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Using the analysis of the elastic lines distortions of the diffraction spectra with the involvement of the high order

central moments of the distribution, the sensitivity of the developed technique to the presence of an admixture of
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Introduction

Molecular sieves like SBA-15, MCM-41, MCM-48,

etc. [1–3] are fine-grained powders with a characteristic

granule size of up to several micrometers, and the system

of nanometer channels is already implemented at the level

of the internal structure each of the granules. Certainly,

in the manufacture of nanocomposite materials (NCM)
based on molecular sieves, as well as other matrices with

nanometer-scale channels (pores) (porous glasses, artificial

opals, chrysotile asbestos, etc. [4,5]), the question often

arises about the quality of the obtained NCM: first of all,

about the possible admixture of bulk material. Indeed,

when the pore space of the matrices is filled with the

introduced material, especially when it is introduced from

an aqueous solution, the probability of the appearance of

the contribution of the bulk component is not small, since

it can appear due to crystallization not in the pores, but

in the free space between the grains of molecular sieves

or in large-scale defects of the matrices themselves in

the case of porous glasses, opals and chrysotile asbestos.

Such an impurity can significantly change the properties

of nanocomposites as a whole; therefore, already at the

stage of preparing nanocomposites, it is desirable to be

able to estimate the contribution of the bulk component.

In addition, nanocomposites may also contain impurities

of the amorphous phase [6,7], which is rather difficult to

distinguish in diffraction spectra due to the presence of a

large background from the nanoporous matrix itself. Thus,

conducting a preliminary analysis of the quality of a sample

even at the stage of its manufacture and/or refinement of the

manufacturing technology becomes very important, and it is

desirable to carry out this procedure rather quickly. From

this point of view, X-ray or neutron diffraction is one of

the most accessible and informative methods for conducting

such a preliminary analysis of the NCM structure. In

the previous paper [8], we considered distortions of the

elastic peak line shape for a mixture of bulk and nanostruc-

tured fractions in cases where the instrumental resolution of

the diffractometer and the NCM response were described

by the same functions (Gaussian, Lorentzian or Voigtian),
by analyzing the changes in dispersion, asymmetries, and

kurtosis [9] observed at different ratios of fractions and for

different characteristic sizes of nanoparticles embedded in

the pore space of matrices. The purpose of this paper was

to consider cross variants, i.e., cases where the functions for

describing the profiles of elastic reflections for the bulk and

nanostructured phases differ.

1. Initial conditions

The main initial formulas used in the calculations and

the starting parameters are given in the article [8], so

here we only recall the main provisions and the essence
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Figure 1. The change in the dispersion (σ ) for the Bragg reflection with an increase in the percentage of the bulk material phase in

the sample (x) in the case of various combinations of nanophase and bulk line shapes: the nanostructured phase is described either by a

pseudo-Voigtian (a) or Lorentzian (b); the bulk one — by Gaussian (black filled symbols), squared Lorentzian (red symbols (in online

version)). The half-filled green symbols (in the online version) in both cases correspond to the case of the same line shape. Squares

correspond to particle size 80 nm, circles — 40 nm, triangles — 20 nm.

of the approach used in the simulation. In this paper,

as we used, as in [8], the setup parameters of a FIRE-

POD E9 high resolution neutron diffractometer (Helmholtz

Zentrum Berlin, Germany). When describing the experi-

mentally observed shape of the elastic reflection line and

instrumental resolution, the following functions were used:

Gaussian (1), Lorentzian (2), squared Lorentzian (3) and

pseudo-Voigtian (4):

G(x) =
2

H

√

ln 2

π
exp

(

−
H
2

√

π

ln 2
x2

)

, (1)

L(x) =
2

πH
(

1 + 4
H2 x2

) , (2)

SqL(x) =
4
√√

2− 1

πH
(

1 + 4(
√

2−1)
H2 x2

)2
, (3)

pV (x) = pV (x) = ηL(x) + (1− η)G(x). (4)

Here, in all functions, the parameter H is the width of the

elastic peak at half maximum. The parameter 0 ≤ η ≤ 1 in

formula (4) corresponds to the relative contribution of the

Lorentzian. All the above functions are normalized to one.

The following combinations of functions describing the

contribution of the mass and nanostructured fractions were

analyzed:

1) the nanostructured phase is described by the pseudo-

Voigtian (4), while the bulk fraction is described either by

the Gaussian (1), or by the Lorentzian (2), or by the squared

Lorentzian (3);
2) the nanostructured phase is described by the

Lorentzian (2), while the bulk fraction is described either

by the Gaussian (1) or by the squared Lorentzian (3);
3) the nanostructured phase is described by a squared

Lorentzian (3), while the bulk material admixture is

described by a Gaussian (1).
In the case of a bulk fraction, the parameter H was taken

equal to the width of the instrumental resolution function

calculated by the Cagliotti formula [10]:

H2
instr = U tg2 θ + V tg θ + W. (5)

Here, the parameters U,V,W were taken for the in-

strumental resolution function of a FIREPOD E9 high-

resolution neutron diffractometer (Helmholtz Zentrum

Berlin, Germany).
For the nanostructured phase, the parameter H was

calculated as the total contribution from the instrumental
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Figure 2. Change in the kurtosis coefficient (γ2) of the Bragg reflection with an increase in the percentage of the bulk material phase

in the sample (x) in the case of various combinations of nanophase and bulk line shapes: the nanostructured phase is described by

the pseudo-Voigtian (a), Lorentzian (b); the bulk one — by Gaussian (black filled symbols), squared Lorentzian (red crossed symbols

(online)), Lorentzian (blue empty symbols (online). The half-filled green symbols (in the online version) in both cases correspond to the

case of the same line shape. Squares correspond to particle size 80 nm, circles — 40 nm, triangles — 20 nm.

resolution and the broadening of the elastic peak due to the

size effect using the Debye−Scherrer formula:

Hs iz e =
kλ

d cos θ
, (6)

in which the coefficient k was set equal to one, d — the

average diffraction size of nanoparticles, 2θ — the position

of the Bragg reflection.

The summation of the contributions of instrumental and

dimensional broadening was carried out according to the

following formulas:

— in the case of a Gaussian

H2
G = H2

instr + H2
s iz e, (7)

— for Lorentzian and squared Lorentzian

HL = Hinstr + Hs iz e, (8)

— in case of pseudo-Voigtian [11]:

H5
pV = H5

G + 2.69269H4
G HL + 2.42843H3

G H2
L

+ 4.47163H2
GH3

L + 0.07842HG H4
L + H5

L, (9)

η = 1.36603
HL

HpV
− 0.47719

(

HL

HpV

)2

+ 0.11116

(

HL

HpV

)3

.

(10)

The variance σ , the asymmetry coefficient γ1, and the

kurtosis γ2 were calculated in terms of the central mo-

ments 2, 3, and 4 orders of µ2, µ3, µ4 using the formulas [9]:

σ =
√
µ2,

γ1 =
µ3

σ 3
,

γ2 =
µ4

σ 4
− 3.

2. Results of modelling and discussion

Figures 1−3 show the results of calculations of the

dependences of parameters σ (Fig. 1), γ2 (Fig. 2)
and γ1 (Fig. 3) on percentage content of impurity phase

of bulk material x . Fig. 1, a−3,a correspond to the variant

when the nanostructured phase is described by a pseudo-

Voigtian, and the bulk — by various types of profiles

(Gaussian, Lorentzian, squared Lorentzian, and also for

comparison added dependencies for the pseudo-Voigtian
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Figure 3. Change in the asymmetry coefficient (γ1) of the Bragg reflection with an increase in the percentage of the bulk material

phase in the sample (x) in the case of various combinations of nanophase and bulk line shapes: the nanostructured phase is described

by the pseudo-Voigtian (a), Lorentzian (b); the bulk one — by Gaussian (black filled symbols), squared Lorentzian (red crossed symbols

(in online version)), Lorentzian (blue empty symbols (in online version) ). The half-filled green symbols (in the online version) in both

cases correspond to the case of the same line shape. Squares correspond to particle size 80 nm, circles — 40 nm, triangles — 20 nm.

from the article [8]). In Fig. 1, b−3, b the response from

nanoparticles is described by the Lorentzian, and the bulk

fraction is described by the Gaussian, squared Lorentzian

and Lorentzian. In all figures, the calculation error does not

exceed the symbol size. As in the work [8], the dependences
are calculated for the cases when the cell parameters of

the nanostructured and bulk phases coincide and for the

case when they differ, but since the dependences of the

variance and kurtosis coefficient on the difference between

the cell parameters in all considered cases is not found and

the results coincide within the error bars, then, in order to

avoid the overloading of the figures, the results for the case

of different cell parameters are not shown.

From these dependencies, the following conclusions can

be drawn:

— with an increase in the percentage of bulk material,

the dispersion decreases;

— the kurtosis coefficient increases with an increase in

the content of the bulk fraction;

— in the case of different cell parameters of the nanos-

tructured and bulk phases, the value of the asymmetry

coefficient γ1 increases in absolute value with the increasing

content of the bulk phase.

Thus, all regularities noted in the paper [8] for the case of

identical functions (Gaussian, Lorentzian, pseudo-Voigtian)
of contributions from bulk and nanostructured materials are

also observed for cases when these functions differ. At the

same time, some features should be noted, in particular, if

the functions describing the contributions from the array and

nanoparticles differ greatly in the decay rate of the
”
tails“

(for example, in the case of a combination when the bulk

is described by a Gaussian or a squared Lorentzian, and

nanostructured phase — by pseudo-Voigtian or Lorentzian),
then the difference between the values of σ , γ1, and γ2
at different concentrations of the bulk fraction becomes

much larger than for the case of identical line profiles.

Note that, in this case, the dependence of the asymmetry

coefficient on the diffraction size of the particles vanishes.

Thus, the proposed method makes it possible to isolate

the contribution of the bulk material impurity even more

reliably.

For the case when the bulk is described by the Lorentzian

and the nanostructured phase by the pseudo-Voigtian, the

opposite situation is observed: the difference between the

values of the line distortion parameters at different values

of x becomes somewhat smaller than in the case of the same
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Figure 4. Dependences of the parameters σ , γ1 and γ2 on the percentage of the bulk material phase in the sample (x) in the case

of a combination of line profiles bulk−Gaussian, nanophase−squared Lorentzian at different particle sizes and different ratios of the

lattice parameters of the array and the nanostructured phase (black symbols — lattice parameters are the same, empty symbols — lattice

parameters of the array and nanophase are different).

line shape, but still allows apply the developed algorithm.

For a combination of profile functions that are similar in tail

decay (for example, bulk is described by a Gaussian, and

a nanophase by a squared Lorentzian), all regularities are

observed that are typical for the case of a Gaussian shape

of the bulk line and nanophase considered in the previous

work. The dependences of the parameters σ , γ1, and γ2 are

shown in Fig. 4.

3. Stability of the algorithm
to level background

A real experimental diffraction pattern always contains

a certain background, and the
”
signal−background“ ratio

affects the accuracy of determining the parameters that

describe the shape of the signal line. In this section,

we consider the influence of this ratio on the value of

the error in determining the variance σ for the two most

unfavorable cases. In both cases, the nanostructured phase

is described by the Gaussian, while the impurity of the bulk

fraction is 10% and is described either by the Voigtian (a)
or by the squared Lorentzian (b). In both cases, the

size of nanoparticles in the simulation was 80ṅm (i.e., the
broadening due to the size effect is small), and the unit

cell parameters are the same. The model spectra were

modulated with
”
white noise“: an example of the resulting

spectrum is shown in Fig. 5.

The amplitude ratio
”
signal−noise“ varied from 0 to 60%.

The results of the above simulation (values for the vari-

ance σ of the elastic peak) are shown in Fig. 6, a for the

combination of Gaussian+Voigtian functions and in Fig. 6, b

for a pair of Gaussian+squared Lorentzian. Black squares

correspond to the case of the absence of an admixture of

bulk material, and red circles (in the online version) —
NCM, in which there is 10% of the bulk phase. The given

errors correspond to a confidence interval of three standard

deviations.

From Fig. 6 it is clearly seen that with the addition of

noise, not only the values of the dispersion parameters σ

for the elastic peak increase, but also the corridors of three

standard errors of these parameters. In the case when these

intervals for the values σ at x = 0 and 10% overlap, we

can say that using this method it is impossible to reliably

detect the presence of an admixture of bulk material equal

to 10%. It is easy to see that for a combination of profile

functions Gaussian+Voigtian this threshold corresponds to

a noise level of about 60%, and for a combination of

Gaussian+ squared Lorentzian it is slightly less than 50%.
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Figure 5. An example of a signal from an elastic peak described

by a combination of Gaussian and Voigtian and modulated
”
by

white noise“. Amplitude ratio noise — signal is 60%.
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noise level for cases of pure nanostructured phase (x = 0%) and

for NCM, in which 10% impurities of bulk fraction (x = 10%),
for different combinations of the profile functions of the bulk

and the nanostructured phase: a — Gaussian+Voigtian, b —
Gaussian+squared Lorentzian.

Thus, it is shown that the proposed method works even with

a rather poor noise/signal ratio.

Conclusion

The influence of the bulk phase impurity on the distortion

of the line shape of elastic peaks for nanocomposite materi-

als based on porous nanomatrices is analyzed for the main

functions describing the diffraction peaks of nanocomposite

materials, taking into account the instrumental resolution

function. It is shown that the use of higher central

moments of the distribution makes it possible to determine

the contribution of the bulk fraction with an accuracy

of 5−10%, and the proposed algorithm does not require

a full-scale profile analysis. This algorithm works well even

with a poor noise/signal ratio: it is shown that the stability

is preserved even in the case when the noise/signal ratio

reaches 60%.
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