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Based on the Wang–Landau algorithm, the Monte Carlo method was used to study the magnetic structures of

the ground state and the thermodynamic properties of the two-dimensional Potts model with the number of spin

states q = 4 on a triangular lattice, taking into account the exchange interactions of the first J1 and second J2

nearest neighbors. The studies were carried out for the value of the interaction of the second nearest neighbors in

the range −2.0 ≤ J2 ≤ 0.0. The magnetic structures of the ground state are constructed in the interval considered.

An energy analysis of the magnetic structures of the ground state has been carried out. A phase diagram of the

dependence of the critical temperature on the value of J2 is constructed. It is shown that taking into account the

interactions of the second nearest neighbors leads to the appearance of frustrations and violation of the magnetic

ordering.

Keywords: Frustrations, magnetic structures, Monte Carlo method, Potts model.

DOI: 10.21883/PSS.2022.08.54627.348

1. Introduction

Low-dimensional lattice models describe a large class

of real physical systems: multilayer magnetics, liquid

helium films, superconducting films, adsorbed films etc.

Frustrations can arise in these systems due to the competi-

tion exchange interactions, geometric or energy limitations.

Magnetic materials having a triangular lattice are heavily

frustrated due to a specific geometry. As temperature

decreases, the ordering process in such systems is much

slower as compared to even the standard frustrated systems.

This behavior is due to the fact that systems with a

smaller coordination number can have not only states with

non-trivial global degeneracy, but also locally degenerated

states [1–4].
Most studies of spin systems with frustrations were up

to now restricted to the Ising model, XY and Heisenberg

models. Very few reliably established facts exist for a

frustrated Potts model. Most available results were obtained

for a two-dimensional Potts model with the number of spin

states q = 2 and q = 3 [5–11]. The physical properties of a

Potts model differ greatly depending on q, type and lattice

spatial dimension [11–13].
In the present paper we study a two-dimensional Potts

model on a triangular lattice with the number of spin states

q = 4. This model is rather unique and still poorly studied.

A Potts model can be used to describe the behavior of

certain classes of adsorbed gases on graphite [14]. This

model is also interesting in that the value of q = 4 is a

limit value for the interval of 2 ≤ q ≤ 4, where second-

order phase transitions (PT) are observed, and the range

of q > 4, where a first-order PT takes place [12]. An

analysis of the obtained results of the study of a two-

dimensional Potts model with the number of spin states

q = 4 on triangular [15], hexagonal [16,17] and trihexagonal

lattices [18], shows that this model displays a transition

having the features of a first-order PT.

Almost no studies of a two-dimensional Potts model

with the number of spin states q = 4 on a triangular

lattice with competing exchange interactions of the first

and second nearest neighbors were published. Competi-

tion of exchange interaction in this model may cause a

frustration, degeneracy of the ground state, formation of

new magnetic structures of the ground state, as well as

affect its thermodynamic properties. In this connection, we

have attempted at using the Wang–Landau algorithm of the

Monte-Carlo (MC) method to perform an energy analysis of

magnetic structure of the ground state of a two-dimensional

Potts model with the number of spin states q = 4 on

a triangular lattice with ferromagnetic interaction of the

first nearest neighbors and antiferromagnetic interaction of

the second nearest neighbors. It is known that at the

value of q = 3 a Kosterlitz–Thouless transition is observed

for a mixed ferro-antiferromagnetic Potts model [19–21].
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Since the Potts model behavior depends on quantity q,
it is particularly interesting to study the magnetic and

thermodynamic properties for q = 4 at different correlations

of the magnitude of antiferromagnetic interaction of the

second nearest neighbors. The currently available data does

not allow for unambiguous determination of the regularities

of change of the thermodynamic behavior of a frustrated

Potts model with the number of spin states q = 4 and

these issues still remain open. Studies are conducted using

the modern methods and ideas which makes it possible

to answer a number of questions related to the physics of

frustrated spin systems.

2. Model and method of study

A Hamiltonian of a Potts model with the number of spin

states q = 4, taking into consideration interactions of the

first and second nearest neighbors, can be written as follows:

H = −J1

∑

〈i, j〉,i 6= j

δi, j − J2

∑

〈i,k〉,i 6=k

δi,k , (1)

where δi, j =

{

1 if Si = S j

0 if Si 6= S j
(delta function), Si = 1, 2, 3,

4, J1 and J2 — parameters of exchange ferro- (J1 > 0) and

antiferromagnetic (J2 < 0) interaction respectively for the

first and second nearest neighbors. In the present study, the

magnitude of interaction of the second nearest neighbors

varies in the range of −2.0 ≤ J2 ≤ 0.0, while J1 = 1.

A schematic and symbolic representation of the model is

shown in Fig. 1. The inset shows a symbolic representation

for each of the four spin values. The figure also shows

the interactions between the first J1 and second J2 nearest

neighbors.

At present, such systems based on microscopic Hamil-

tonians are being successfully studied based on the MC

method [22–29]. Many new variants of MC method

algorithms have been developed recently. The Wang–
Landau algorithm is one of the most efficient for studying

such systems [30,31], particularly in the low-temperature

region.

We made additions to the standard Wang–Landau al-

gorithm which make it possible to reveal the magnetic

structure of the system’s ground state. This algorithm is

an implementation of the entropy modeling method and

allows for calculating the system’s density of states function.

The Wang–Landau algorithm is based on the following: we

obtain a uniform energy distribution by making a random

walk in the space of energies with probabilities inversely

proportional to the state density g(E). By selecting such

transition probabilities that visiting of all energy states

becomes uniform, we can obtain an initially unknown state

density g(E), which can be determined in order to calculate

the values of the necessary thermodynamic parameters at

any temperature. Since state density g(E) increases very

quickly with an increase of the sizes of the systems under

S1

S2

S3

S4

J1

J2

Figure 1. Schematic representation of Potts model.

study, quantity ln g(E) is used for convenient storage and

processing of large numbers.

We used the Wang–Landau algorithm in the following

form.

A random initial spin configuration is set. The starting

values of state density are g(E) = 1, energy distribution

histograms are H(E) = 0, starting modification factor is

f = f 0 = e1 ≈ 2.71828. We make multiple steps in the

phase space until we obtain a relatively flat histogram H(E)
(i.e. until all possible system energy states are visited ap-

proximately the same number of times). Thereat, probability
of transition from a state with energy E1 into a state with en-

ergy E2 is determined using the formula p = g(E1)/g(E2).
If a transition to a state with energy E2 occurred,

then g(E2) → f × g(E2), H(E2) → H(E2) + 1 otherwise

g(E1) → f × g(E1), H(E1) → H(E1) + 1. If the histogram

became
”
flat“ we zero out the histogram H(E) → 0, reduce

the modification factor f → √
f , and continue again until

f ≥ f min. In our case f min = 1.0000000001. A histogram

is considered relatively flat if its value for all the possible

energy states is taken equal to minimum 90% of the total

average value. We made additions to the standard Wang–
Landau algorithm which make it possible to determine the

magnetic structure of the system’s ground state. When the

state with the minimum energy is reached (presumably, the

system’s ground state), the magnetic structure is memorized

as a line containing the values of all spins. Having

determined the system’s state density, we can calculate the

values of thermodynamic parameters at any temperature.

In particular, internal energy U , free energy F , specific

heat capacity C and entropy S can be calculated using the

following expressions:

U(T ) =

∑

E
Eg(E)e−E/kBT

∑

E
g(E)e−E/kBT

≡ 〈E〉T , (2)

F(T ) = −kBT ln

(

∑

E

g(E)e−E/kBT

)

, (3)

Physics of the Solid State, 2022, Vol. 64, No. 8



Energy analysis of magnetic structures of the ground state of the Potts model... 1061

1 2

3

a b

c d

e f

4

5 6

Figure 2. Spin configuration in one of the ground states implemented in the system at J1 = 1 and different J2 : (a) −0.5 ≤ J2,

(b) J2 = −0.5, (c) −1 < J2 < −0.5, (d) J2 = −1, (e) and (f) J2 ≤ −1.

C =

(

(|J1|/kBT )2

N

)

(

〈U2〉 − 〈U〉2
)

, (4)

S(T ) =
U(T ) − F(T )

T
, (5)

where N is particle count, T — temperature (hereinafter
temperature is given in |J1|/kB units). The calculations were

performed for systems with periodic boundary conditions

and linear dimensions L × L = N, L = 12÷ 120 in the

range of −2.0 ≤ J2 ≤ 0.0.
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3. Simulation results

Fig. 2, a shows the magnetic structure of the ground state

for J2 = 0. The ground state is a ferromagnetic one, where

all spins are oriented along one of the four directions —
the system has four-fold degeneracy. Such a situation is

observed in the range of −0.4 ≤ J2 ≤ 0. Fig. 2, b shows

the magnetic structures of the ground state for the case

of J2 = −0.5. As seen from the figure, the ferromagnetic

ordering is disrupted. Band structures of different widths

are observed. Fig. 2, c shows the magnetic structures

of the ground state for the case of J2 = −0.7. Band

structures having different band directions are observed in

the figure. Such a situation is observed in the range of

−1 ≤ J2 < −0.5. The number of states is ln(NGS) ∝ L.
Disruption of the magnetic ordering of the band structure

type is observed for the case of J2 = −1 (Fig. 2, d). Regions
with triplet ordering arise in the system on the background

of the band structures. The degree of degeneracy of the

ground state in this case is ln(NGS) ∝ L2. Triplet and

stripe-triplet structures occur in the system in the range

of −2.0 ≤ J2 ≤ −1 (Fig. 2, e, f). The number of states is

ln(NGS) ∝ L.
To perform an energy analysis of the magnetic structures

of the ground state, we marked nodes on a lattice sized

12× 12 which is shown in Fig. 2. Each node has 6

nearest neighbors and 6 next nearest neighbors. The energy

contribution of node i is determined as

Ei = −J1

2

∑

j

δi, j −
J2

2

∑

k

δi,k = −J1

2
n − J2

2
m, (6)

where n — number of the nearest neighbors having the

same value that the given spin, m — number of the next

nearest neighbors having the same value.

Depending on structure and spin position on the lattice,

the following variants shown in Fig. 2 are possible.

1. All spin neighbors have the same value (n = 6 and

m = 6).
2. The spin is on the boundary of two wide bands (n = 4

and m = 3).
3. The spin is on the second line from the boundary of

two wide bands (n = 6 and m = 5).
4. The spin is in a stripe structure with the width of 2

bands (n = 4 and m = 2).
5. Any of the nodes on a triplet structure (n = 2 and

m = 0).
6. Any of the nodes on a triplet structure (n = 2 and

m = 0).
7. Spins on a lattice with frustrations have a random

number n and m.

The dependence of energy of these nodes on J2 is shown

in Fig. 3 (hereinafter the statistical error does not exceed

the sizes of the symbols used for dependence plotting).
Depending on structure of the ground state, a system may

contain a different number of nodes of type 1−7. The

structures shown in Fig. 2 for a 12× 12 lattice contain:

J2

0–2.0 –1.5 –1.0 –0.5

–3

0

3

E
i

–2

–1

1

2

1
2
3
4
5  6,

Figure 3. Energy analysis of magnetic structures of the ground

state.

a) all 144 spins of type 1;

b) 96 spins of type 1, 24 spins of type 2, 24 spins of

type 3. When a system contains several bands, this spin

correlation can vary, and the condition of equality of the

number of type 2 and type 3 nodes is always met;

c) all 144 spins of type 4;

d) all 144 spins of type 7. A frustrated unordered state;

e) all 144 spins of type 5;

f) all 144 spins of type 5 or 6.

The energy analysis of different spin configurations of

ground states at J1 = 1 and different J2 is shown in Fig. 4.

Thus, the following is energetically profitable, depending on

quantity J2

−0.5 ≤ J2 a,

J2 = −0.5 a, b, c,

−1 ≤ J2 ≤ −0.5 c,

J2 = −1 c, d, e, f,

J2 ≤ −1 e, f.

Fig. 5 shows the temperature dependences of entropy

S/N for different values of exchange interaction J2. It can

be seen from the figure that, with a temperature increase,

entropy for all systems tends to the theoretically predicted

value ln 4. At low temperatures close to the absolute zero,

entropy for certain values of J2 tends to a non-zero value

of S0. A non-zero residual entropy is due to degeneracy

of the ground state. The dependence of quantity S0 for

different values of exchange interaction J2 is shown in

Fig. 6. As seen from the figure, entropy S0 in the range

of −0.4 ≤ J2 ≤ 0.0 at low temperatures tends to a zero

value. The system in this range is not degenerate and order

is maintained. Entropy at low temperatures in the ranges

of −0.9 ≤ J2 ≤ −0.5 and −2.0 ≤ J2 ≤ −1.2 tends to a

non-zero value. This is related to weak degeneracy of the

ground state. This behavior is related to a partial ordering
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Figure 4. Energy analysis of different spin configurations of the

ground state.
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Figure 5. Temperature dependences of entropy S/N for different

magnitudes of exchange interaction J2.
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Figure 6. Dependences of entropy S0 for different magnitudes of

exchange interaction J2.
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Figure 7. Phase diagram of dependence of the critical tempera-

ture on magnitude of interaction of the second nearest neighbors.

of the system. It should be noted that entropy in the low-

temperature region for the value of J2 = −1.0 takes on

a larger value due to a strong degeneracy of the ground

state. Such a situation is usually observed for frustrated spin

systems [32]. It can be assumed that the system becomes

heavily frustrated at the value of J2 = −1.0.

The phase diagram of dependence of the critical tem-

perature on magnitude of interaction of the second nearest

neighbors is shown in Fig. 7. In order to plot a phase

diagram, we plotted temperature dependences of heat

capacity at different values of the magnitude of exchange

interaction of the second nearest neighbors in the range of

−2.0 ≤ J2 ≤ 0.0. We determined temperature T (Cmax), at
which heat capacity is the maximum, for each value of J2.

The temperature, which corresponds to the maximum heat

capacity, can be considered close to the critical temperature.

It can be seen from the figure that temperature T (Cmax)
varies with change of the value of J2. Several different

phases are observed in the diagram: ferromagnetic (FM),
paramagnetic (PM), Phase 1 (stripe-triplet) and Phase 2

(stripe). The critical temperature at the value of J2 = −1.0

is equal to zero and there is not PT. This is due to the fact

that competition of exchange interactions of the first and

second nearest neighbors for a given value of J2 results in

total frustration. Frustrations disrupt the system order and

cause disappearance of the PT.

Occurrence of different phases in the diagram is due to a

change of the magnetic structure of the ground state. Each

phase corresponds to different magnetic structures.

1. The ordered ferromagnetic phase (J2 < −0.5) corre-

sponds to the magnetic structure shown in Fig. 2, a.

2. The stripe phase (−1 < J2 ≤ −0.5) — to the magnetic

structures shown in Fig. 2, b, c.

3. The frustrated unordered phase (J2 = −1) — to the

magnetic structure shown in Fig. 2, d.
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4. The stripe-triplet phase (−2.0 ≤ J2 ≤ −1) — to the

magnetic structures shown in Fig. 2, f.

4. Conclusion

The study of magnetic structures of the ground state and

thermodynamic properties of a two-dimensional Potts model

with the number of spin states q = 4 on a triangular lattice

while considering the interactions of the first and second

nearest neighbors was conducted using the Wang–Landau
algorithm of the Monte-Carlo method. We have determined

the magnetic structures of the ground state at different

values of the magnitude of interaction of the second nearest

neighbors. It was found that a change in the magnitude

of interaction of the second nearest neighbors in the given

model results in a change of magnetic ordering. An energy

analysis of magnetic structures of the ground state has been

performed. A phase diagram of dependence of the critical

temperature on magnitude of exchange interaction of the

second nearest neighbors has been plotted. It is shown

that strong frustration effects are observed at the value of

J2 = −1, which disrupt the magnetic ordering.
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