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The opportunity of use of an impulse equation special form for the solving of a problem of solitary waves

(solitons) occurrence in the open water channel is considered. It is shown that the used of an impulse equation

allows take into account a role of surface tension and gravitational forces in formation of waves. Using of the

continuity equation expansion into series on Rayleigh’s method the system of the differential equations is received,

one of which is nonlinear. Application of Dalembert’s method for running waves for the solving of the nonlinear

differential equation in a hydrodynamic problem of solitary waves spreading in the open water channel is considered.

It is shown that as against Dalembert’s theory for the linear hyperbolic equations where initial conditions completely

determine the form of arising waves, for the nonlinear equations the form of waves is determined by character of

the equation nonlinearity. Thus during the solution of equations the sum of the functions describing linear waves

extending in opposite directions, in the Dalembert’s method for nonlinear waves is replaced with the sum of the

nonlinear differential equations.
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Introduction

Since the first observation of solitary waves in a water

channel by D.S. Russell in 1834 who accompanied a

solitary wave on a horse, many different approaches arose

in the theory of describing such waves [1–3], including for

various external conditions [4–6]. For example, simulation

of solitary waves or solitons in [1] made it possible to

describe waves propagating both from left to right and

from right to left. However, if the wave propagates from

left to right, then it is absolutely true that its description

follows from the dynamic momentum equation, but if the

wave propagates from right to left, its description in [1]
follows from the kinematic continuity equation, which raises

questions. The point is that the rise of liquid in a solitary

wave is determined by the hydrostatic pressure at the base

of the solitary wave. There is no force parameter in

the continuity equation, therefore this equation from the

physical point of view cannot describe a solitary wave.

In our opinion, both oppositely propagating waves should

appear based on the momentum equation. This is possible

if the original momentum equation is written more correctly.

The studied solitary waves are called solitons, since their

interaction resembles the interaction of particles. They can

bounce off a solid boundary like particles. When interacting

with each other, solitons diverge, keeping their structure

unchanged. Such preservation of the structure is determined

by the balance of nonlinear effects and dispersion at the

leading and trailing edges of the solitons.

The derivation of the equation for a soliton on the

surface of a water channel of a constant depth, the so-called

Korteweg−de Vries equation, usually begins with an analy-

sis of linear waves on water [3]. The obtained transcendental

dispersion relation is replaced by a polynomial of the third

order, which, together with the equations of hydrodynamics,

leads to the Korteweg−de Vries equation.

A somewhat different derivation of soliton equations

based on an asymptotic analysis of the original system of

hydrodynamic equations is used in this paper.

1. The role of surface tension forces
and gravitational forces in the
generation of waves on the water
surface of the channel

When solving hydrodynamic problems for an ideal fluid

with open or elastic boundaries, it is often more correct to

use the momentum equation in the form [7,8]:

∂V
∂t

+ V
∂V
∂X

+ W
∂W
∂X

= −∂(PS)

ρS∂X
, (1)

where ρ — fluid density, V and W — longitudinal and

transverse (vertical) components of fluid velocity, X —
longitudinal coordinate, t — time, S — flow cross section.

Pressure in liquid P .
In particular, we will consider the flow of fluid in an open

water channel (Fig. 1).
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Figure 1. Formation of a solitary wave (soliton) in a water

channel.

A change in the flow parameters is observed only along

the X and Z axes. There is no fluid flow along the Y -axis.
Let us assume that the width of the channel along the Y
axis is equal to unity.

It is also assumed that no vortices are formed in the flow,

the flow is potential [9], i.e. rotV = 0, where V — velocity

vector, therefore,
∂V
∂Z

=
∂W
∂X

.

1.1. Surface tension of a liquid in a solitary wave

Let us transform the equation (1) to the form

ρ
∂V
∂t

+ ρV
∂V
∂X

+ ρW
∂W
∂X

= −∂(PS)

S∂X
= − ∂P

∂X
− P

∂X
S∂X

.

(2)

Let us assume that a solitary wave arises on the surface

of a liquid, in which the main role is played by the forces

of surface tension and gravitational forces.

Let us first consider the role of surface tension forces.

The balance between excess pressure in a liquid below

the surface and surface tension forces obeys the law

(P − P0)ld = 2(σ − σ0)δl, (3)

where l — length of the wave section along the Y axis,

σ — mechanical stresses due to surface tension forces in

the upper liquid layer with thickness δ, σ0 — mechanical

stresses in the upper liquid layer at atmospheric pressure P0.

Therefore, the excess pressure under the surface of the

liquid is equal to

P − P0 =
2(σ − σ0)δ

d
.

The resulting ratio is called the Laplace formula. However,

the Laplace formula is fundamentally inaccurate. Thermo-

dynamic analysis shows that a more accurate formula is [10]:

ln
P
P0

=
2(σ − σ0)δ

Dd
, (4)

where the quantity D characterizes not only the interaction

of molecules leading to the effect of surface tension in the

liquid, but also depends on the geometry of the wave and

the thickness of the surface layer.

Expanding the exponent in (4) into a series, we obtain

P − P0 = P0

2(σ − σ0)δ

Dd
+

1

2
P0

(

2(σ − σ0)δ

Dd

)2

. (5)

From the first term on the right side, as a first approxima-

tion (Laplace formula), it follows P0 = D.

The slight compressibility of a liquid, like a solid body,

obeys the Hooke law

P − P0 = −E
1V
V0

, (6)

where 1V — fluid volume change, V0 — initial volume,

E — volumetric modulus of fluid elasticity (for water

E = 2 · 109 ,
N
m2 ). The minus sign, since an increase in

pressure P−P0 > 0, leads to a decrease in the volume of

the liquid, 1V < 0 [11].
Considering (6), we use the Hooke law to relate the

change in pressure under the surface of the liquid in the

wave and the increase in the flow area in the wave (Fig. 2)
in the form similar to the equation for an elastic pipeline [12]

∂P = −D
∂S
S
, (7)

where the value is D = E δ
d .

In this case, equation (2) is transformed to the form

ρ
∂V
∂t

+
∂

∂X

(

ρV 2

2
+

ρW 2

2
+ P − P2

2D

)

= 0. (8)

If the fluid flow is stationary, i.e. ∂V
∂t = 0, then equa-

tion (8) can be integrated

ρV 2

2
+

ρW 2

2
+ P − P2

2D
= const. (9)

Let us analyze in more detail the reason for the

appearance of the last term in (9). Let us show that it
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Figure 2. Area of the surface layer of a solitary wave in a channel.
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is a consequence of the Hooke law in the form (7), which,

for the convenience of transformations, we write in the form

P − P0 = D
1S
S
,

where the plus sign is used, since with increasing pressure P
the area 1S also increases.

Taking into account the Hooke law in the form

σ − σ0 = Eε =
E1d

d
,

where ε = 1d
d — relative deformation of the wave base

length d (Fig. 2), whose shape is approximately circular,

we obtain equation (5) in the form

P − P0 =
2E1dδ

d2
+

1

2D

(

2E1dδ
d2

)2

. (10)

Let us find the relationship between the relative change

in the flow area in the wave 1S
S and the relative change

in the wave base length 1d
d . Taking into account the

relationship between the cross-sectional area and the circle

diameter S = πd2

4
, we find the derivative

dS
d(d)

≈ 1S
1d

=
πd
2
,

therefore,
1S
S

= 2
1d
d
.

Therefore, for pressure in excess of P0, we obtain

P − P0 =
Eδ
d

1S
S

+
1

2D

(

Eδ
d

1S
S

)2

= D
1S
S

+
1

2D

(

D
1S
S

)2

= D
1S
S

+
(P − P0)

2

2D
(11)

or

P − P0 −
(P − P0)

2

2D
= D

1S
S
.

The result obtained (for P0 = 0) shows that if we use the

Hooke law in the form (7), then it is more correct to use

the quantity P− P2

2D instead of pressure P, as it is accepted

in the formula (9).
Therefore, the correctness of formula (1) for describing a

wave in a channel that arises due to surface tension forces

has been proven.

1.2. Gravity forces in a solitary wave

Consider the role of gravitational forces in wave forma-

tion.

Let us write the momentum equation in the traditional

form [3] using separate writing of pressure forces and

gravitational forces

∂V

∂t
+ (V∇)V = − 1

ρ
∇P − gj, (12)

where g — gravitational acceleration, j — unit vector

directed downwards along axis Z.
Let us investigate the relationship between equations (1)

and (12). The last term on the left side of (1), in particular,

at the bottom of the channel, can be transformed

1

ρS
∂PS
∂X

=
1

ρ

∂P
∂X

+
P
ρS

∂S
∂X

=
1

ρ

∂P
∂X

+
P

ρ(h + ξ)

∂(h + ξ)

∂X

=
1

ρ

∂P
∂X

+
ρg(h + ξ)

ρ(h + ξ)

∂(h + ξ)

∂X
= − 1

ρ

∂P
∂X

+ g
∂(h + ξ)

∂X
.

(13)
In (13) the formula for the cross section of the fluid

flow in the channel S = h + ξ (the channel width is taken

equal to unity) is used, where h — channel depth with

an undisturbed water surface in the channel, ξ — current

height of a solitary wave above the undisturbed water

surface (Fig. 1). It is assumed that the flow is inertial

and the pressure at the bottom of the channel, taking

into account the zero value on the surface P = ρg(h + ξ).
The pressure in the problem under consideration has a

gravitational character.

Replacing the real course of the curve ξ(X) by two

straight sections with the modulus of slope coefficients j
by the formula h + ξ ≈ h ± | j|X , we arrive at the form of

the right side of equation (12) in its algebraic form.

Thus, the momentum equation in the form (1) can de-

scribe the generation of waves on the channel surface both

due to surface tension forces and due to gravitational forces.

2. Derivation of a system of differential
equations for waves in an open
channel

In further analysis, we will partially follow [1].
It can be assumed that when a perturbation occurs

in any place of the channel, two nonlinear waves will

appear, propagating in opposite directions from the place

of the perturbation, the so-called Korteweg and de Vries

solitons [1–3].
Let us find a differential equation, which is satisfied at

once by both differently directed waves. The so far known

Korteweg and de Vries equation (within the framework

of a single-soliton solution) describes only a solitary wave

propagating from left to right:

∂u
∂t

+ 6u
∂u
∂X

+
∂3u
∂X3

= 0, (14)

where u(X , t) — fluid velocity in the wave.

Let us write the primary system of equations of hydro-

dynamics in the form of the momentum equation and the

continuity equation. From the physical point of view, for

simplicity, we will consider the forces of gravitation to be

the main effect in the appearance of waves.

We use the momentum equation in the form (1).
We use the continuity equation in the form

∇2ϕ = 0, (15)
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where ϕ — in this case, the velocity potential related to the

velocity components by the formulas

V =
∂ϕ

∂X
and W =

∂ϕ

∂Z
.

2.1. Expansion of the velocity potential in a
series

The method of expanding the potential into a series

in terms of a small parameter was first proposed by

Rayleigh [13].
For the convenience of further transformations, we use

dimensionless variables. For this purpose, we scale the

parameters of equations (1) and (15):

X = MX X∗, Z = MZZ∗, ξ = Mξξ
∗, P = MPP∗,

ϕ = Mϕϕ
∗, t = Mtt

∗, V = MVV ∗, W = MWW ∗, (16)

where M i — scales of quantities, and the dimensionless

quantities themselves are marked with asterisks.

To write specific values of the scales of quantities and,

taking into account the relatively small value of the solitary

wave amplitude ξmax relative to the channel depth h, we

introduce a small parameter ε = ξmax

h ≪ 1.

Initially, we need only expressions for some scales.

Accept

Mξ = εh = ξmax, MX =
h√
ε
, MZ = h, MP = ερgh.

(17)
Let us transform the continuity equation (4) into a

dimensionless form.

Using

∇2ϕ =
∂2ϕ

∂X2
+

∂2ϕ

∂Z2
,

write down

∂2ϕ∗

∂X∗2

Mϕ

(h/
√
ε)2

+
∂2ϕ∗

∂Z∗2

Mϕ

h2
= 0,

therefore:

ε
∂2ϕ∗

∂X∗2
+

∂2ϕ∗

∂Z∗2
= 0. (18)

Let us expand the velocity potential into a series

ϕ∗ =

∞
∑

n=0

(Z∗ + 1)n ϕ∗
n (X∗, t∗), (19)

where ϕ∗
n (X∗, t∗) — dimensionless function depending

only on dimensionless longitudinal coordinate X∗ and

dimensionless time t∗ .
Let us substitute the potential expansion (19) into the

dimensionless continuity equation in the form (18):

∞
∑

n=0

(

ε(Z∗ + 1)n ∂2ϕ∗
n

∂X∗2
+ n(n − 1)(Z∗ + 1)n−2ϕ∗

n

)

= 0.

(20)

We equate the coefficients at (Z∗ + 1)n to zero, for which

we replace n by n + 2 in the second term in brackets. As a

result, we find the recurrent formula

ϕ∗
n+2 = − ε

(n + 1)(n + 2)

∂2ϕ∗
n

∂X∗2
. (21)

Thus, the expansion of the potential (19) taking into

account (21) can be written in the form

ϕ∗ = ϕ∗
0 + (Z∗ + 1)ϕ∗

1 − ε

2!
(Z∗ + 1)2

∂2ϕ∗
0

∂X∗2

− ε

3!
(Z∗ + 1)3

∂2ϕ∗
1

∂X∗2
+

ε2

4!
(Z∗ + 1)4

∂4ϕ∗
0

∂X∗4

+
ε2

5!
(Z∗ + 1)5

∂4ϕ∗
1

∂X∗4
− . . . , (22)

where ϕ∗
0 — dimensionless velocity potential at the channel

bottom at Z∗ = −1.

At the bottom of the channel at Z∗ = −1 the vertical

velocity of the liquid is W = ∂ϕ

∂Z = 0. Therefore, starting

from (22),
(

∂ϕ∗

∂Z∗

)

= ϕ∗
1=0. Therefore, according to the

recurrent formula (21), ϕ∗
2n+1 = 0. But ϕ∗

n (X∗, t∗) 6= f (Z∗),
so ϕ∗

2n+1 = 0 for any Z∗ , and not only for Z∗ = −1.

Consequently, expansion (22) can be rewritten in the

form

ϕ∗ = ϕ∗
0 − ε

2!
(Z∗ + 1)2

∂2ϕ∗
0

∂X∗2
+

ε2

4!
(Z∗ + 1)4

∂4ϕ∗
0

∂X∗4
− . . . .

(23)
On the water surface outside the solitary wave Z∗ = 0,

therefore:

ϕ∗ = ϕ∗
0 − ε

2!

∂2ϕ∗
0

∂X∗2
+

ε2

4!

∂4ϕ∗
0

∂X∗4
− ε3

6!

∂6ϕ∗
0

∂X∗6
+ . . . . (24)

Taking into account the small amplitude of the solitary

wave, formula (24) can also be used on the surface of the

solitary wave.

2.2. Obtaining a system of differential equations

The momentum equation (1) can be transformed using

the formula for the cross section of the fluid flow in

the channel S = h + ξ = h(1 + εξ∗) (the channel width is

assumed to be unity):

∂V
∂t

+ V
∂V
∂X

+ W
∂W
∂X

+
1

ρ(1 + εξ∗)

∂P(1 + εξ∗)

∂X
= 0.

(25)
Passing in (25) to dimensionless variables using

scales (16), (17),

MV =
Mϕ

MX
, MW =

Mϕ

MZ

and composing the scales, we find

∂V ∗

∂t∗
+ εV ∗ MϕMt

M2
Z

∂V ∗

∂X∗
+ W ∗ MϕMt

M2
Z

∂W ∗

MZ∂X∗

= − 1

ρ(1 + εξ∗)

MPMt∂P∗(1 + εξ∗)

Mϕ∂X∗
. (26)
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Let us take the ratio of scales, which does not contra-

dict (17), in the form

MϕMt

M2
Z

=
MPMt

ρMϕ

= 1. (27)

As a result, we obtain the dimensionless momentum

equation

∂V ∗

∂t∗
+ εV ∗ ∂V ∗

∂X∗
+ W ∗ ∂W ∗

∂X∗
= − 1

(1 + εξ∗)

∂P∗(1 + εξ∗)

∂X∗
.

(28)
Hereinafter, we will discard all small terms proportional

to ε2 and higher powers ε in equations.

Consider the sum

εV ∗2 + W ∗2 = ε

(

∂ϕ∗

∂X∗

)2

+

(

∂ϕ∗

∂Z∗

)2

= ε

(

∂ϕ∗

∂X∗

)2

,

since, according to (12):

(

∂ϕ∗

∂Z∗

)2

∼ ε2.

Therefore, equation (28) can be rewritten in the form

(1 + εξ∗)

(

∂V ∗

∂t∗
+ εV ∗ ∂V ∗

∂X∗

)

+
∂P∗

∂X∗
+ ε

∂P∗ξ∗

∂X∗
= O(ε2).

(29)
We assume that solitary waves on the water surface are

determined only by gravitational forces. In this case, the

pressure at the level of the unperturbed liquid at Z = 0 is

equal to P = ρgξ . In dimensionless form, this relation has

the form P∗ = ξ∗. Substituting it into (29), we find

∂V ∗

∂t∗
+ εV ∗ ∂V ∗

∂X∗
+ εξ∗

∂V ∗

∂t∗
+

∂ξ∗

∂X∗
+ ε

∂ξ∗2

∂X∗
= O(ε2).

(30)
Next, we use the expansion (24) in the form

ϕ∗ = ϕ∗
0 − ε

2

∂2ϕ∗
0

∂X∗2
+ O(ε2). (31)

Let us pass in (31) to the dimensionless longitudinal

velocity at the level of the channel bottom V0 =
∂ϕ∗

0

∂X∗
(we

do not use the asterisk in this case)

V ∗ =
∂ϕ∗

∂X∗
= V0 −

ε

2

∂2V0

∂X∗2
+ O(ε2). (32)

The change in the longitudinal velocity along the height

of the liquid in the channel can, according to (23), be found

by the formula

V ∗ =
∂ϕ∗

∂X∗
= V0 −

ε

2
(Z∗ + 1)2

∂2V0

∂X∗2
+ O(ε2). (33)

Hereinafter, we use the dimensionless fluid velocity at the

level of the channel bottom V0 in the equations.

Substituting (32) into (30) and rearranging the terms as

the sum of the principal and first order with respect to the

small parameter ε, we find

(

∂V0

∂t∗
+

∂ξ∗

∂X∗

)

+ ε

(

ξ∗
∂V0

∂t∗
+ V0

∂V0

∂X∗
+

∂ξ∗2

∂X∗

− 1

2

∂3V0

∂t∗∂X∗2

)

= O(ε2). (34)

The first linear term in the leading order (34) is

determined by the velocity of the fluid (its acceleration),
the second term is determined by the rate of change of the

solitary wave fronts. Due to the large difference between

the velocities of fluid motion and propagation of a solitary

wave, in the leading order for analysis we introduce the so-

called
”
slow time“ τ = ε

2
t∗ . Making the substitution in the

main order (34)

∂

∂t∗
→ ∂

∂t∗
+

ε

2

∂

∂τ
[1],

we write (34) in the form

(

∂V0

∂t∗
+

∂ξ∗

∂X∗

)

+ ε

(

1

2

∂V0

∂τ
+ ξ∗

∂V0

∂t∗
+ V0

∂V0

∂X∗
+
∂ξ∗2

∂X∗

− 1

2

∂3V0

∂t∗∂X∗2

)

= O(ε2). (35)

Further, we show that the non-linear differential equation

written up to a small parameter ε in the second bracket (35):

1

2

∂V0

∂τ
+ ξ∗

∂V0

∂t∗
+ V0

∂V0

∂X∗
+

∂ξ∗2

∂X∗
− 1

2

∂3V0

∂t∗∂X∗2
= 0

(36)

can be solved by the d’Alembert method. In this case, the

solution will satisfy the linear equation obtained in the first

bracket (35):
∂V0

∂t∗
+

∂ξ∗

∂X∗
= 0. (37)

3. Solution of a nonlinear differential
equation by the d’Alembert method

We will seek the solution of the system of equations (36)
and (37) by introducing new arguments:

r = X∗ − t∗, l = X∗ + t∗. (38)

With respect to these arguments, the functions in the

system of equations (36) and (37) are sought by introducing

auxiliary functions f (r, τ ) and g(l, τ ):

ξ∗ = β
[

f (r, τ ) + g(l, τ )
]

, V0 = β
[

f (r, τ ) − g(l, τ )
]

,

(39)
where the constant coefficient β will be determined later.
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In the new variables, the linear equation (37) is identically
satisfied

∂V0

∂t∗
+

∂ξ∗

∂X∗
= β

∂( f − g)

∂t∗
+ β

∂( f + g)

∂X∗

= β

(

∂ f
∂t∗

+
∂ f
∂X∗

− ∂g
∂t∗

+
∂g
∂X∗

)

= β

(

∂ f
∂r

∂r
∂t∗

+
∂ f
∂r

∂r
∂X∗

− ∂g
∂l

∂l
∂t∗

+
∂g
∂l

∂l
∂X∗

)

= β

(

−∂ f
∂r

+
∂ f
∂r

− ∂g
∂l

+
∂g
∂l

)

= 0. (40)

Substitute (39) into equation (36):

1

2
β
∂ f
∂τ

− 1

2
β
∂g
∂τ

− β2( f + g)
∂ f
∂r

− β2( f + g)
∂g
∂l

+ β2( f − g)
∂ f
∂r

− β2( f − g)
∂g
∂l

+ 2β2( f + g)
∂ f
∂r

+ 2β2( f + g)
∂g
∂l

+
1

2
β
∂3 f
∂r3

+
1

2
β
∂3g
∂l3

= 0. (41)

Carrying out simple transformations, we find

1

2
β

(

∂ f
∂τ

− ∂g
∂τ

+ 4β f
∂ f
∂r

+ 4βg
∂g
∂l

+
∂3 f
∂r3

+
∂3g
∂l3

)

=0.

(42)
Relation (42) can be considered as an equation for the

functions f and g . In order for this equation to be the sum

of two standard Korteweg and de Vries equations[1], we

choose β = 3
2
:

(

∂ f
∂τ

+ 6 f
∂ f
∂r

+
∂3 f
∂r3

)

+

(

− ∂g
∂τ

+ 6g
∂g
∂l

+
∂3g
∂l3

)

= 0.

(43)

Equation (43) describes two solitary Korteweg

and de Vries waves for auxiliary functions f and g . The

first bracket describes a wave propagating from left to right,

the second bracket describes a wave propagating from right

to left. Thus, these waves propagate in opposite directions,

gradually moving away from each other, which is typical for

the d’Alembert formula [14].
The d’Alembert’s theory refers to linear hyperbolic

equations. One of the main conclusions of this theory is

that the initial conditions completely determine the shape

of the emerging waves [14]. For non-linear equations (43)
this is not true, since the shape of the solitons is invariable

and is determined by the nature of the nonlinearity of the

equations.

Let us assume that the waves initially arise due to a

disturbance linear along the Y axis (Fig. 2) on the water

surface in the form of δ(X∗
0 ) — the Dirac function in the XZ

plane.

The characteristics of wave f after the wave form is

established are the straight lines X∗−c∗t∗ = const, and the

waves g — direct lines X∗ + c∗t∗ = const, where c∗ —
dimensionless wave velocity. However, both families of

g f

X *X0
*

Figure 3. The emergence of two oppositely directed waves in a

water channel.

X *X0
*

t *

5

6

4

2

3

1

Figure 4. Characteristics of two oppositely directed waves in a

water channel.

these characteristics must begin at the point X∗
0 (Fig. 3).

Therefore, all characteristics before the waveforms are

established cannot be straight lines (Fig. 4).

Characteristics 1 and 2 reflect the leading and trailing

edges of the wave f propagating from left to right,

and characteristics 4 and 5, respectively, of the wave g
propagating from right to left. Rectilinear characteristics 3

and 6 reflect the propagation of wave maxima.

Fig. 3 shows the positions of the f and g waves after

the waveforms have been established. The introduction of

arguments (38) leads to equation (43) reflecting the formed

waves f and g . On non-linear sections of the characteristics

(Fig. 4), such arguments cannot be introduced. However,

in these sections, in the transient process of establishing the

waveform, the exact solution of the system of equations (35)
and (37) is hardly possible.

The waves f and g are related to the original functions

by the formulas following from (39):

f =
ξ∗ + V0

2β
and g =

ξ∗ −V0

2β
. (44)

If a wave propagating from left to right — a direct wave f
and a wave from right to left — a backward wave g are

equal, then f = g = ξ∗

2β
. If there is no reverse wave (g = 0),

then ξ∗ = V0, i.e., the waves of water rise in the channel and

the water velocity are similar. In the general case f ≥ g .
Some time after the appearance of the wave, f and g

cease to influence each other, so they can be considered

separately. Consider the wave moving from left to right,

while the wave propagating from right to left is assumed

to be absent, g = 0. In this case, the solution of the

system of equations (36) and (37) will have the form

ξ∗ = V0 = β f (r, τ ), where the function f (r, τ ) satisfies to

Technical Physics, 2022, Vol. 67, No. 9
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the Korteweg and de Vries equation:

∂ f
∂τ

+ 6 f
∂ f
∂r

+
∂3 f
∂r3

= 0. (45)

The one-wave (single-soliton) solution of equation (45) is
well known [1]:

f =
2k∗2

ch2
(

k∗(r − 4k∗2τ − r0)
)

=
2k∗2

ch2
[

k∗
(

X∗ − (1 + 2εk∗2)t∗ − r0
)] , (46)

where k∗ — dimensionless wave number, 2k∗2 — solitary

wave amplitude, c∗ = (1 + 2εk∗2) — solitary wave velocity,

r0 — constant value. When writing (46), r = X∗−t∗

and τ = ε
2

t∗ are taken into account.

Dimensionless solitary wave velocity

c∗ =
dω∗

dk∗
= 1 + 2εk∗2, (47)

where ω∗ — dimensionless cyclic frequency of the wave.

Taking into account the condition that at k∗ = 0 the value

ω∗ = 0, integrating (47), we find the dispersion relation for

the wave in the form

ω∗ = k∗ +
2

3
εk∗3. (48)

To plot a solitary wave using formula (46), let’s move

on to dimensional variables. For the magnitude of the rise

in the liquid level in a solitary wave above an undisturbed

surface (Fig. 1), we write

ξ∗ =
ξ

ξmax

= β f (r, τ ) =
3k∗2

ch2
[

k∗(X∗ − c∗t∗ − r0)
] . (49)

It follows from formula (49) that 3k∗2 = 1 and k∗ = 1√
3
,

which indicates the decisive influence of nonlinearity

(and non initial conditions, as in linear waves) on waveform

formation.

The dimensionless wave velocity can be found in the form

c∗ = 1 + 2εk∗2 = 1 +
2

3

ξmax

h
. (50)

To find the time scale, we obtain from (27) the scale of

the stream function

Mϕ =

√

M2
ZMP

ρ
=

√

h2εghρ
ρ

= h
√

ξmaxg. (51)

Therefore, in accordance with (27), the time scale is equal

to

Mt =
M2

Z

Mϕ

=
h√

gξmax

. (52)

Using (50), scales

MX =
h√

ξmax/h

X, m
0–100 100 200

0.5

0

x
, 
m

–200

Figure 5. Graph of liquid rise in a solitary wave (soliton).

(17) and (52) for the formula (49) we find the expression

ξ =
ξmax

ch2
(

1√
3

(

X
MX

−
(

1 + 2
3

ξmax

h

)

t
Mt

)

− δ
)

=
ξmax

ch2
(
√

ξmax

3h3

(

X − t
(

1 + 2
3

ξmax

h

)√
gh

)

− δ
)
, (53)

where the constant part of the phase is δ = k∗r0 .
Similarly, we find the fluid velocity in a solitary wave.

Using the longitudinal speed scale

MV =
Mϕ

MX
=

ξmax

√
gh

h
= V0max,

defining the relationship between the maximum liquid rise

in the wave ξmax and the maximum liquid velocity in it at

the level of the channel bottom V0max, we find

V0 =
V0max

ch2
(
√

ξmax

3h3

(

X − t
(

1 + 2
3

ξmax

h

)√
gh

)

− δ
)
. (54)

The resulting formula for the fluid velocity at the level

of the channel bottom is completely analogous to the

formula (53) for the rise of the fluid in a solitary wave.

In the formula (54), the dimensional velocities of the liquid

are used. Thus, all liquid layers in the channel, and not just

the surface layer, participate in the formation of a solitary

wave.

Fig. 5 shows a graph of liquid rise in a solitary wave, con-

structed for a conditional time t = 0 and for the following

model parameters: h = 5m, ξmax = 0.2m, g = 9.8m/s2.

In this case, the maximum fluid velocity in a solitary wave

at the channel bottom

V0max =
ξmax

√
gh

h
= 0.28m/s,

and the speed of the solitary wave

c =

(

1 +
2

3

ξmax

h

)

√

gh = 7.93m/s = 28.5 km/h.

Therefore, D.S. Russell could accompany on horseback a

solitary wave in a water channel.
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The liquid velocity on the channel surface can be found

by the formula (32), and the distribution of the liquid

velocity along the channel height — by the formula (33),
but this is not the purpose of this work. We only note that

these velocities are less than the liquid velocity at the level

of the channel bottom.

Conclusion

Finding the equation for solitary waves (Korteweg and

de Vries solitary matter waves) in an open water channel

is a well-known problem of hydrodynamics. So far, the

derivation of an equation, for example, in [3], has been

carried out according to the following scheme. Based on

the standard momentum equation and linearized boundary

conditions on the free surface of the liquid, a dispersion

relation is sought, which has a transcendental (hyperbolic
tangent) character. Then this dispersion relation is expanded

into a polynomial series up to the third power of the wave

number inclusive. The resulting dispersion relation leads to

the Korteweg−de Vries equation. In our opinion, it seems

more logical to derive the Korteweg−de Vries equation,

regardless of the dispersion relation, which should be the

result of solving this equation.

The paper considers the use of the momentum equation

in the form (1) with a special form of writing the force

term. It is shown that this form of the momentum equation

makes it possible to take into account both the action of

surface tension forces and the action of gravitational forces

in the formation of waves on the surface of an open channel.

In addition, when solving the momentum equation in the

form (1), two solitary waves appear at once, propagating in

opposite directions.

The proposed method for solving the equations of

hydrodynamics is as follows. First, we find the series

expansion in terms of the small parameter of the velocity

potential in the continuity equation. The relative (relative
to the channel depth) height of the solitary wave is used

as a small parameter. Second, the resulting expansion

is substituted into the momentum equation. Then, only

terms that are linear with respect to a small parameter are

retained in the momentum equation. As a result, a non-

linear equation arises for the fluid velocity, which is solved

by a method similar to the d’Alembert method for linear

hyperbolic waves.

The solution method used made it possible to obtain two

solitary Korteweg−de Vries waves propagating in opposite

directions: a wave propagating from left to right and a wave

propagating from right to left. Moreover, in contrast to the

linear waves obtained in the

d’Alembert method, where they immediately arise in

an explicit form due to the initial conditions, in the case

of the obtained nonlinear equation, the formation of two

Korteweg−de Vries waves, which are not related to the

initial conditions, is observed.

Further analysis of the two obtained nonlinear

Korteweg−de Vries wave equations made it possible to

find all the characteristics of these waves: their propagation

velocity, wave shape, fluid velocity in the waves, dispersion

relation etc.
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