each 3d positions splits

into 2a + 4b and each 6e position into 4b1 + 4b2 + 4b3

positions.

Thus, the Co atoms in the Cm family can occupy 2a (site
symmetry group m) or 4b (1) positions.

Even if all possible configurations in the (x , y) plane are

not considered above, those that are considered involve the
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Table 2. The set of magnetic groups for the space group P63mc

NM M H T M i

186.1.1434 P63mc (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0, 0)

(2z |0, 0, 1/2) (6z |0, 0, 1/2) (6−1
z |0, 0, 1/2)

(mx |0, 0, 0) (mxy |0, 0, 0) (my |0, 0, 0)
(m1|0, 0, 1/2) (m2|0, 0, 1/2) (m3|0, 0, 1/2)

186.2.1435 P63mc1′

186.3.1436 P6′3m′c P31c (0, 0, 0; a, b, c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0)

(2z |0, 0, 1/2)
′ (6z |0, 0, 1/2)

′ (6−1
z |0, 0, 1/2)′

(mx |0, 0, 0)
′ (mxy |0, 0, 0)

′ (my |0, 0, 0)
′

(m1|0, 0, 1/2) (m2|0, 0, 1/2) (m3|0, 0, 1/2)

186.4.1437 P6′3mc′ P3m1 (0, 0, 0; a, b, c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0)

(2z |0, 0, 1/2)
′ (6z |0, 0, 1/2)

′ (6−1
z |0, 0, 1/2)′

(mx |0, 0, 0) (mxy |0, 0, 0) (my |0, 0, 0)
(m1|0, 0, 1/2)

′ (m2|0, 0, 1/2)
′ (m3|0, 0, 1/2)

′

186.5.1438 P63m′c′ P63 (0, 0, 0; a, b, c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0)

(2z |0, 0, 1/2) (6z |0, 0, 1/2) (6−1
z |0, 0, 1/2)

(mx |0, 0, 0)
′ (mxy |0, 0, 0)

′ (my |0, 0, 0)
′

(m1|0, 0, 1/2)
′ (m2|0, 0, 1/2)

′ (m3|0, 0, 1/2)
′

Co-atom concentrations in the interval between maximal

values and rather low ones. Besides, conclusions drawn

in section 5 concerning magnetic properties including

orientation of magnetization are provided for any possible

ordinary space group [P63mc(C4
6v), P3m1 (C1

3v), C3
s (Cm)

or C1
1 (P1) ordinary space group] and its associate magnetic

groups. As a consequence, results concern any possible

configuration type. To draw complete conclusion about a

configuration that is not considered above, one has just to

determine its ordinary and magnetic groups.

3. Magnetic groups for wurtzite-type
structures

The symmetry of non-magnetic crystals is described

by 230 space groups [20]. The space groups contain

such symmetry operations as rotations, reflections and

translations. However, the magnetic crystals possess the

additional variable being the magnetic moment of atoms.

If all the magnetic moments are collinear, i.e. they have

only two values, the description of such crystals can be

performed using 1191 black and white groups, or Shubnikov

groups [11,12]. In these groups, an additional symmetry

operation 1′ is introduced, which change the colour of the

atoms, or the direction of magnetic moments.

The magnetic group M is constructed from the ordinary

one G in the following way

M = H + R(G − H),

where H is a subgroup of G of index 2, R is the operation

of time inversion which inverts the direction of the magnetic

moments.

The procedure of the construction of the irreducible rep-

resentations of magnetic space groups has been developed

in papers of Cracknell [21–24].
Each space group of the group-subgroup relationship tree

(Bärnighausen tree) for the wurtzite-type parent structure

generates a magnetic space group family.

According to the tables compiled by D. Litvin [13], for
the space group of wurtzite, i. e. P63mc(N 186), the set of

the magnetic space groups is given in Table 2.

In column 1 of Table 2, the numbers NM of the magnetic

groups are given where 186 is the number N of the ordinary

space group from which the magnetic space group family is

generated; 1, 2, 3, 4, 5 are the numbers of the magnetic space

groups belonging to the family; 1434–1438 are the numbers

of the magnetic groups among 1651 magnetic groups.

Note that one group from each family (here 186.1.1434)
concides with the ordinary group, one group (here
186.2.1435) is a so-called grey group (contains all elements

of the ordinary group plus all these elements multiplied by

the operation R which reverses the magnetic moments), the
other groups (here 186.3.1436, 186.4.1437 and 186.5.1438)
are so-called black-white magnetic groups (each one con-

tains the elements of the subgroup of index 2 plus the rest

of the elements multiplied by R).
In column 2, the symbols of the magnetic groups M are

given; in column 3, the symbols of the subgroups H of

index 2 are presented; in column 4, the shift of new origin

and new translation vectors T (for all groups in question

the origin does not shift and unit cell does not change) are

given and in column 5 are listed all the elements M i of the

magnetic group with the anti-unitary ones multiplied by R
denoted by prime.

The ordinary space group describes the symmetry of

a nonmagnetic phase, the grey group corresponds to
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Table 3. The set of magnetic groups for the space group P3m1

NM M H T M i

156.1.1279 P3m1 (1|0, 0, 0) (3z |0, 0, 0), 0) (3z−1|0, 0, 0)
(mx |0, 0, 0), 0) (mxy |0, 0, 0) (my |0, 0)

156.2.1280 P3m11′

156.3.1281 P3m′1 P3 (0, 0, 0; a, b, c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0, 0)

(mx |0, 0, 0)
′ (mxy |0, 0, 0)

′ (my |0, 0, 0)
′

156.4.1282 P2c3m1 P3m1 (0, 0, 0; a, b, 2c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0, 0)

(mx |0, 0, 0) (mxy |0, 0, 0) (my |0, 0, 0)

156.5.1283 P2c3m′1 P31c (0, 0, 0; a, b, 2c) (1|0, 0, 0) (3z |0, 0, 0) (3−1
z |0, 0, 0)

(mx |0, 0, 0)
′ (mxy |0, 0, 0)

′ (my |0, 0, 0)
′

Table 4. The set of magnetic groups for the space group Cm

NM M H T M i

8.1.38 Cm (1|0, 0, 0) (my |0, 0, 0)
8.2.39 Cm1′

8.3.40 C1m′1 P1 (0, 0, 0; b, {a + b}/2, c) (1|0, 0, 0) (my |0, 0, 0)
′

8.4.41 C2c1m1 Cm (0, 0, 0; a, b, 2c) (1|0, 0, 0) (my |0, 0, 0)
8.5.42 CP1m1 Pm (0, 0, 0; a, b, c) (1|0, 0, 0) (my |0, 0, 0)
8.6.43 C2c1m′1 Cc (0, 0, 0; a, b, 2c) (1|0, 0, 0) (my |0, 0, 0)

′

8.7.44 CP1m′1 Pc (0, 1/4, 0; c,−b, a) (1|0, 0, 0) (my |0, 0, 0)
′

a paramagnetic phase whereas magnetic groups describe

different ferromagnetic or antiferromagnetic phases.

For the space groups P3m1(N 156) and Cm(N 8), the
sets of the magnetic space groups are given in Tables 3

and 4, respectively.

4. Site symmetry of magnetic impurity

The site symmetry of magnetic atoms imposes restrictions

on possible orientations of magnetic moments. It should

be noted that within the Shubnikov approach, we limit

ourselves by the admissible magnetic structures, i. e. those

which are compatible with the corresponding Shubnikov

group symmetry.

We can formulate the following rule: for a given site

symmetry group, only those orientations of the magnetic

Table 5. Magnetic moments M in the wurzite-type diluted mag-

netic semiconductors allowed by site symmetry

Site symmetry

of magnetic impurity
Allowed M

3m 0

3m′ parallel to c-axis

m perpendicular to symmetry plane

m′ parallel to symmetry plane

1 arbitrary

moments are allowed which are left invariant under the

action of both unitary and antiunitary elements of the group.

The magnetic moment being the axial vector, for unitary

elements, the mirror reflections (m) leave invariant the

magnetic moments oriented perpendicular to the symmetry

plane whereas changing the sign of the magnetic moments

lying in the plane. The rotations act on the axial vectors

like on polar vectors. For the corresponding antiunitary

elements, the axial vectors additionally change a sign under

the operation of time inversion. The magnetic moments

M allowed by the impurity site symmetry are given in

Table 5. In tables [13], all possible components of allowed

magnetic moments at the site of Wyckoff position orbits for

the magnetic groups are given. Below, we summarize the

results for all possible magnetic space groups generated by

P63mc , P3m1 and Cm ordinary groups.

5. Magnetic moment ordering

5.1. G r o u p P63mc(N 186) f am i l y . As noted

above, Co impurity in this family can occupy Wyckoff

positions 2b, 6c , and 12d . The 3-fold rotation axes

are unitary elements in all Shubnikov groups related to

the group P63mc(N 186) whereas mirror planes enter

either like unitary or anti-unitary elements in different

Shubnikov groups. Consider the procedure of obtaining the

maximal allowed magnetic moment configuration for the

impurity atoms occupying the sites of the two-point orbit 2b

Физика твердого тела, 2012, том 54, вып. 3
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Table 6. Allowed magnetic moments M in the P63mc family

Shubnikov
Impurity

Allowed M components [uvw]
magnetic group

Wyckoff position
at the sites of the orbit

Type of ordering

and site symmetry

P6′3m
′c 2b(3m′.) [0, 0, w](z ); Antiferromagnetic along the z -axis

[0, 0,−w](z + 1/2) (atoms with antiparallel moments

in the planes z and z + 1/2)

6c(.m′.) [u,−u, w], [u, 2u, w], [−2u,−u, w](z ); u = 0: antiferromagnetic along the z -axis
[u,−u,−w], [u, 2u,−w], [−2u,−u,−w](z + 1/2) (atoms with antiparallel moments

in the planes z and z + 1/2)
u 6= 0: umbrella-type structure

(according to classification of [25])

P6′3mc′ 2b(3m.) [0, 0, 0](z ); No magnetic structure

[0, 0, 0](z + 1/2)

6c(.m.) [u, u, 0], [−u, 0, 0], [0,−u, 0](z ); Hexagonal-type structure

[u, u, 0], [−u, 0, 0], [0,−u, 0](z + 1/2)

P63m′c′ 2b(3m′.) [0, 0, w](z ); Ferromagnetic along the z -axis
[0, 0, w](z + 1/2)

6c(.m′.) [u,−u, w], [u, 2u, w], [−2u,−u.w](z ); u = 0 Ferromagnetic along the z -axis
[−u, u, w], [−u,−2u, w], [2u, u, w](z + 1/2) u 6= 0 Umbrella-type structure

Table 7. Allowed magnetic moments M in the P3m1 family

Shubnikov
Impurity

Allowed M components [uvw]
magnetic group

Wyckoff position
at the sites of the orbit

Type of ordering

and site symmetry

P3m′1 1b(3m′.) [0, 0, w] Ferromagnetic along the z -axis
1c(3m′.) [0, 0, w] Ferromagnetic along the z -axis
3d(.m′.) [u,−u, w], [u, 2u, w], [−2u,−u, w] u = 0: ferromagnetic along the z -axis

u 6= 0: umbrella-type structure

P2c3m1 2b(3m.) [0, 0, 0](z ); No magnetic structure

[0, 0, 0](z + 1)
2c(3m.) [0, 0, 0](z ); No magnetic structure

[0, 0, 0](z + 1)
6d(.m.) [u, u, 0], [−u, 0, 0], [0,−u, 0](z ); Trigonal-type structure (atoms with antiparallel

[−u,−u, 0], [u, 0, 0], [0, u, 0](z + 1) moments in the planes z and z + 1)

P2c3m′1 2b(3m′.) [0, 0, w](z ); Antiferromagnetic along the z -axis (atoms with

[0, 0,−w](z + 1) antiparallel moments in the planes z and z + 1)
2c(3m′.) [0, 0, w](z ); Antiferromagnetic along the z -axis (atoms with

[0, 0,−w](z + 1) antiparallel moments in the planes z and z + 1)
6d(.m′.) [u,−u, w], [u, 2u, w], [−2u,−u, w](z ); u=0: antiferromagnetic along the z -axis (atoms

[−u, u,−w], [−u,−2u,−w], [2u, u,−w](z +1) with antiparallel moments in the planes z and z +1)
u 6= 0 Umbrella-type structure (atoms with

antiparallel moments in the planes z and z + 1)

(1/3, 2/3, z )(2/3, 1/3, z + 1/2). The site symmetry group

3m contains only mirror planes intersecting along the z -axis
and 3-fold rotation axes parallel to the z -axis. Thus, the site

symmetry of the magnetic impurity at the 2b sites allows

the orientation of the magnetic moments only along the z -
axis because the 3-fold rotation axes do not leave invariant

the magnetic moments along x and y axes.

In the magnetic group 186.3.1436 P6′3m′c , the

elements (1|0, 0, 0), (3z |0, 0, 0), (3−1
z |0, 0, 0) and

(mx |0, 0, 0)
′, (mxy |0, 0, 0)

′, and (my |0, 0, 0)
′ enter

the site symmetry group and do not change M
whereas (m1|0, 0, 1/2), (m2|0, 0, 1/2), (m3|0, 0, 1/2)
and (2z |0, 0, 1/2)

′, (6z |0, 0, 1/2)
′, (6−1

z |0, 0, 1/2)′ trans-

form the magnetic moment M of the atom occupy-
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Table 8. Allowed magnetic moments M in the the Cm family

Shubnikov
Impurity

Allowed M components [uvw]
magnetic group

Wyckoff position
at the sites of the orbit

Type of ordering

and site symmetry

C1m′1 2a(.m′.) [u, 0, w](0, 0, 0), Ferromagnetic within the xz -plane
[u, 0, w](1/2, 1/2, 0)

C2c1m1 4a(.m.) [0, v, 0](z ), Antiferromagnetic along the y -axis (atoms with

[0,−v, 0](z + 1) antiparallel moments in the planes z and z + 1)

CP1m1 2a(.m.) [0, v, 0](0, 0, 0), Antiferromagnetic along the y -axis [atoms with

[0,−v, 0](1/2, 1/2, 0) antiparallel moments shifted by (1/2, 1/2, 0)]

C2c1m′1 4a(.m′.) [u, 0, w](z ), Antiferromagnetic within the xz - plane (atoms with

[−u, 0,−w](z + 1) antiparallel moments in the planes z and z + 1)

CP1m′1 2a(.m′.) [u, 0, w](0, 0, 0), Antiferromagnetic within the xz -plane [atoms with

[−u, 0,−w](1/2, 1/2, 0) antiparallel moments shifted by (1/2, 1/2, 0)]

ing (1/3, 2/3, z ) position into −M of the atom at

(2/3, 1/3, z + 1/2). In this case, two magnetic impurity

atoms occupying different sites of the two-point orbit

(1/3, 2/3, z )(2/3, 1/3, z + 1/2) are with opposite mag-

netic moments. Thus, this group describes the antiferro-

magnetic state.

In the magnetic group 186.4.1437 P6′3mc ′, the sym-

metry operations (1|0, 0, 0), (3z |0, 0, 0), (3−1
z |0, 0, 0) and

(mx |0, 0, 0), (mxy |0, 0, 0), and (my |0, 0, 0) enter the site

symmetry group. Mirror reflections transform M into −M.

Therefore, the site symmetry allows only M = 0, i. e. no

magnetic structure corresponds to this group.

In the magnetic group 186.5.1438 P63m′c ′, the mirror

and glide reflections are anti-unitary elements. Therefore

they do not change the direction of the magnetic moment

oriented along the z - axis. The elements (mx |0, 0, 0)
′,

(mxy |0, 0, 0)
′, and (my |0, 0, 0)

′ enter into the site sym-

metry group whereas (m1|0, 0, 1/2)
′, (m2|0, 0, 1/2)

′,

(m3|0, 0, 1/2)
′ transform one point from the two-point

orbit (1/3, 2/3, z ) into another (2/3, 1/3, z + 1/2). The

rest of elements (1|0, 0, 0), (3z |0, 0, 0), (3−1
z |0, 0, 0),

(2z |0, 0, 1/2), (6z |0, 0, 1/2) (6−1
z |0, 0, 1/2) are elements

of the unitary subgroup. The (1|0, 0, 0), (3z |0, 0, 0),
(3−1

z |0, 0, 0) enter into the site symmetry group whereas

(2z |0, 0, 1/2), (6z |0, 0, 1/2), (6−1
z |0, 0, 1/2) transform one

point into another in the orbit. They also do not change M.

Thus, this group describes the ferromagnetic phase.

In Table 6, we summarize the results for all possible site

symmetries of magnetic impurities in the P63mc family.

The site symmetry of the 12d position is 1. Therefore,

any orientation of the magnetic moment is allowed by site

symmetry. No ferro- or antiferromagnetic ordering is for this

case. The orientation and ordering of magnetic moments for

general positions are given in tables [13].
5.2. G r o u p P3m1 (N 156) f am i l y . In this family,

Co impurities can occupy Wyckoff positions 1b, 1c , and
3d . The allowed magnetic structures for this family are

presented in Table 7. The site symmetry of the 3d position

is 1. As noted above, no ferro- or antiferromagnetic ordering

is for this case. The orientation and ordering of magnetic

moments for general positions are given in tables [13].

5.3. Group Cm (N 8) f am i l y . In this family, Co

impurities can occupy Wyckoff positions 2a and 4b. The

allowed magnetic structures for this family are presented

in table 8 except for atoms at 4b position with the site

symmetry 1.

In Table 8, the results are given for the Cm group with

the standard setting (i. e. with the my mirror plane). The

results for the equivalent orientations of the Cm subgroups

with respect to the parent group P63mc (i. e. with mx and

mxy mirror planes) are obtained by the permutation of the

corresponding axes.

6. Discussion

In the DMSs, the mean distance between first-neighbour

magnetic atoms is generally too large to allow spin-spin

interaction to be sufficently strong to align their spins. Ac-

cording to the Dietl model, spin orientation is mediated by

carrier spins which align due to the applied magnetic field.

Thus, ferro- or antiferromagnetic states of the structure are

induced by the magnetic field and magnetization orientation

should depend on the field. DMSs with a high symmetry

(P63mc or P3m1) can in some cases allow orientation but

only along the growth direction whereas DMSs with a low

symmetry (Cm) can in some cases allow orientation either

perpendicular to or within the symmetry plane. Knowledge

of distribution of magnetic atoms over the cation sites

of the lattice would be the key point to determine the

magnetic properties of actual structures. Unfortunately, such

a knowledge cannot be easily provided by experiments.

Information about cohesive energy of various possible

distributions would help in determining actual structures but

would not be sufficient since in general growth methods

do not provide structures at complete thermodynamical
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equilibrium at the growth temperature. Nevertheless, it

seems reasonable to assume that local lattice structures with

a high symmetry are less probable that those with a low

one. Indeed, the local structures with the P63mc symmetry

involve a six-fold screw axis parallel to the growth direction

that is probably not kept in DMSs since it would induce

a rather long-range order in the structure. Besides, the

structures with the P3m1 symmetry assign a symmetrical

role to the three symmetry planes intersecting locally that is

certainly a very restricting condition. On the contrary, local

structures with the Cm symmetry imply existence of a single

symmetry plane and hence seem much more probable. One

can also imagine existence of local structures without any

symmetry. Concerning the later case, it should be stressed

that it does not fit the results for Zn1−xCoxO structures

with a low amount of cobalt (x = 0.003−0.005) grown by

plasma-assisted MBE. Indeed, it has been experimentally

shown [4] that the (x , y) layer plane is an
”
easy plane“ for

ferromagnetism. This result suggests strongly that the Co

atoms are not distributed at random but, on the contrary,

that the local symmetry is Cm since it is the only symmetry

that can induce such an orientation of ferromagnetism (the
direction of magnetization lies within the symmetry plane,

see section 5.3). Note that it would be interesting to

measure magnetization with rotating the sample around the

growth direction. One can expect an identical effect from

the three symmetry planes at the scale of the whole sample

hence a three-fold periodic behaviour for magnetization and,

may be, even a six-fold one if glide planes remain active.

In any symmetry group antiferromagnetic phase(s) can

exist. It is well known that spinel structures as Co3O4

or ZnCo2O4 for example are antiferromagnetic materials.

It suggests that DMSs with a high amount of magnetic

atoms can present antiferromagnetic properties. Indeed,

stoichiometric phases correspond in general to the maximal

cohesive energy value for their chemical composition and

therefore should be actually achieved during the growth

process through phase separation. Note that, even in

a model with a random distribution of Co atoms, the

percentage of sequences such as Co–O–Co should increase

with the amount of cobalt. On the contrary, for a very

low amount of cobalt, Lande-factor values calculated for

the samples of [4], suggest that magnetic atoms are diluted

in the ZnO matrix, keeping the possible existence a priori

of ferro- and antiferromagnetic local structures with the Cm
symmetry. Since it is the ferromagnetic phase that is actually

achieved, one can conclude that the magnetic moments lie

within the symmetry plane and that their direction presents

a small angle with the layer plane since the magnetization

value is much larger within the plane than along the growth

direction.

Last, the columnar structure of the samples probably

weakens the symmetry properties at least in the layer plane

since the columns are parallel to the growth direction. The

effect is probably weaker in the samples of [4] since the

column diameter is large, i. e., of the order of 1µm. In

addition, according to the model proposed by Straumal

et al. [3], the effect of grain boundaries should also be

weaker making the magnetization to arise mainly from

intrinsic properties of the ZnO lattice itself and from

distribution of magnetic atoms over cation sites.

7. Conclusion

To model the wurtzite-type diluted magnetic semicon-

ductors with decreasing the magnetic impurity atom con-

centration, we have applied the procedure of constructing

the group-subgroup relationship tree starting from the parent

wurtzite structure. The derivative structures correspond to

various distributions of the magnetic impurities over the

cation sublattice sites of the host lattice. The type of

magnetic ordering is shown to depend on the symmetry

group of the magnetic semiconductor and site symmetry of

impurities. Within this procedure, we derived all possible

magnetic groups and corresponding magnetic structures for

different distributions of the magnetic impurities over the

cation sublattice sites of the host lattice. Allowed orientation

of the magnetic moments depends on the site symmetry of

the impurities.

For the derivative structures with P63mc and P3m1

symmetry, ferro- and antiferromagnetic ordering is allowed

for magnetic moments oriented along the hexagonal c-
axis. Ferro- and antiferromagnetic ordering in the plane

perpendicular to the hexagonal c-axis can be realized only

in the derivative structures with low symmetry Cm. In this

case, the magnetic moments can align along any direction

in the symmetry plane of the wurtzite structure.
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