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Violation of the Taylor relation under high-energy external influences
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The motion of an edge dislocation ensemble in a binary alloy under high strain rate deformation is theoretically

analyzed. Within the framework of the theory of dynamic interaction of defects (DID) an analytical expression

for the dependence of the dynamic yield stress on the dislocation density is obtained. The conditions for the

violation of the Taylor relation under high-energy external influences are determined. The experimentally observed

nonmonotonic dependence of the dynamic yield strength on the dislocation density is explained. The minimum

of this dependence is due to the competition between the influence of various structural defects on moving

dislocations. This minimum takes place during the transition from the dominance of dynamic drag by one type of

defects to the dominance of another type defects.
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High-energy external influences on metals and alloys give

rise to high strain rate deformation of these materials, which

is realized in such technologically important applications as

molding, cutting, punching, high-speed machining, devel-

opment of shock-resistant materials, piercing of protective

shells, impact damage of aircraft and spacecraft and struc-

tures, explosion welding, impact on materials by high-power

laser pulses, dynamic channel-angular pressing [1–6].

A great number of papers [7–13] have been devoted to

influence of dislocation density on formation of mechanical

properties of metals and alloys. In process of high strain

rate deformation, plastic deformation rate reaches values

of 103−109 s−1. Most articles analyze high strain rate de-

formation using molecular dynamics method, which allows

us to study many features of interaction between moving

dislocations and other structural defects and visualize effects

of dynamic interaction [14,15]. However, this method does

not allow us to obtain analytical expressions of dependence

of mechanical properties on the plastic deformation rate and

characteristics of structural defects, such as concentration,

size, and misfit parameter. The theory of dynamic interac-

tion of defects (DID) that we developed allows us to solve

a wide range of problems on high strain rate deformation of

functional materials within a unified approach and to obtain

the above analytical expressions [16–21]. The mechanism

of dissipation during dynamic interaction with structural

defects consists in irreversible transition of dislocation

kinetic energy into energy of its transverse vibrations in the

sliding plane. This mechanism turns out to be very sensitive

to the type of the dislocation oscillation spectrum of the

dislocation, primarily to a gap in this spectrum, since it is

its presence and magnitude that the efficiency of excitation

of dislocation oscillations depends on.

The above features lead to the fact that under conditions

of high strain rate deformation, the effect of various

structural defects on mechanical properties of alloys may

differ significantly from their influence during quasi-static

deformation. Dynamic effects and such parameter as time

of interaction between moving dislocation and structural

defect drag it begin to play a significant role. This time

depends on both the speed of dislocation movement and

the size of the defect it overcomes. If the alloy contains

two types of defects significantly differing in their geometric

dimensions and, consequently, time of interaction between

dislocation and such defects, it leads to the appearance

of two maxima on the velocity dependence of dynamic

yield strength of such an alloy [20]. Such defects can

be Guinier−Preston zones and alloying additives. Another

important consequence of such structural defects in an alloy

is a change in the nature of the dependence of mechanical

properties on dislocation density. As is known, in the case

of quasi-static deformation, dependence of yield strength

on dislocation density is determined by Taylor relation,

according to which yield strength of crystalline metals and

alloys is proportional to the square root of the dislocation

density [22]:
τT = αµ b

√
ρ, (1)

where µ — shear modulus, ρ — dislocation density, α —
dimensionless coefficient of the order of unity, b — modulus

of dislocation Burgers vector. Strictly speaking, equation (1)
must include a term of sum τ0 — critical shear stress.

However, this term of sum does not depend on dislocation

densities, and in cases of high dislocation densities we are
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considering it is not essential. Therefore, we, like the

authors of papers [23,24], will not take it into account.

Taylor relation is quite universal. The authors of [25]
observed its fulfillment during high strain rate deformation

of copper and steel. Under certain conditions, however, such

deformation leads to Taylor relation distortion. Strength of a

binary alloy under conditions of high strain rate deformation

is determined by force of dynamic drag of dislocations by

structural defects. This force depends on which defects

make the main contribution to formation of spectral gap

and which — directly to development of dynamic resistance

of moving dislocation. Dominant influence of these or

those defects is determined by their concentration and

power. Competition of dynamic interaction of dislocations

with various defects significantly complicates the nature

of dependence between mechanical properties of alloys

and dislocation density. As was shown in [20], when

main contribution to drag of the moving dislocations

ensemble is made by the Guinier−Preston zones, and the

main contribution to formation of a gap in the spectrum

of dislocation is made by the collective interaction of

dislocations, Taylor relation distortion occurs. Dependence

of dynamic yield strength of a binary alloy on dislocation

density in this case becomes non-monotonic: root growth

is replaced by a decline. The maximum corresponds to the

density at which the contribution of collective interaction of

dislocations to spectral gap formation begins to exceed the

contribution of collective interaction of point defects with

moving dislocations.

In this paper, analytical expressions for the dependence of

yield strength of metals and alloys on dislocation density for

various cases of high strain rate deformation are obtained,

and it is shown that this dependence has a non-monotonic

character.

Analysis of high strain rate deformation of aged binary

alloys will be carried out within the framework of the

theory of dynamic interaction of defects (DID) that we

have developed. This theory is a modified Granato−Lücke

model, where a dislocation is treated as an elastic string

with effective tension and an effective mass of field origin.

DID theory significantly extends the scope of this model and

allows us to explain a number of available experimental data

from unified positions, to reveal the generality in physical

nature of completely different processes, and to predict a

number of new dynamic effects, detection of which can

become an incentive to set up new targeted experiments.

As noted above, the main dissipation mechanism in our

case is excitation of dislocation oscillations as a result of dis-

location interaction with structural defects. Effectiveness of

such mechanism was confirmed by the authors of [26], who

theoretically investigated dislocation motion in the dynamic

velocity region and proved that, as a result of interaction

with point defects, it experiences a strong excitation of its

own oscillations. The authors of this paper took into account

the random nature of the momentum transfer of the moving

dislocation by individual impurity atoms and calculated

correlation function G(τ ) = 〈w(z , t)w(z , t + τ )〉, where

function w(z , t) describes dislocation unit shift when it

oscillates while sliding along a crystal. The latter is de-

termined experimentally through its proportional correlation

function of inelastic light scattering 〈E(t)E(t + τ )〉, which

can be measured by optical displacement spectroscopy [27].
The aforementioned experimental method makes it possible

to measure field fluctuations through current fluctuations

for the times shorter than the characteristic dislocation

oscillation period, thus greatly extending the capabilities of

traditional optical methods widely used in the experimental

study of dislocation structures. According to the authors

of [26], amplitude of dislocation excitation may exceed

amplitude of thermal oscillations by several orders of

magnitude, and excitation of natural oscillations occurs

the more effectively the greater the distortion introduced

by point defects into the crystal lattice, i.e. increases with

increasing misfit parameter.

Let us consider uniform sliding of an ensemble of infinite

boundary dislocations under the action of constant external

stress σ0 in a field of structural defects chaotically distributed

in the crystal volume. Dislocation lines are parallel to OZ
axis, the Burgers vectors are parallel to OX axis, in

the positive direction of which the dislocations slide with

constant velocity v . Sliding plane of k- dislocation coincides

with XOZ plane, and its position is determined by function

Wk(y = 0, z , t) = vt + wk(y = 0, z , t). (2)

The term of sum vt describes motion of the dislocation

center of mass at velocity v , and functionw(z , t) — oscil-

lations of the dislocation element arising from interaction

with chaotically distributed defects in crystal structure.

Since w(z , t) is a random variable, 〈w(z , t) = 0〉, where

symbol 〈. . .〉 means averaging over dislocation length and

chaotic defect distribution

〈 f (r i )〉 =
1

L

∫

L

dz
∫

V

N
∏

i=1

f (r i )
dr i

V N
, (3)

where V — crystal volume, N — number of defects in

a crystal, L — dislocation length. When averaging is

performed according to standard procedure, number of

defects N and crystal volume V are going to infinity, while

their ratio remains constant and equal to the average defect

concentration.

Equation of motion of dislocation under study has the

form of

m

{

∂2Wk

∂t2
−c2 ∂

2Wk

∂z 2

}

=b
[

σ0+σ p
xy +σ dis

xy +σ G
xy

]

−B
∂Wk

∂t
.

(4)

Here m — mass per dislocation unit length, which,

according to [22], is determined by equation

m =
ρC b2

4π(1 − γ)
ln

Ld

r0
, (5)

where ρC — crystal density, Ld — dislocation length

order magnitude, r0 — atomic distance order magnitude,
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γ — Poisson’s ratio, B — damping constant due to

phonon, magnon, electron or other dissipation mechanisms,

characterized by linear dependence of dislocation drag force

on its sliding velocity, c — velocity of transverse sound

waves in a crystal, σ
p

xy , σ
dis
xy , σ G

xy — components of stress

tensor created on the line of k-dislocation accordingly by

point defects (atoms of the second component), other

dislocations and Guinier−Preston areas.

Dislocation drag in this region is largely determined by

energy transfer from the dislocation to various elementary

excitations in a crystal, but at high concentrations of impuri-

ties and other lattice defects the dynamic interaction of the

dislocation with these defects becomes very significant and

greatly affects its mobility and crystal properties provided

for by dislocation motion.

According to DID, dynamic force of moving edge

dislocation drag by point defects will be calculated in the

second order of perturbation theory, considering dislocation

transverse oscillations in the sliding plane, which are

described by the function w(z , t), to be low

F = b

〈

∂σxy

∂X
w

〉

= b

〈

∂σxy

∂X
Gσxy

〉

, (6)

where G — Green’s function of the dislocation equation of

motion. Fourier transform of this function looks like

G(ω, q) =
1

ω2 + iβω − c2q2
; β =

B
m
. (7)

Within DID theory, we can write down an equation for

contribution of various structural defects to the dynamic

yield strength in the following form

τ =
nb

8π2m

∫

d3q|qx | · |σ d
xy (q)|2δ

(

q2
xv

2 − ω2(qz )
)

, (8)

where ω(qz ) — spectrum of dislocation oscillations, n —
volume concentration of structural defects, σxy(q) —
Fourier transform of the corresponding component of the

stress tensor created by the defect.

In the case of point defects, we consider them to

be dilatation centers and introduce a smooth clipping

of their elastic field at a distance of the order of the

effective atom radius to eliminate non-physical divergences.

Their elimination in our case plays a fundamental role,

since correct description of collective effects influence on

dislocation dynamics requires taking into account interaction

of structural defects at distances of the order of the lattice

constant [17]:

σxy (r) = µr30 χ
∂2

∂x∂y
1− exp(−r/r0)

r
. (9)

Here r0 — effective atom radius of the point defect, χ —
its dimensional misfit parameter

χ =
r0 − ra

ra
. (10)

Here ra — effective atom radius of the matrix.

Fourier transform of the stress tensor component we need

looks like

σxy (q) = 4πµr30 χ
qx qy

q2

r−2
0

q2 + r−2
0

. (11)

After the necessary transformations the equation for contri-

bution of point defects (in particular, atoms of the second

component in the two-component alloy) to the value of

dynamic yield strength can be reduced to the following form

τ =
2nbµ2ε2

m

y
d3q|qx |

q2
x q2

y

q4

r20
(q2 + r−2

0 )2

× δ
(

q2
xv

2 − ω2(qz )
)

. (12)

Since the dissipation mechanism under study is realized

due to excitation of dislocation vibrations, it turns out

to be very sensitive to the type of dislocation vibrational

spectrum, in particular, its efficiency depends on the

presence of a gap in the spectrum. A spectral gap means

that dislocation oscillates being in a parabolic potential

well. Problems about dislocation oscillations in a potential

well have been considered by other authors as well, in

particular, the problem about dislocation oscillations in

Peierls relief. However, within the framework of the theory

developed by us, problems on motion of a dislocation

making oscillations in a potential well moving along a

crystal are solved. Such a well can be created as a result

of collective interaction of point defects with a moving

dislocation, collective interaction of dislocations of a moving

ensemble with each individual dislocation, magnetoelastic

interaction of a dislocation with a magnetic subsystem of a

crystal, and action of image forces on a dislocation sliding

in a near-surface layer. In the above cases, the spectrum of

dislocation oscillations looks like

ω2(qz ) = c2q2
z + 12, (13)

where 1 — spectral gap, which is equal in order of

magnitude to 1 = c/L, where L — characteristic scale of

interaction making the main contribution to gap formation.

It is the size of this gap that determines the depth of

the parabolic potential well, where the sliding dislocation

oscillates. The depth of this well, and hence the dynamic

behavior of dislocations, can be greatly influenced by

high hydrostatic pressure, exposure to which is one of

the promising methods to improve properties of functional

materials [28].

This paper considers several cases of high strain rate

deformation characterized by a non-monotonic dependence

of yield strength on dislocation density. One of them is

implemented when the collective interaction of point defects

with a moving dislocation makes the main contribution both

to formation of the dislocation oscillation spectrum and to

dynamic drag of dislocations. Contribution of the collective
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interaction of alloying additives to spectral gap formation

becomes dominant, if the following condition is met

nd >

(

ρb2

χ

)2

, (14)

where nd — dimensionless concentration of alloying im-

purity. Numerical estimates show that such a case

can be implemented, for example, at ρ ≤ 1014 m−2

and nd = 10−2−10−4.

According to DID theory, dynamic interaction of defects

with a dislocation, depending on the dislocation sliding

velocity, can have both a collective nature and nature

of independent collisions [17]. Let us denote time of

dislocation interaction with impurity atom as rde f = R/v ,
where R — defect radius, let us denote propagation time of

perturbation along a dislocation by a distance of the order

of the average distance between defects as r pr = l/c . In the

region of independent collisions v > v0 = R1de f inequality

τde f < τpr is satisfied, i.e. the dislocation element is not

affected by other defects during the interaction with the

point defect. In this region, no gap appears in the spectrum

of dislocation oscillations. In the region of collective

interaction (v < v0), on the contrary, τde f > τpr , i.e., for

the time of dislocation interaction with a point defect, such

dislocation element has time to
”
feel“ influence of other

defects that caused dislocation form perturbation. In this

region, a gap appears in the dislocation oscillation spectrum,

which is described by the following expression [17]:

1 = 1d =
c
b

(ndχ
2)1/4. (15)

Using the results of DID theory and performing the

necessary transformations, we obtain in this case the

following equation for dynamic yield strength of a binary

alloy

τ =
ε̇

ρb

(

µχ
√

nd

c
+

B
b

)

+ αµb
√
ρ. (16)

Here ε̇ — plastic strain rate, B — phonon drag coefficient

of dislocation.

The equation obtained is characterized by a non-

monotonic dependence of dynamic yield strength on dis-

location density at high concentration of alloying additives.

In the case under study Taylor relation is distorted. Yield

strength decreases to a certain minimum value with increas-

ing dislocation density, after which yield strength begins to

increase.

Let us determine dislocation density at which dynamic

yield strength has a minimum value. Differentiating

equation (16) and setting it to zero, we obtain the required

expression for dislocation density

ρmin =

(

2ε̇

αµb2

(

µχ
√

nd

c
+

B
b

)

)2/3

. (17)

With the obtained value of density, contribution of Taylor

hardening begins to exceed the contribution of dynamic drag

of dislocations by impurity atoms and phonons.

Let us make a numerical estimation. For values

µ = 5 · 1010 Pa, b = 4 · 10−10 m, nd = 10−2, χ = 10−1,

c = 3 · 103 m/s, B = 10−4 Pa · s, ε̇ = 106 s−1 we will get

ρmin = 1013 m−2.

Taylor relation is also distorted when the collective in-

teraction of alloying additive atoms with dislocations makes

the main contribution to the force of dynamic drag, and

the collective interaction of dislocations among themselves

dominates in spectral gap formation. Such a situation can

be realized at high dislocation density and high plastic strain

rate: ρ = 1015−1016 m−2, ε̇ = 108−109 s−1.

In this case, the gap in the dislocation oscillation

spectrum is described by equation [17]:

1 = 1dis = b

√

ρM
m

= c

√

2ρ

ln(D/ldis )
≈ c

√
ρ;

M =
µ

2π(1 − γ)
, (18)

where γ — Poisson’s ratio, ldis — average dislocation

length, D —a value of order of magnitude of crystal size.

Dependence of dynamic yield strength on dislocation

density is also non-monotonic and has a minimum, but

decrease in this case is more drastic

τ = µ
ndχ

2

(ρb2)2

(

ε̇b
c

)

+ αµb
√
ρ. (19)

The value of dislocation density corresponding to the

minimum value of the dynamic yield strength in this case is

determined by equation

ρmin =

(

4ndχ
2ε̇

αb4c

)2/5

. (20)

A similar dependence can be observed in aged binary

alloys containing Guinier–Preston zones. It occurs when

the Guinier–Preston zones give the main contribution to

dynamic drag, and the spectral gap is formed as a result

of the collective interaction of dislocations. This case

can be realized at high values of dislocation density and

Guinier–Preston zone concentration:ρ = 1015−1016 m−2,

nG = 1023−1024m−3. At the same time decrease of yield

strength becomes slower

τ = µ
nGbR√

ρ
+ αµb

√
ρ. (21)

In the case considered above the force of dynamic drag of

dislocations by Guinier−Preston zones has a nature of dry

friction, i.e. is independent on dislocation sliding speed and,

consequently, of plastic strain rate. Dynamic yield strength

becomes minimal at the value of dislocation density

ρmin =
nGR
α

. (22)

Let us make a numerical estimation. For values

nG = 1023 m−3, R = 10−9 m we will get ρmin = 1014 m−2.
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If plastic strain rate reaches high values, deviation from

Taylor relation is possible even in pure metals. Such situa-

tion is possible at values B = 10−4 Pa · s, ε̇ = 108−109 s−1,

ρ = 1015−1016m−2. In this case, dependence of dynamic

yield strength on dislocation density has the following form

τ =
ε̇B
ρb2

+ αµb
√
ρ. (23)

Such dependence has indeed been observed experimen-

tally [24]. Equation (23) is in qualitative agreement with

a similar equation obtained in [24] and differs from it only

by a numerical coefficient of the order of unity. At the same

time the minimum position is determined by the following

value of dislocation density

ρmin =

(

2ε̇B
αµb3

)2/3

. (24)

Let us make numerical estimations. For val-

ues ρ = 5 · 1015 m−2, µ = 5 · 1010 Pa, b = 4 · 10−10m,

nd = 10−2, χ = 10−1, c = 3 · 103 m/s, B = 10−4 Pa · s,
ε̇ = 106 s−1 we will get value of dynamic yield strength

τ = 108 Pa, which by order of magnitude complies with

experimental data [24].
The obtained results may be useful in analysis of high

strain rate deformation of metal and alloys.
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