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Thermal properties of matter within the model of a two-phase system
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properties of solids with disordered and crystalline structures. It is shown that the model adequately describes the
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1. Introduction

Experimenters are currently showing a constant interest

in studying the heat capacities of complex oxides [1–14]. It
is due not only to their technical use (e.g., ceramics [15]),
but also the uniqueness and diversity of physical proper-

ties. Smoothing of experimental data on heat capacities

of complex oxides, the same as for most other solid

substances, is performed using phenomenological functions

of a certain type. Outside the approximation interval,

they yield incorrect results. Moreover, the occurrence of

polymorphous transformations, magnetic phase transitions

and other phenomena in certain substances is represented

on temperature dependences in the form of
”
peaks“

and
”
dips“, which are not described in the suggested

models. That’s why development of models to describe

the dependences of substances’ thermal properties in wide

temperature ranges is one of the topical tasks of solid-state

physics.

The author of [16] suggested a model of a locally-

equilibrium two-phase system with an order parameter

determined as the difference of volume fractions of the

coexisting phases. Minimization of Gibbs energy according

to this parameter has yielded a number of correlations used

in earlier works and will be applied in the present paper.

Therefore, the goal of the present paper is calculation and

plotting (as examples) of temperature dependences of heat

capacities of complex oxides and thermal expansion coeffi-

cients of simple oxides and semiconductors to demonstrate

a wide application scope of the model [16].

The model [16] was used for the first time to describe

phenomena and processes in amorphous alloys. Adequacy

of theoretical calculations for experimental data for metal

glasses makes it possible to hope that the model [16] is

applicable to describing thermal properties of other systems

as well.

2. Two-phase system model
and its application

As distinct from point phase transitions, which occur at
a certain value of the external parameter, a diffuse phase
transition takes place in a certain range of change of tem-
perature, time or other quantity [17,18]. Such transitions are
observed in magnetics (the antiferromagnetic–ferromagnetic
transition [17]), relaxors–magnetoelectrics [19,20], amor-
phous alloys [21,22] and other systems. A diffuse phase
transition is accompanied with a transformation of a dis-
ordered phase (only the short-range order in the location
of components is possible) into a phase with a long-range
order.
1. Isochronous and isothermal crystallizations of amor-

phous alloys. An amorphous alloy is a metastable,
i.e. non-equilibrium system. Non-ergodicity of metal glasses
compels us to approximate them by locally-equilibrium
regions in compliance with the Prigozhin’s principle [23].
Let us consider a combination of locally-equilibrium two-

phase regions which contain an originating, a growing and
an ordering phase (phase 1 with volume V1) and a parent
matrix (phase 2 with volume V2) [16]. System volume V is
equal to

V1 + V2 = V. (1)

Dividing the equality (1) by volume V , we get the
correlation

x1 + x2 = 1, (2)

where x i = Vi/V — volume fraction of phase i = 1, 2.
Let us introduce the order parameter η using the formula

η = x1 − x2. (3)

It follows from (2) and (3) that

x1 = (1 + η)/2, x2 = (1− η)/2. (4)

Formulas (4) show that the order parameter η takes
on values from the range of −1 to +1, since volume
fractions x i vary within 0 to 1.
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Gibbs energy per unit volume of a system, consisting of

two non-interacting phases, is equal to

g = µ1x1 + µ2x2, (5)

where µi — chemical potentials of phase elements are

specified by formulas

µi(P, T, t) = µi0(P, T, t) + kBT ln x i(T, t), (6)

µi0(P, T, t) — standard values of chemical potentials for

each phase, P — pressure, T — temperature, kB —
Boltzmann constant.

Let us find the extremum of Gibbs energy (5) according

to argument η, which corresponds to the locally-equilibrium

value of the order parameter

(dg/dη)
∣

∣

η=η0
= 0 ⇒ η0(T, t)

= −th
(

0.51µ0(T, t)/(kBT )
)

, (7)

where the function 1µ0 = µ10−µ20. Consequently, the

equilibrium fraction of the new phase at temperature T at

time moment t is described by the function

x1(T, t) = 0.5
[

1− th
(

ϕ(T, t)/T
)]

, (8)

here the argument

ϕ(T, t) = 0.51µ0(T, t)/kB.

Let us expand the function ϕ(T, t) into a Taylor series

near the point of the extreme thermal effect of the phase

transition with keeping of only of the linear terms of

the series

ϕ(T, t) = (∂ϕ/∂T )(T − Tx) + (∂ϕ/∂t)(t − tx ). (9)

Let us consider particular cases of amorphous alloy crystal-

lization:

− isochronous crystallization ϕ(T, t) = f (T ) i.e. for-

mula (8) can be written down as follows with account of (9)

ϕ(T, t)/T = a(q)
(

(Tx/T ) − 1
)

, (10)

where the parameter a(q) = −∂ϕ/∂T , q is sample heating

rate. The model parameter

a(q) = 2Tx (q)ux (q) (11)

is related to temperature Tx (q), at which the maximum of

the first derivative from the volume fraction of phase 1

ux(q) = (dx1/dT )T=Tx and the extremum of phase transi-

tion heat are observed.

− isothermal crystallization ϕ(T, t) = f (t) at T = const,

i.e. formula (8) is as follows with account of (9)

ϕ(T, t)/T = b(q)
(

(t/tx ) − 1
)

, (12)

where the coefficient is b(q) = (tx/T )∂ϕ/∂t . The calcu-

lations of the volume fraction of the new phase in metal
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Figure 1. Functional dependences of volume fraction x1 of the

crystalline phase on temperature at q = 40K/min (a) and on time

at T = 619K (b) for the amorphous alloy Fe40Co40P14B6 (the solid
line shows theoretical values; dots — the experimental values [22]).

glass Fe40Co40P14B6 using the formula (8) with account of

equalities (10) and (12) are shown in Fig. 1, a and 1, b

respectively [24].

2. Multistage nucleation in metal glasses. The ob-

tained correlations allow for describing not only single-

stage but also multistage crystallization [25], when at

least two crystals form in the alloy. Fig. 2 shows the

isochronous crystallization curves for amorphous alloys

Fe85B15 (Fig. 2, a) and Al86Ni6Co2Gd6 (Fig. 2, b). For

instance, nucleation in the amorphous alloy Fe85B15 occurs

in two stages: up to the temperature of 750K, the

α-Fe crystals are growing (phase α), and then Fe3B

crystals start nucleating (phase β) [21]. Volume fractions

of x1(α) and x1(β) crystals for each new phase were

calculated using formulas (8) and (10), while the total
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Figure 2. a — crystalline phase volume fraction (the inset

shows a change of its first derivative) vs. temperature in

the amorphous alloy Fe85B15 with the sample heating rates of

q = 10 (1) and 40 (2)K/min (the solid line shows theoretical

values; dots — the experimental values [21]); b — changes

of the same quantity in the amorphous alloy Al86Ni6Co2Gd6 at

q = 10K/min (the solid line shows theoretical values; dots — the

values as per the DSC-thermogram).

volume fraction of the forming phase was determined using

the formula [25]:

x = c1x1(α) + c2x1(β), (13)

where the constants c1 and c2 do not depend on sample

heating rate q (the model parameters are given in [25]).

3. Heat capacity of complex oxides

As distinct from a substantive (total) derivative which

describes the function behavior at any point of the system

and upon transition from one system point to another, a

local (partial) derivative characterizes the function changes

in the vicinity of a separate point. Let us use this

fact when studying heat capacity of a locally-equilibrium

region.

1. Entropy of a locally equilibrium region. Let us set a

density of system’s substantive entropy at a changing phase

composition x = x1 using a ratio (taken with the minus

sign) of the differential of function (5) to the temperature

differential

σ = −(dg/dT) = −

[

(∂g/∂T )x + (∂g/∂x)T (dx/dT)
]

= σx + εT u, (14)

where local entropy at a fixed phase composition x is

determined by the classical formula [26,27], i.e. partial

derivative of (5) with respect to temperature

σx = −(∂g/∂T )x = σx + σdx + σs , (15)

here the entropies are: of the original phase

σm = −

(

∂µ20/∂T
)

,

of phase difference

σd = −

[

∂(1µ0)/∂T
]

and mixing

σs = −kB

[

x ln x + (1− x) ln(1− x)
]

;

density of energy of coexistence of phases

εT = −(∂g/∂x)T = −1µ0 − kBT ln
(

x/(1− x)
)

, (16)

u = dx/dT is
”
rate“ of phase composition change x at

a thermal transition to a new state. Thus, locally-

equilibrium entropy (15) coincides with its substantive

determination (14) subject to satisfaction of equality εT = 0,

which generates formula (8).

The first term in (14) describes the system entropy at

a fixed phase composition of the system, and the second

term — at its change, i.e. it is the
”
kinetic“ component of

substantive entropy, since it is determined by
”
rate“ of phase

composition change u.
2. Heat capacity of locally-equilibrium substance. Sub-

stantive heat capacity of the system depends on tempera-

ture T , phase composition x and
”
rate“ of its change u, it is

specified by the expression

C(T, x , u) = T (dσ/dT) = Ce + Ck + Cd , (17)

where local heat capacity in the
”
static“ thermal state

Ce = T (∂σ/∂T )x ,u = T
[

(∂σm/∂T )x ,u + (∂σd/∂T )x ,ux
]

= k1T + k2x , (18)
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coefficients k1 = (∂σm/∂T )x ,u and k2 = T (∂σd/∂T )x ,u. ”
Ki-

netic“ component of heat capacity

Ck = T (∂σ/∂x)T,uu =
[

2ξT − kBTu/[x(1− x)]
]

Tu

= f (x , u)Tu, (19)

where

ξT = (∂εT /∂T )x ,u = σd − kB ln
(

x/(1 − x)
)

.

The plots obtained during experimental studies of temper-

ature dependences of heat capacities for several substances

have peculiarities in the form of
”
peaks“ or

”
dips“ in the

low- or high-temperature regions. According to preliminary

calculations, they are described by formula (19) and arise

as a reflection of phase transitions in subsystems of atoms

or quasiparticles, while their manifestation in the form of

”
peaks“ and

”
dips“ depends on the sign of the transition

thermal effect.
”
Dynamic“ component of heat capacity

in formula (17) is specified by the expression

Cd = T (∂σ/∂u)T,xw = TεTw (20)

(here w = du/dT). It should be noted that func-

tion (20) becomes zero when local equilibrium is estab-

lished (εT = 0).
The first term in formula (18) linearly depends on

temperature and, according to the classical thermody-

namics [28], describes the contribution of the electron

Table 1. Model parameters for calculation of heat capacities of

complex oxides

Oxide a(q) Tx , K k1 · 10
4 k2

Nd2Sn2O7 0.6780 67 837 302.6

Nd2Ge2O7 0.5571 137 271.2 362

Tm2O3 · 2ZrO2 0.3200 310 100 450

Er2Ge2O7 0.6471 166 318.6 333

Cu5V2O10 0.3300 341 15 718

Pb7Nd3(GeO4)5(VO4) 0.6146 102 2304.1 1122

Pb9Nd(GeO4)3(VO4)3 0.6223 94 1759.7 1165

Tb2Ge2O7 0.5090 122 438.6 336

LaGa0.5Sb1.5O6 0.2900 346 400 336

FeTa2O6 0.6710 187 170 276

La2Zr2O7 0.7700 142 2096 228

SmGaGe2O7 0.6880 220 312.2 338

Y0.6Bi0.4VO4 0.5200 215 54 205.2

Bi2Ti4O11 0.4747 157 302 576

Bi4Ti3O12 0.4773 174 940 616

GdGaTi2O7 0.6721 214 20.67 372
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Figure 3. Temperature dependences of heat capacities of

LaGa0.5Sb1.5O6 (a) and NaNbO3 (b) (the squares show the data

of [8], circles — [29]).

subsystem substance to heat capacity, while change of the

temperature trend of the heat capacity curve is reflected by

the second term. The contribution of the additional phase

to heat capacity is accounted by applying formula (19),
function f (x , u) being constant.

Table 1 gives the model parameters for complex oxides

discussed in [1–14]. As an example, Fig. 3 shows the

experimental data and theoretical curves for LaGa0.5Sb1.5O6

(Fig. 3, a) and NaNbO3 (Fig. 3, b), calculated using for-

mula (18) with the parameters from Table 1.

It can be seen from Fig. 3 that the thermodynamic

model smooths the experimental data rather well and

can be used both for single calculations and for the

making of automatic process control tools for production

facilities. This can be made possible by creating a database

with values of coefficients of the theoretical model or by

finding the relation between them and substances’ individual

characteristics. Model simplicity and a wide application

Physics of the Solid State, 2022, Vol. 64, No. 8
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scope indicate the universal nature of the model theoretical

construction.

4. Thermal expansion of substance

An adequate description of experimental data on heat

capacity of various substances by the logistic function (8)
allows for using it to describe other thermal properties as

well, e.g., thermal expansion coefficients.

1. Linear (volume) thermal expansion coefficient. Ac-

cording to the mixing rules (see, e.g., [30]), the thermal

expansion coefficient (TEC) for a two-phase region is

α(T, x) = α1x + α2(1− x) = α2 + x1α, (21)

here x = x1, αi (i = 1, 2) — TEC of phase i ,
1α = α1−α2 — coefficient of thermal difference of phases.

Using the thermodynamic definition of heat capacity, the

second Grüneisen rule (see, e.g., [31,32]) on a relation of

heat capacity to TEC and taking into account equality (18),
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Figure 4. Change of coefficients of linear thermal expansion

α · 106 for Al2O3 (a) and ZnO oxides (b) with temperature (the
dots and squares show the data of [33]).

we obtain

α = q1T + q2x , (22)

where the coefficients q1 and q2 are considered to be con-

stant. Fig. 4 shows the charts of temperature dependences

of linear thermal expansion coefficients α · 106 for Al2O3

(Fig. 4, a) and ZnO oxides (Fig. 4, b) [33]. Fig. 5 shows the

trend of the temperature curves which describe the volume

thermal expansion coefficients β · 105 for Ge (Fig. 5, a)
and Si semiconductors (Fig. 5, b) [34]. The calculated model

parameters are given in Table 2.

2. Effect of sudden volume change under glass tran-

sition [35]. According to the Gay-Lussac law, when the

volume thermal expansion coefficient β is constant, the

system volume changes according to the law (see, e.g., [36])

V (T ) = V0[1 + β(T − T0)], (23)

where V0 = V (T0) is the melt volume at temperature T0.

Since the thermal expansion coefficient changes according

to (22), attainment of temperature Tg during heating

of an amorphous solid sample or during cooling of a
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Figure 5. Change of coefficients of volume thermal expansion

β · 105 for Ge (a) and Si semiconductors(b) with temperature (the
triangles and circles show the data of [34]).
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Table 2. Theoretical model parameters for oxides and semicon-

ductors

System a(q) Tx , K q1 · 10
4 q2

Al2O3 0.89 65 16.4 8.94

ZnO 0.92 293 1.0 7.7

Ge 0.749 145 4.5 2.3

Si 0.97 296 1.48 1.45

vitrifying melt leads to a sudden volume change (23),
followed by transition to a straight line with a different

angular coefficient (Fig. 6 [37]). Since glass transition

temperature Tg depends on heating (cooling) rate q,
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600 800 900

0.9985

V
(T

)/
V

0

b

500

0.9980

0.9975

700

1

2

3

4

T, K

1.000

V
(T

)/
V

0

a

500

0.998

0.996

1000

Tm

Liquid melt

Crystalline phase

Metal glass

Figure 6. Temperature changes of metal glass volume (a) and

increased glass-transition range (b) at heating rate q, K/min: 1 —
≈ 0, 1; 2 — 5; 3 — 200; 4 — 2500.

the temperature range of transition to a new state is a

variable quantity, while a kink of the straight line (23) is

observed at point Tg [35,38]. When the glass transition

rate is low enough, a kink is substituted by a smooth

transition from the straight line (23) to a straight line

of thermal change of glass volume. An increase of

metal glass heating rate above 500K/min results in a

considerable expansion of the temperature range of the

phase transition.

5. Conclusion

The performed calculations of thermal characteristics

of various substances indicate the following: applicability

of physical approximation of a non-equilibrium system

by locally-equilibrium regions in compliance with the

Prigozhin’s principle; certain universalism of the model of

a diffuse phase transition; similarity of thermal properties

of various substances. The study has revealed that the

thermal effect of phase transitions in subsystems of the main

substance matrix manifests itself on the basic temperature

dependence of heat capacity in the form of
”
peaks“

and
”
dips“ (due to different signs of transition enthalpies),

which indicates their
”
kinetic“ nature. In this respect

we may suppose that the negative values of the thermal

expansion coefficient for several substances in the low-

temperature region are related to the manifestation of the

”
kinetic“ effect in the parent phase.
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