Вольт-амперная характеристика термоионной эмиссии Na с поверхности Na_xAu

© М.В. Кнатько, М.Н. Лапушкин

13.2

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Lapushkin@ms.ioffe.ru

Поступило в Редакцию 6 сентября 2022 г. В окончательной редакции 9 декабря 2022 г. Принято к публикации 27 декабря 2022 г.

В высоковакуумном диоде исследована вольт-амперная характеристика термоионной эмиссии Na⁺ с поверхности интерметаллида Na_xAu. Обнаружен ее гистерезис, который связан с изменениями поверхности Na_xAu, вызванными действием внешнего электрического поля. В соответствии с эффектом Шоттки выполнен анализ вольт-амперной характеристики и оценена величина работы выхода поверхности Na_xAu. Предложен механизм термоионной эмиссии Na⁺ с поверхности Na_xAu.

Ключевые слова: интерметаллид, термическая ионизация, эффект Шоттки.

DOI: 10.21883/PJTF.2023.05.54666.19356

Зависимость степени ионизации десорбирующихся с нагретых металлов частиц от температуры твердого тела $\alpha(T)$ следует формуле Саха–Ленгмюра

$$\alpha(T) = \nu^{+} / \nu^{0} = A \exp[(\varphi - \varepsilon_{i} + e(eE)^{1/2}) / kT_{em}], \quad (1)$$

которая определена при условии термического и зарядового равновесия между адсорбированными частицами и твердым телом [1]. В (1) ν^+ и ν^0 — поток десорбирующихся частиц в заряженном и нейтральном состоянии соответственно, φ — работа выхода поверхности, ε_i энергия ионизации частиц, Т_{ет} — температура твердого тела, E — напряженность электрического поля (ЭП), А — отношение полных статистических сумм для заряженного и нейтрального состояний десорбирующихся частиц, *k* — постоянная Больцмана. Экспериментальные исследования термической ионизации (ТИ) на эмиттерах из металлов (W, Mo, Pt, Ir, Re, Ni), а также из полупроводников (Si) и окислов W, Mo, Ni подтвердили выполнение для них термического равновесия десорбирующихся частиц с поверхностью и справедливость формулы Саха-Ленгмюра [1,2].

Термоионные эмиттеры из Na_xAu показали степень ионизации органических соединений, сравнимую с таковой для наиболее эффективных известных эмиттеров [3], что в соответствии с (1) возможно только при большой величине φ [2]. Ее оценка по ТИ молекул уротропина на Na_xAu дает рекордно высокие значения: $\varphi \sim 7.6-7.9 \text{ eV}$ [4]. Однако при ТИ уротропина тепловое равновесие между десорбирующимися частицами и эмиттером не выполняется, что делает невозможным применение (1). Большие значения α для ТИ органических соединений на Na_xAu могут быть обусловлены неравновесными процессами вследствие реакций между коадсорбированными частицами [4]. Определение φ по ТИ атомов по формуле (1) затруднено из-за их растворения в Na_xAu [5]. Оценка φ методом контактной разницы потенциалов в процессе формирования покрытия Na_xAu дает значение ~ 5.1 eV [5], т.е. величина φ Na_xAu недостаточна для эффективной ТИ органических соединений при рабочих температурах эмиттера из Na_xAu $T_{em} < 1200$ K [2–4]. Отношение α на Na_xAu при $\varphi = 5.1$ eV к α на окисле W с $\varphi = 6.8$ eV [2] при $T_{em} \sim 1000$ K, согласно (1), должно быть много меньше 10^{-8} , что противоречит результатам работ [3,4].

Исследование распределения десорбирующихся с поверхности Na_xAu ионов Na по начальной энергии показало, что оно отвечает распределению Максвелла, однако температура распределения ($T_{\rm M}$) существенно (до 2 раз) превышает T_{em} [6]. Величина $T_{\rm M}$ при T_{em} = const экспоненциально зависит от корня кубического из E, тогда как на ранее исследованных эмиттерах была установлена независимость $T_{\rm M}$ от E [1,2]. Из (1) следует зависимость $\alpha(E)$ — так называемый эффект Шоттки [1,2,7,8]. В соответствии с ним ионный ток *i* при $E < 10^7$ V/сm и постоянном потоке частиц на поверхность определяется как

$$i = \operatorname{const} \exp\left[\left(e(eE)^{1/2}\right)/kT_{em}\right].$$
(2)

Эффект Шоттки связан с работой внешнего ЭП при удалении заряда (иона) от поверхности [1,2,7,8]. Это позволяет исследовать особенности эмиссии ионов с поверхности Na_xAu без учета возможной неравновесности процессов, приводящих к десорбции ионов, и растворения частиц в эмиттере. Для Na_xAu эффект Шоттки ранее не исследовался, в связи с чем целью настоящей работы стало исследование вольт-амперных характеристик (ВАХ) эмиссии ионов Na с поверхности Na_xAu .

Измерения ВАХ проведены в высоковакуумном диоде, катодом которого служила лента из золота, покрытого слоем Na_xAu по методике [3–6], шириной 2.5 mm, а анодом — металлическая пластина шириной 20 mm на

Рис. 1. a — вольт-амперная характеристика тока ионов Na с поверхности Na_xAu; b — зависимость тока ионов Na от напряженности электрического поля у поверхности Na_xAu при U > 100 V.

Рис. 2. Вольт-амперная характеристика тока ионов Na с поверхности Na_xAu при увеличении (1) и снижении (2) напряжения.

расстоянии 8 mm от ленты, покрытая слоем напыленного золота. Давление в диоде было $< 1 \cdot 10^{-7}$ Torr. На ленту, нагретую до 1000 K, напыляли поток атомов Na с плотностью $10^{12} \text{ s}^{-1} \cdot \text{cm}^{-2}$. Для очистки поверхности от органических загрязнений напускали кислород до давления $1 \cdot 10^{-6}$ Torr [3–5]. Измеряли ток ионов Na в диоде в зависимости от напряжения между электродами.

На рис. 1, *а* показан пример ВАХ, измеренной по току Na⁺ *i* при увеличении напряжения *U* между электродами от 0 до 1000 V, что соответствовало изменению напряженности ЭП у поверхности от 0 до 125 V/сm. Вид зависимости соответствует таковому для металлов с неоднородной поверхностью и уравнению (1) при $\varepsilon_i > \varphi$ [1]. На рис. 1, *b* показана зависимость ln*i* тока ионов Na⁺ от $E^{1/2}$ в диоде при U > 100 V (E > 12.5 V/cm). Она соответствует уравнению (2) — нормальный эффект Шоттки [1].

При U < 100 V ток ионов Na меньше, чем следует из уравнения (2), — аномальный эффект Шоттки [1]. Напряженность Е₀, при которой эффект Шоттки переходит из аномального в нормальный, для металлов составляет $E_0 = 10^3 - 10^4$ V/cm, а для полупроводников $E_0 = 10 - 10^2 \,\text{V/cm}$ [1,7,8]. Этот переход связан с влиянием контактного поля пятен поверхности с разными значениями φ на результирующее ЭП у поверхности эмиттера [1,7,8]. Из рис. 1 видно, что $E_0 \sim 10$ V/cm. Это значение Е0 соответствует эмиттерам из полупроводников [7]. Соответствие вида ВАХ таковой для ранее изученных эмиттеров с $\varphi < \varepsilon_i$ [1] позволяет предполагать, что для Na_xAu выполняется то же условие, а именно $\varphi < \varepsilon_i = 5.14 \,\mathrm{eV}$. Эта оценка согласуется с оценкой φ , выполненной методом контактной разницы потенциалов в процессе формирования покрытия Na_xAu.

На рис. 2 показана ВАХ тока ионов Na в диоде при увеличении напряжения (i_1) и снижении напряжения (i_2) после экспозиции эмиттера при напряженности E = 125 V/cm в течение нескольких часов. Видно, что ток i_1 превышает i_2 , и зависимость i(U) образует гистерезис. При снижении U ниже 100 V отношение токов ионов Na i_1/i_2 уменьшается, однако восстановление начального значения тока ионов Na происходит после экспозиции эмиттера при E = 0 V/cm.

В процессе экспозиции в поле с E = 125 V/ст в слое Na_xAu происходит выход катионов Na⁺ [9] и, возможно, дырок к поверхности, в результате чего на поверхности создается положительно заряженный слой. Это приводит к понижению φ поверхности [1] и, следовательно, к снижению тока ионов Na, как это видно из рис. 2. При экспозиции эмиттера при E = 0 V/ст первоначальное распределение зарядов восстанавливается. Вследствие этого ВАХ эмиссии ионов натрия с Na_xAu имеет выраженный гистерезис.

Расчеты электронной структуры Na_xAu [10–15] показывают, что атомы Аи выступают в роли анионов, а Na — в роли катионов. Избыток электронной плотности вблизи Au и дефицит вблизи Na зависит от концентрации атомов Na в интерметаллиде. Внешнее ЭП, тянущее от поверхности положительные ионы, увеличивает концентрацию катионов Na⁺ в поверхностном слое Na_xAu, что приводит к увеличению заряда катиона Na⁺ в поверхностном слое [9]. Атомы натрия адсорбируются на Na_xAu в нейтральном состоянии, что подтверждается их малым временем жизни на поверхности [9]. Взаимодействие натрия с катионом натрия поверхности Na_xAu может приводить к переходу электрона с атома Na на катион Na с последующей его перезарядкой при нейтрализации дыркой или уходом электрона в Na_xAu. Наличие нескольких ионов Na, расположенных близко друг к другу, приводит к их отталкиванию друг от друга. В зависимости от положения атома натрия на поверхности по отношению к катионам и анионам поверхности образующийся ион Na либо десорбируется с поверхности, либо диффундирует в Na_xAu, соединяясь с анионом. В случае десорбции переход адсорбированного атома в ион и его переход на кривую отталкивания приводит к нарушению теплового равновесия между десорбирующимися ионами и эмиттером, вследствие чего $T_{\rm M} \gg T_{em}$. Происходящее при росте *E* увеличение концентрации катионов Na на поверхности Na_xAu и, следовательно, увеличение их заряда приводит к возрастанию силы отталкивания иона Na от катиона Na поверхности. Это объясняет зависимость $T_{\rm M}(E)$.

Вольт-амперная характеристика эмиссии ионов натрия с Na_xAu имеет выраженный гистерезис, связанный с изменением под действием ЭП концентрации катионов Na на поверхности. Соответствие ВАХ ионной эмиссии Na⁺ с Na_xAu наблюдаемым ВАХ для металлов и полупроводников дает возможность полагать, что работа выхода поверхности заведомо меньше 5.14 eV. Десорбция ионов с Na_xAu обусловлена переходом адсорбированных частиц в ионное состояние и кулоновским отталкиванием одноименных зарядов: ионов Na⁺ и катионов поверхности Na_xAu, заряд которых зависит от напряженности внешнего ЭП. Это приводит к нетепловому распределению десорбирующихся ионов по начальной энергии $T_{\rm M} \gg T_{em}$ и зависимости этого распределения от напряженности ЭП — $T_{\rm M}(E)$. Этот механизм ТИ на Na_xAu не может определяться формулой Саха-Ленгмюра и представлениями, развитыми для эмиттеров из металлов и окислов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Э.Я. Зандберг, Н.И. Ионов, Поверхностная ионизация (Наука, М., 1969), с. 42–185. [Е.Үа. Zandberg, N.I. Ionov, Surface ionization (Jerusalem, 1971).].
- U.Kh. Rasulev, E.Ya. Zandberg, Prog. Surf. Sci., 28 (3-4), 181 (1988). DOI: 10.1016/0079-6816(88)90003-2
- [3] M.V. Knatko, M.N. Lapushkin, Rapid Commun. Mass Spectrom., 35 (17), e9144 (2021). DOI: 10.1002/rcm.9144
- [4] М.В. Кнатько, М.Н. Лапушкин, ЖТФ, 92 (3), 481 (2022).
 DOI: 10.21883/JTF.2022.03.52144.236-21 [M.V. Knatko, M.N. Lapushkin, Tech. Phys., 92 (3), 397 (2022).
 DOI: 10.21883/TP.2022.03.53271.236-21].
- [5] M.V. Knatko, V.I. Paleev, E.Ya. Zandberg, Phys. Low-Dim. Struct., N 7/8, 27 (1996).
- [6] М.В. Кнатько, М.Н. Лапушкин, Физ.-хим. аспекты изучения кластеров, наноструктур и наноматериалов, № 10, 352 (2018). DOI: 10.26456/pcascnn/2018.10.352
- [7] Л.Н. Добрецов, М.В. Гомоюнова, Эмиссионная электроника (Наука, М., 1966), с. 154–160, 180–195.
- [8] L.K. Hansen, J. Appl. Phys., 37 (12), 4498 (1966).
 DOI: 10.1063/1.1708068
- [9] М.В. Кнатько, М.Н. Лапушкин, В.И. Палеев, ЖТФ, 75 (4), 109 (2005). [М.V. Кпаťко, М.N. Lapushkin, V.I. Paleev, Tech. Phys., 50 (4), 498 (2005). DOI: 10.1134/1.1901791].
- [10] G.H. Grosch, K.-J. Range, J. Alloys Compd., 233 (1), 30 (1996). DOI: 10.1016/0925-8388(96)80030-2
- [11] G.H. Grosch, K.-J. Range, J. Alloys Compd., 233 (1), 39 (1996). DOI: 10.1016/0925-8388(96)80031-4
- [12] C. Xiao, L.L. Wang, R.V. Maligal-Ganesh, V. Smetana, H. Walen, P.A. Thiel, G.J. Miller, D.D. Johnson, W. Huang, J. Am. Chem. Soc., **135** (26), 9592 (2013). DOI: 10.1021/ja403175c
- [13] C. Koenig, N.E. Christensen, J. Kollar, Phys. Rev. B, 29 (12), 6481 (1984). DOI: 10.1103/PhysRevB.29.6481
- [14] R.E. Watson, M. Weinert, Phys. Rev. B, 49 (11), 7148 (1994).
 DOI: 10.1103/PhysRevB.49.7148
- [15] X. Du, H. Lou, J. Wang, G. Yang, Phys. Chem. Chem. Phys., 23 (11), 6455 (2021). DOI: 10.1039/D0CP06191C