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We study the electromagnetic radiation of a charged particle bunch with small size moving at a constant velocity

and having a variable charge. The environment medium is considered to be isotropic and homogeneous, and it may

have frequency dispersion, but not spatial dispersion. The general solution of the problem is obtained. The main

attention is paid to the case when the bunch charge, starting from a certain moment, decreases exponentially with

time. The saddle point method is used to obtain the approximate expressions for the field components that are

valid in the wave zone. The energy characteristics of the excited spherical wave are studied and compared with the

case of a decelerating charge. In the case of excitation of Vavilov−Cherenkov radiation, we obtain the asymptotics

which are valid in the entire wave zone, including the region in which the field cannot be divided into the spherical

and cylindrical waves.
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Introduction

A huge number of works are devoted to the problems

of electromagnetic radiation of charged particles and

their beams (bunches) in material media, among which

are monographs [1–5], reviews [6,7] and textbooks [8].
Usually in such problems it is assumed that the number of

particles in the beam does not change during its motion.

An exception is the problem of radiation in dielectric

waveguide structures, when the beam moves in a vacuum

channel in a medium: in such a situation, the dynamics of

the beam is often taken into account, associated with the

effect of the radiation of the beam particles on them [9].

However, if the beam moves directly through the

medium, then its particles interact with the particles of the

medium, which leads to certain changes in the beam. In

more or less dense media, this interaction is the main mech-

anism that determines the beam evolution. Various variants

of this evolution have been described in many monographs

and articles (see [10–14] and references therein). Depending
on the mass of the particles, their energy, and the density

of the medium, both a rapid deviation of particles from

a rectilinear trajectory, leading to beam scattering, and an

almost uniform motion of a relatively stable beam over most

of the trajectory, followed by the deceleration of most of its

particles over a relatively short segment of it, are possible.

The last variant is typical for beams of protons and ions,

decelerating mainly in the region of the known
”
Bragg

peak“ [10–12]. Because of this feature, beams of heavy

particles have found wide application in medicine (proton
and ion therapy [10-13]).

As the beam moves through the medium, the number of

particles in it changes. As a rule, it decreases: the particles

of the beam are decelerated, actually turning from moving

to stationary. It is of considerable interest to study the

radiation of such a beam as a whole. It will be generated

at wavelengths exceeding the size of the beam itself (for
real beams, we are usually talking about wavelengths of

about a millimeter or more). Of course, this radiation

can be considered as bremsstrahlung of individual beam

particles. However, from the point of view of macroscopic

electrodynamics, it seems more natural from the very

beginning to consider the beam as a whole, setting one

or another law of its evolution.

The present work is devoted to studying the radiation of

such a bunch of charged particles with a variable charge.

The main attention will be paid to the case when the

bunch charge was constant up to a certain moment of time,

and then its exponential decrease occurs. In this case, to

simplify the analysis, the environment will be considered

homogeneous and unlimited. Such a model looks natural

for a beam of heavy particles, since after entering the

medium it moves almost without changes for quite a long

time (the region of the Bragg peak is quite far from the

boundary of the medium). For a beam of electrons that

quickly lose energy after entering the medium, such a

model can be implemented if the beam first moves in a

vacuum channel in the medium, and at its end flies into the

medium. If the channel diameter is small compared to the

wavelengths under consideration, then the channel will not

have a significant effect on the radiation [7] (with respect to

such waves, the medium can be considered homogeneous

everywhere).

The described model problem makes it possible to

analyze the effects associated with a change in the beam

charge, as well as the Vavilov−Cherenkov effect. In this

1222



Radiation from a Moving Bunch of Particles with a Variable Charge 1223

case, we digress from the transition radiation that arises at

the interface between media. Therefore, we can analyze the

radiation associated with a change in the beam charge in its

”
pure“ form: this radiation is unique if the beam velocity is

less than the velocity of the waves in the medium (i.e., there
is no Vavilov−Cherenkov radiation). However, initially we

will not rule out the possibility of generating the Cherenkov

radiation, and then we will consider two modes of charge

motion — without this radiation and with it.

1. General solution of the problem

We will analyze radiation with wavelengths significantly

exceeding the particle bunch size. In this case, it can

be considered as a point charge, the value of which q
depends on time. The charge velocity v will be considered

constant. To satisfy the continuity equation div j +
∂ρ

∂t = 0,

it is necessary to introduce one more
”
additional“ immobile

source with a charge density ρ1, which is a
”
trace“ of the

immobile charge. Combining the z axis with the bunch

motion line, the total charge ρ6 and current j6 densities can

be written as follows:

ρ6 = ρ + ρ1,

ρ = q(t)δ(x , y, z − νt),

ρ1 = −dq(t′)
νdt′

∣

∣

∣

t′=z /ν
δ(x , y)2(νt − z )

= −dq(z/ν)

dz
δ(x , y)2(νt − z ), (1)

j6 = j = νρez .

By substituting these expressions into the continuity equa-

tion, one can easily verify that it turns into an identity.

Physically, the formation of the
”
trace“ means that the

particles of the beam stop due to the interaction with the

particles of the medium, i.e. from moving ones turn into

stationary ones (as a result j1 = 0). In this case, from the

point of view of macroscopic electrodynamics, a detailed

description of this process is of no importance. For example,

this can be the recombination of beam electrons with ions

of the surrounding plasma, the stopping of particles due to

collisions with neutral molecules, etc. What is important is

the very fact of the formation of a filamentous charge in

space,
”
additional“ in relation to those charges that existed

in the medium earlier (if any).
We consider the environment to be linear, homogeneous,

stationary, isotropic and not having significant spatial

dispersion (however, it may have frequency (temporal)
dispersion). Let us recall some properties of such media.

Such a medium is characterized by frequency-dependent ω

dielectric (ε) and magnetic (µ) permeabilities, and its re-

fractive index is equal to n =
√
εµ, and we will assume that

Imn > 0. Let us assume that in the range of propagating

waves the real parts of both permeabilities are positive:

ε′ > 0, µ′ > 0 (thereby we exclude from consideration the

so-called
”
left“ media, for which these values are negative).

We will also consider the environments to be “passive“,

i.e. incapable of generating electromagnetic energy. In such

media, the signs of the imaginary parts of the permeabilities

ε′′, µ′′ coincide with the sign of the frequency, and accord-

ingly sgn(Imn2) = sgn(ε′µ′′ + ε′′µ′) = sgnω. In the case

of relatively small absorption (and this is the situation we

are interested in), we have Ren2 = ε′µ′ − ε′′µ′′ ≈ ε′µ′ > 0.

Taking into account the imposed condition Imn > 0, we

see that the quantity n is either in the first or second

quadrants of the complex plane, depending on the sign of

the frequency, i.e. sgn(Ren) = sgnω. Finally, we will be

mainly interested in the case of negligible absorption when

ε′′, µ′′ → +0 · sgnω, n → Ren, sgnn = sgnω.

When solving the problem, time Fourier transforms will

be applied in the form

Fω =
1

2π

∞
∫

−∞

F(t)eiωt dt, F(t) =

∞
∫

−∞

Fωeiωtdt. (2)

Since for real functions on the real frequency axis the

relation F−ω = F∗

ω is true (the asterisk means complex con-

jugation), we will further consider only positive frequencies

ω > 0. The corresponding spatial Fourier transforms have

the form

Fω,k =
1

(2π)3

∫

R3

Fω(r)e−ikrd3r,

Fω(r) =

∫

R3

Fω,keikrd3k. (3)

Let us use the vector A and scalar 8 potentials, in

terms of which the field components are expressed by the

formulas E = − 1
c

∂A
∂t −∇8, B = rotA (Gaussian units are

used). When applying the Lorentz gauge, the time Fourier

transforms of the potentials obey the Helmholtz equation:

(1 + k2)

{

Aω

8ω

}

= −4π

{

c−1 µjω

ε−1 ρ6ω

}

, (4)

where k = ωn/c .
We will solve equation (4) by the Fourier method. For

the space-time Fourier transforms of the charge and current

densities, we have

ρ6ω,k =
1

(2π)3
νkz

ω + i0
q�, jω,k =

1

(2π)3
νq�ez , (5)

where q� = 1
2π

∫

q(t)ei�t dt, � = ω − νkz . Note that the

term
”
+i0“ in the denominator provides the necessary

detour around the pole, which gives expression (1) for ρ6.

Writing the potentials Aω, 8ω as inverse Fourier integrals,

substituting them into equations (4) and equating the

integrands, we obtain fourfold Fourier transforms of the

potentials. After passing to a cylindrical coordinate system

both in the physical space (r, ϕ, z ) and in the space of
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wave vectors (kr , ϕk , kz ), for the time Fourier -images of

potentials we get

{

Aω

8ω

}

=
1

2π2

∞
∫

−∞

dkz

∞
∫

0

dkr

2π
∫

0

dϕk

{

µβ

kz ν
(ω+i0)ε

}

× kr q� exp(ikz z + ikr r cos(ϕk − ϕ))

k2
r + k2

z − k2
. (6)

The integral over ϕk is [15]:

2π
∫

0

exp(ikr r cos(ϕk − ϕ))dϕk = 2πJ0(kr r),

where J0(ξ) — is the Bessel function. To integrate over kr ,

we first need to reduce the integral over a semi-infinite loop

to an integral over an infinite loop:

∞
∫

0

kr J0(kr r)

k2
r + k2

z − k2
dkr =

1

2

∞
∫

eiπ
∞

kr H(1)
0 (kr r)

k2
r − κ2

dkr , (7)

where H(1)
0 (ξ) — is the Hankel function, and

κ =
√

k2 − k2
z

=
√

ω2c−2(ε′µ′ − ε′′µ′′) − k2
z + iω2c−2(ε′µ′′ + ε′′µ′).

(8)
For what follows, it is convenient to define the radical (8)
by the rule Imκ > 0. Taking into account that in the range

of propagating waves ε′ > 0, µ′ > 0, ε′µ′ − ε′′µ′′ > 0,

and sgnε′′ = sgnµ′′ = sgnω, we see that the value under

the radical in (8) is located in the first (for ω > 0) or

fourth (for ω < 0) quadrants of the complex plane. So

the requirement Imκ > 0 results in sgnReκ = sgnω. This

rule also determines the sign κ in the limiting case of a

nonabsorbing medium.

Since r > 0, the integration contour in (7) can be

completed to a closed semicircle of infinite radius located

in the region Imκ > 0. After that, the integral (7) is easily

calculated by calculating the residue at the only pole kr = κ .

As a result, we obtain the following expressions for the

Fourier transforms of the potentials:

{

Aω

8ω

}

=
i
2

∞
∫

−∞

{

µβ

kz ν
(ω+i0)ε

}

q�H(1)
0 (κr)eikz z dkz . (9)

Calculating the Fourier transforms of the field compo-

nents, we find

Erω =
iν
2

+∞
∫

−∞

q�

kzκ

(ω + i0)ε
H(1)

1 (κr)eikz z dkz ,

Ezω =
1

2c

+∞
∫

−∞

q�

νck2
z − ω2n2β

(ω + i0)ε
H(1)

0 (κr)eikz z dkz ,

Hϕω =
iβ
2

+∞
∫

−∞

q�κH(1)
1 (κr)eikz z dkz . (10)

Note that the branch point kz = k of the function

κ(kz ) =
√

k2 − k2
z lies above the contour integration, and

kz = −k — below. We emphasize that the obtained

expressions are the components of the full field, i.e. the

field of a source consisting of a moving variable charge and

its filamentous
”
trace“.

2. Asymptotic calculation of field
components

We assume that at negative times the bunch charge was

constant (q = q0), and starting from the moment t = 0

it decreases. The process of charge
”
melting“ can occur

according to different laws. We assume that for any small

time interval the bunch loses the same fraction of charge,

i.e. dq/dt = q/τ , where τ = const. Solving this equation

gives

q(t) =

{

q0, t < 0

q0e−t/τ , t ≥ 0
= q0[2(−t) + 2(t)e−t/τ ], (11)

where 2(ξ) – is the Heaviside step function. Experimental

data show that the exponential law of charge decrease is

close to that which takes place, in particular, for proton and

ion beams [10,11]. The Fourier transform of function (11)
is equal to

q� = q0

(

δ(�) − i
2π(� + i0)

+
1

2π

τ

1− i�τ

)

. (12)

Let us calculate the integral using the example of the

component Er . Substituting (12) into (10), for the Fourier

transform of Erω we obtain

Erω =
iq0

2ν

s
ε

H(1)
1 (sr)eiωz /ν +

iνq0

2(ω + i0)ε
I, (13)

I =
1

2π

+∞
∫

−∞

kzκ

(

τ

1− i�τ
− i

� + i0

)

H(1)
1 (κr)eikz z dkz ,

(14)

where � = ω − νkz , s =
√

ω2ν−2(n2β2 − 1) (Ims > 0).
To analyze the integral (14), it is expedient to introduce a

new integration variable χ : kz = k cos χ, κ = k sin χ, as well
as spherical coordinates R, θ (r = R sin θ, z = R cos θ). In

this case, the branch points in the integrand are eliminated,

and the integral takes the form

I =
k3

2π

∫

C

(

i
(� + i0)

− τ

1− i�τ

)

cos χ sin2 χ

× H(1)
1 (kR sin θ sin χ) exp(ikR cos θ cos χ)dχ, (15)

where the contour C is shown in Fig. 1.
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q p– /2 0 q p/2 p Rec

q p+ /2

G

C

Imc

Figure 1. The original integration contour C and the fastest

descent Ŵ contour on the plane χ for ω > 0.

An approximate calculation of this integral in the wave

zone (|k|R ≫ 1) can be carried out using the saddle point

method. The method of this calculation is standard [16],
so we will focus only on the main points. First, it is

advisable to transform the original integration contour to

the fastest descent contour Ŵ (Fig. 1), after which, using

the asymptotics of the Hankel function, we can write the

integral in the form

I =

∫

Ŵ

f (χ)eikR cos(χ−θ)dχ, (16)

where f (χ) =
k3 cos χ sin2 χ√
2π3kR sin θ sin χ

e−i3π/4
(

i
�+i0 − τ

1−i�τ

)

.

The integrand has a saddle point χ = θ. When transforming

the initial contour C to the contour Ŵ, the poles of the

function f (χ) may intersect. The contribution of the pole,

defined by the equation i�τ = 1, decreases exponentially

with distance, i.e. is not a part of the radiation field (we
do not take into account such contributions below). The

pole defined by the equation � = 0 is located at the point

χ = χ0 = arccos(1/(nβ)). For nβ < 1 its contribution is

exponentially small, but for nβ > 1 it is significant. After

an approximate calculation of the integral (16) by the

saddle [16] method, taking into account the contribution

of the pole χ0, we obtain

I ≈
√

2π

kR
∣

∣d28(χ)/dχ2|χ=θ

∣

∣

f (θ)eikR+3iπ/4

+
ωs
ν2

√

2

πsr
2(χ0 − θ)2(nβ − 1)eiωz /ν+is r+iπ/4. (17)

This result is true when the function exp(ikR cos(χ − θ))
on the steepest descent contour changes rapidly compared

to the function f (χ). This condition is satisfied if the saddle

point is far enough from the poles of the integrand, i.e.

|kR(θ − χ0)| ≫ 1. By substituting (17) into (13) using the

Hankel function asymptotics in (13), one can easily verify

that the second term in (17) compensates the first term

in (13) in the region θ < χ0.

The Fourier transforms of the Ez and Hϕ components are

calculated similarly. As a result, we obtain a field in the

form of a sum of spherical (I) and cylindrical (II) waves:

E = EI + EII , H = HI + HII (18)















E I
rω

E I
zω

H I
ϕω















=
q0kβ sin θ

2π















−√
µ/ε cos θ

√
µ/ε sin θ

−1















×
[

1

ω(1− nβ cos θ)
+

iτ
1− iω(1− nβ cos θ)τ

]

eikR

R
,

(19)














E II
rω

E II
zω

H II
ϕω















=
q0s
c















(βε)−1

−cs(ωε)−1

1















× exp(iωz/ν + isr − iπ/4)√
2πsr

2(θ − χ0)2(nβ − 1). (20)

The spherical wave (19) is due to the process of reducing

the charge of the bunch and the simultaneous formation of a

”
trace“. The cylindrical wave — is the Vavilov−Cherenkov

radiation. As expected, it exists only when the charge

velocity exceeds the phase velocity of the waves in the

medium, i.e. provided ν > c/n, or nβ > 1. According to

”
non-uniform“ asymptotics, this wave exists only in the

region θ > χ0 (Fig. 2). However, it should be kept in

mind that for |kR(θ − χ0)| ∼ 1 the obtained asymptotics

are inapplicable — in this region, the separation of the

wave field into cylindrical and spherical waves is impossible.

More precise (
”
uniform“) asymptotics allow us to describe

the behavior of the field in this transition region as well (see
Sec. 4).

c0

z

k

Figure 2. Region of existence of the Vavilov−Cherenkov

radiation.

Technical Physics, 2022, Vol. 67, No. 9



1226 A.V. Tyukhtin, X. Fan

Let us briefly talk about the role of the two parts

that make up the source: it is the point charge itself

with densities ρ j, and its
”
trace“ with densities ρ1,

j1 = 0. First of all, we note that the division of the field

into two contributions from these parts does not make

much physical sense. The reason for this is that the

law of conservation of charge holds only for the total

source, but not separately for the point charge and
”
trace“.

Therefore, if we consider such sources separately, then the

system of Maxwell’s equations becomes unsolvable (the

number of independent equations exceeds the number of

unknowns).

Nevertheless, one can formally single out in strict expres-

sions (10) and in asymptotics (18)−(20) the contributions

of the charge itself and its
”
trace“. Analysis shows that

in the electric field of a spherical wave (19) the charge

and
”
trace“ make comparable contributions (despite the

fact that
”
trace“ is not a point object). This is explained

by the fact that the rate of change of the charge and

its
”
trace“ is determined by the same parameter τ . In

particular, at ωτ ≫ 1 both components of the electric field

are proportional to (ωτ )−1 (like the entire field of the

spherical wave (19)). At the same time,
”
trace“ does not

give any addition to the magnetic field, which is natural due

to the absence of charge movement in it. We emphasize that

the
”
correct“ asymptotics (19) (transverse spherical wave)

is obtained only when both parts of the source are taken

into account. As for the cylindrical wave (20), it can be

shown that
”
trace“ does not affect it (physically, this is

also due to the absence of movement of charges of the

”
trace“).

3. Spherical wave

In spherical coordinates R, θ, ϕ the spherical wave (19)

has only two nonzero components:

E I
θω =

√

µ

ε
H I

ϕω = − q0µ

2πc
exp(ikR)

R
F(β, θ, ω), (21)

F(β, θ, ω) =
β sin θ

(1− nβ cos θ)[1 − iωτ (1− nβ cos θ)]
. (22)

As expected, we have obtained a transverse wave, which

is
”
quasi-plane“, since the radius of curvature R of the

constant phase surface is much greater than the wave-

length. The factor F(β, θ, ω) determines the depen-

dence of the spherical wave amplitude on the bunch

velocity, the observation point angle, and the considered

frequency.

The angular distribution of the energy of a spherical wave

can be written as

dW
d�

= R2 c
4π

∞
∫

−∞

E I
θH I

ϕdt

= R2 c
4π

∞
∫

−∞

dt

∞
∫

−∞

E I
θωe−iωtdω

∞
∫

−∞

H I
ϕω′e−iω′tdω′

= cR2

∞
∫

0

E I
θωH I∗

ϕωdω. (23)

As we can see, the spectral-angular density of radiation

energy is determined by the expression

d2W
d�dω

= cR2E I
θωH I∗

ϕω = cR2

√

ε

µ
|E I

θω |2 =
q2
0

4π2c

√

εµ3|F |2,
(24)

|F |2 =
β2 sin2 θ

(1− nβ cos θ)2[1 + ω2τ 2(1− nβ cos θ)2]
. (25)

If ε = µ = n = 1 and τ = 0, i.e. particle moves in

vacuum and instantly loses all charge, then the spectral-

angular density of radiation energy is equal to

d2W
d�dω

=
q2
0

4π2c
β2 sin2 θ

(1− β cos θ)2
. (26)

This expression coincides with the spectral-angular energy

density of the radiation of an instantly decelerating charge

in vacuum (it can be obtained from the general expression

for an arbitrarily moving charge given, for example, in [17]).
Thus, the case of an instantaneously vanishing charge is

equivalent to the case of an instantaneously decelerating

charge, which is quite natural.

The total angular density of radiation energy is obtained

by integrating expression (24) over frequency. If the

frequency dispersion of the medium is neglected (i.e., ε

and µ are assumed to be frequency-independent), then it is

easy to obtain the following result:

dW
d�

=

∞
∫

0

d2W
d�dω

dω =
q2
0

8πcτ

√

εµ3F0,

F0 =
β2 sin2 θ

∣

∣1− nβ cos θ
∣

∣

3
. (27)

Examples of dependences of |F| and F0 on angles for

different values n and β are shown in Fig. 3 (on a logarithmic

scale). The left graphs correspond to the case of vacuum,

and the right graphs correspond to the case of a medium

for which n = 2. As the charge velocity increases from

zero to c/n, the maxima of both quantities increase and

shift towards smaller angles, tending to θ = 0 at ν → c/n.
In the case of ν > c/n for θ → χ0, the quantities |F | and

Technical Physics, 2022, Vol. 67, No. 9
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Figure 3. Dependence of lg |F | at ωτ = 1 (top) and lgF0 (bottom) on the angle θ (deg). On the left — the case of vacuum, on the

right — the case of a medium with permeabilities ε = 4, µ = 1. Values β are indicated near the curves.

F0 increase with the angle θ until θ < χ0, and decrease at

θ > χ0. For θ → χ0, both quantities formally tend to infinity,

but this is due to the inapplicability of the asymptotics

(18)−(20) in the vicinity of the angle θ = χ0.

It is interesting to compare the radiation in the case

under consideration with the radiation of a charge whose

magnitude does not change, but it is decelerated according

to an exponential law with the same characteristic time τ .

The speed of this charge is

βb(t) =







β, t < 0,

βe−t/τ , t ≥ 0.
(28)

Let us make such a comparison for the case when the

electrodynamic characteristics of the medium are practically

indistinguishable from the vacuum ones (ε = µ = 1). In the

case of a charge decelerating in vacuum, the angular density

of radiation power is determined by the formula [17]

dPb

d�
=

d2Wb

d�dt
=

q2

4πc

(

dβb

dt

)2
sin2 θ

(1− βb cos θ)6
. (29)

Integrating this expression over time, taking into account

(28), we obtain the total angular density of radiation energy:

dWb

d�
=

q2

8πcτ
F̃0,

F̃0 =
β2 sin2 θ

(1− β cos θ)4

(

1 +
1

10
β2 cos2 θ

5− β cos θ

1− β cos θ

)

. (30)

Examples of the dependences of lg F̃0 and lgF0 on the

angle θ at different speeds are shown in Fig. 4. At a

nonrelativistic velocity (β ≪ 1), the contribution to (30)

practically makes only the first term, and in this case

the exponentially decelerating and exponentially decreasing

charges radiate approximately the same way. At β ∼ 1, due

to the second term in (30) and a different degree of brackets

in the denominator, the radiation of the decelerating charge

significantly exceeds the radiation of the decreasing charge

at acute angles θ. At β ≈ 1, the maximum for the

decelerating charge is much larger than the maximum for

the decreasing charge.
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The total radiation energy is obtained by integrating the

angular energy density:

W =

2π
∫

0

dϕ

π
∫

0

dW
d�

sin θdθ.

For an exponentially decreasing charge in vacuum, it is

equal to

W =
q2
0

4cτ
W̃ , W̃ =

2

1− β2
+

1

β
ln

1− β

1 + β
. (31)

For a charge exponentially decelerating in vacuum, it is

easy to obtain

Wb =
q2

4cτ
W̃b, W̃b =

4β2

3(1−β2)

(

1 +
β2

10

1 + 3β2

1− β2

)

. (32)

The velocity dependences of lgW̃ and lgW̃b are shown

in Fig. 5. As we can see, at a nonrelativistic velocity

(β ≪ 1), the decelerating and decreasing charges radiate

approximately the same way: Wb ≈ W ≈ q2β2

3cτ . In the

ultrarelativistic case, when γ ≡ (1− β2)−1/2 ≫ 1, with an

increase of γ the total radiation energy grows proportionally

to γ2 for a decreasing charge and γ6 for a decelerating one.

Thus, in the case of a large Lorentz factor, the decelerating

charge radiates much more efficiently than the decreasing

one.

Concluding this section, we note that in the case of a

bunch of particles of size a , the radiation will be comparable

to the radiation of a point charge if ka ≤ 1, while for

ka ≫ 1 it will be much weaker. At the same time, according

to (25), the range of radiation frequencies can be estimated

by the inequality ωτ ≤ 1. Thus, for real bunches, the

radiation frequency range is bounded from above both

due to the finiteness of the charge change time and due

to the finiteness of its size: ω ≤ min(1/τ , 1/τa), where

τa = na/c — the time during which the radiation travels the

distance a . If τ > τa , then the charge can be approximately

considered as a point charge in the entire significant range

of radiation frequencies. Otherwise, the frequency range is

limited due to the finite size of the bunch.

4. Field asymptotics valid for all viewing
angles

To describe the behavior of the field in the entire wave

zone kR ≫ 1, including the range of angles θ ≈ χ0, one

must use the uniform asymptotics of the integrals. This

asymptotic behavior is valid for any location of the pole

χ = χ0 with respect to the saddle point χ = θ, including

θ = χ0. The coincidence of the pole with the saddle point

corresponds to the conditional boundary of the region of the

Cherenkov radiation, on which the non-uniform asymptotics

(18)−(20) suffer a discontinuity. Uniform asymptotics

correctly describe the field everywhere in the wave zone,

including the given boundary itself and its neighborhood.

Without stopping on the transformations that are carried

out according to the well-known procedure [16], we write

down the final results valid for kR ≫ 1:

Erω =
i
2ε

IŴ +
q0s
νε

exp(iωz/ν + isr − iπ/4)√
2πsr

2(θ − χ0),

Ezω =
IŴ
2ε

+
q0ω(1 − n2β2)

c2εβ2

exp(iωz/ν + isr − iπ/4)√
2πsr

2(θ − χ0),

Hϕω =
i
2

IŴ +
q0s
c

exp(iωz/ν + isr − iπ/4)√
2πsr

2(θ − χ0).

(33)
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Here IŴ is given by

IŴ ≈ 2ia
√
πsgn(Imb)Q

(

−sgn(Imb)ib
√

kR
)

× exp(ikR cos(χ0 − θ))

+

√

π

kR

(√
2e3πi/4 f (χs) +

a
b

)

exp(ikR), (34)

where b = eiπ/4
√
2 sin

(

θ−χ0
2

)

, Q(y) =
+∞
∫

y
e−x2

dx , and the

role of f (χ) is played by one of the following functions:










f r(χ)

f z (χ)

f h(χ)











=
q0βk2

π

√

sin3 χ

2πkR sin θ

×
[

1

iω(1− nβ cos χ)
+

τ

1− iωτ (1− nβ cos χ)

]

×







eiπ/4n cos χ
e−iπ/4n sin χ

eiπ/4







. (35)

Accordingly, as a it is necessary to substitute in (34) the

amount of residue a = a r,z ,h = Res
χ=χ0

f r,z ,h(χ):















a r

a z

ah















= − iq0βk
√
sin χ0

πν
√
2πkR sin θ















eiπ/4n cos χ0

e−iπ/4n sin χ0

eiπ/4















. (36)

It is easy to show that under the condition |b|
√

kR ≫ 1,

i.e. |χ0 − θ|
√

kR ≫ 1, the results give
”
non-uniform“

asymptotics (18)−(20).

In the case when the pole coincides with the saddle point

(θ = χ0), expressions (33) take the form

Erω = − iντ q0

4π

k2 sin(2θ)

εω

eikR

R

+
q0s

2
√
2πνε

exp(iωz/ν + isr − iπ/4)√
sr

,
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Ezω =
iντ q0

2π

k2 sin2 θ

εω

eikR

R

+
q0ω(1 − n2β2)

2
√
2πc2εβ2

exp(iωz/ν + isr − iπ/4)√
sr

,

Hϕω = − iβτ q0

2π
k sin θ

eikR

R

+
q0s

2
√
2πc

exp(iωz/ν + isr − iπ/4)√
sr

. (37)

As we see, for θ = χ0 the amplitudes of the cylindrical

wave components are equal to half the amplitudes of the

Cherenkov radiation wave components (20). Thus, the use

of uniform asymptotics provides a correct description of

the transition zone between the region illuminated by the

Vavilov−Cherenkov radiation and the region where it is

absent. This transition zone has an angular width of the

order of 1θ ∼ 1/(kR).
Examples of the behavior of the Fourier transform of the

full field Hϕ are shown in Fig. 6. The left plot corresponds

to the case β = 0.6, and the right one — to the case

β = 0.99. The conditional boundary of the region of the

Cherenkov radiation is shown at τ = 0. For τ 6= 0 this

boundary shifts towards positive values of z . Recall that

the origin of coordinates is located at the point where the

bunch of particles begins to lose charge. Therefore, taking

into account the decrease in the charge by e-times over

a finite time τ , the boundary of the Cherenkov radiation

region can be more accurately determined by the expression

θ = arctan
(

1
1/ tan χ0+ντ /r

)

.

As expected, the field is a continuous function of the

coordinates everywhere. Comparing the middle and lower

figures (for β = 0.6 and β = 0.99), we see that if z < 0,

then the field amplitude at r = 100c/ω is about 3 times less

than at r = 10c/ω (in this region the main role is played

by the Cherenkov radiation, whose amplitude decreases as

1/
√

r). As z grows, starting from some value of z , the

field decreases. In this case, the observation point falls into

the transition zone between the region of the Cherenkov

radiation and the region where it is insignificant. For

sufficiently large values of z , practically only a spherical

wave remains, decreasing as R−1 = (r2 + z 2)−1/2 .

Conclusion

In this work, the electromagnetic field of a bunch

of charged particles of small size moving at a constant

speed and having a variable charge is studied. In doing

so, it was taken into account that a filamentous
”
trail“,

consisting of immobile charges, is formed behind the

bunch. It was assumed that the environment is isotropic

and homogeneous, and it may have frequency dispersion,

but not spatial dispersion. The general solution of the

problem is obtained. The main attention is paid to the

case when the value of the charge, starting from a certain

moment, decreases exponentially with time. The saddle

point method is used to obtain asymptotic expressions for

the field components that are valid in the wave zone.

For a spherical wave excited by a bunch, it is shown,

in particular, that in vacuum the spectral-angular and

angular radiation energy densities have a maximum at

an acute angle, which decreases with increasing velocity.

A comparison with the case of a decelerating charge is

made. At a nonrelativistic velocity, the radiation energies of

the decreasing and decelerating charges are approximately

equal, and at an ultrarelativistic velocity, the radiation energy

of the decelerating charge significantly exceeds the radiation

energy of the decreasing charge.

In the case of charge motion in a medium, in addition to

a spherical wave, a cylindrical wave (Cherenkov radiation)
can be excited in a certain frequency range, which exists

in a limited region of space. The division of the field into

spherical and cylindrical waves is impossible in the vicinity

of the conditional boundary of the Cherenkov radiation,

where a correct description of the field is given by uniform

asymptotics. Graphs of typical dependences of the Fourier

transform of the field on the longitudinal coordinate are

given for various parameters of the problem.
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