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Electron-phonon interaction in the surface dimer adsorption model
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In the scope of the model of surface dimer, formed by the adsorbed atom and below lying substrate surface atom,

the problem on the electron-phonon interaction effect on the charge transfer in adsorbed system is considered. The

case of adsorption on metal is examined thor oughly.
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1. Introduction

To the best of the authors’ knowledge, the question

of the adatom vibrations effect on its electronic state

was first considered in articles [1–3]. In this case, the

adsorption standard model (ASM) was used on Anderson–
Newns metals [4,5]. Recently, to describe adsorption

on solid substrates, the surface dimer model (SDM) was

proposed, which, unlike the standard model, considers not

an adsorbed particle, but a surface molecule formed by this

particle and the nearest atom of the substrate surface [6].
In this article, we consider how vibrations of a surface

dimer affect the electronic characteristics of an adsorption

system and, most importantly, charge transfer within a

dimer and between a dimer and a substrate. Although

in the case under consideration it is more correct to

speak of electron-vibrational interaction, we will use the

standard term
”
electron-phonon“ interaction, comparing the

eigenfrequency of � dimer vibrations with a phonon with a

zero wave vector.

Let us represent the Hamiltonian of a free (not bound to

the substrate) dimer Hdim, consisting of atoms a (adsorbed
atom) and s (surface atom of the substrate), which orbitals

are characterized by energies εa and εs , and the occupation

numbers are 1, as the sum of Hdim = Hel + Hvib + Hint. The

Hamiltonian of the subsystem of spinless electrons has the

form

Hel = εa n̂a + εs n̂s − t(s+a + a+s), (1)

where t is energy of electron hopping between atoms a and

s , n̂a = a+a and n̂s = s+s are atomic number operators

for a and s , a+(a) and s+(s) are electron creation (anni-
hilation) operators, ns(a) are atomic occupation numbers a
and s [6]. The Hamiltonian Hvib describing the vibrations

of a free surface dimer can be represented in the classical

form

Hvib =
1

2
Ml̇2 +

1

2
k(l − l0)

2, (2)

where M is reduced mass of dimer atoms, k = M�2 is

force constant of dimer with equilibrium length l0. The

Hamiltonian of the interaction Hint between the electronic

and vibrational subsystems of a free dimer is

Hint = ν(n̂a + n̂s)(l − l0), (3)

where ν is deformation constant of the surface dimer.

Using the relation ∂〈Hdim〉/∂l = 〈∂Hdim/∂l〉, we get

l − l0 = −ν(na + ns)/k . Then the Hamiltonian Hdim can

be written as

Hdim = wa n̂a + ws n̂s − t(s+a + a+s) + H ′. (4)

Here wa(s) = εa(s) − λna(s), where λ = ν2/k is the constant

of the electron-phonon interaction of the surface dimer and

the term H ′ contains all the contributions that do not have

an operator structure. Using the results of [6] and neglecting

the metallicity of the bond, we obtain

ν = (∂
√

t2 + δ2/∂l)l=l0 = 4tαc/l0,

k = 4αc t(1 − 2α2
p)/l20 and λ = 4αc t/(1 − 2α2

p),

where bond covalency αc = t/
√

t2 + δ2, bond polarity

αp =
√

1− α2
c and δ = (εa − εs )/2 [7].

Hamiltonian (4) corresponds to the Green’s function

of the free dimer g±
dim(ω) = (ω − ω± + i0+)−1, where

ω is energy variable and energies of local levels are

ω± = w ± R, R =
√
12 + t2, w = (wa + ws)/2 and

1 = (wa − ws )/2. The densities of atom states of a free

dimer are

ρa,s (ω) = D±δ(ω − ω+) + D∓δ(ω − ω−),

where D± = (1± 1/R)/2 (upper signs refer to

atom a , lower refer to atom s), δ(. . .) is Dirac delta

function. The state density of the free dimer itself

is ρdim(ω) = δ(ω − ω+) + δ(ω − ω−), and the
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occupation number ndim = 2[2(ω − ω+) + 2(ω − ω−)],
where 2(. . .) is Heaviside function. Then, we set

εa + εs − 2λ = 0, where we take into account that

na + ns = 2 in a free dimer. The charge transfer

between atoms of a free dimer is m = na − ns , so

1 = δ − λm/2, where δ = (εa − εs )/2. It is easy to show

that ∂m/∂λ = −mt2/R3, i.e. as λ increases, the value of |m|
decreases.

Let’s take into account the presence of a substrate.

In the weak coupling limit (Ŵ(ω) ≪ t), dencity of states

of thr epitaxial dimer densities of the epitaxial dimer

(epidimer) ρ̄dim(ω) and its constituent atoms ρ̄a(s)(ω) can

be represented as

ρ̄a(s)(ω) = D±ρ+(ω) + D∓ρ−(ω),

ρ̄dim(ω) = ρ+(ω) + ρ−(ω),

ρ±(ω) =
1

π

Ŵ(ω)

(ω − ω± − 3(ω))2 + Ŵ2(ω)
. (5)

Here Ŵ(ω) = πV 2ρsub(ω) is the local level broadening

function ω±, the function

3(ω) = V 2P

∞
∫

−∞

ρsub(ω
′)(ω − ω′)dω′

determines the shift of these levels, ρsub(ω) is density of

substrate states, V is matrix element of the interaction of

ω± levels with substrate states, P is principal value symbol.

For further analysis, it is necessary to specify the substrate

by setting the function ρsub(ω).
Let us consider adsorption on metal. Setting

ρsub(ω) = ρm = const (Anderson model [5]), we find

Ŵ(ω) = Ŵm = πV 2ρm and 3(ω) = 3m = 0. Then the densi-

ties of states of the epidimer atoms ρ̄m
a(s)(ω) are the sums of

two Lorentz profiles ρm
±(ω) = Ŵm/π[(ω − ω±)2 + Ŵ2

m] with

weight factors D± [6,7]. At zero temperature, the level

occupation numbers ω± are equal to

nm
± = 2

εF
∫

−∞

ρm
±(ω)dω,

where εF is the Fermi level of the system, whence, taking

into account (5), we find nm
± = (2/π)arccot[(ω± − εF)/Ŵm].

For the epidimer, the occupation number is

n̄m
dim = nm

+ + nm
− and m̄m ≡ n̄m

a − n̄m
s = (1̄/R̄)(nm

+ − nm
−),

where 1̄ = δ − λm̄m/2, R̄ =
√

1̄2 + t2 . At εF = 0 there is

no charge transfer between the dimer and the substrate, so

n̄m
dim = 2. The interatomic charge transfer inside the dimer is

m̄m = (21̄/πR̄)
[

arctan(ω−/Ŵm) − arctan(ω+/Ŵm)
]

.

In the weak coupling regime, the dimer-substrate

Ŵm/|ω±| ≪ 1 and Ŵm/R ≪ 1 in the first approximation, we

have

nm
+(εF = 0) ≈ 2Ŵm/πω+ and nm

−(εF = 0) ≈ 2− 2Ŵm/πω−.

Therefore,

(m̄m)εF =0 ≈ −2(1̄/R̄)(1− 2Ŵm/πR̄).

Thus, at εF = 0, the value of the interatomic charge transfer

in the epidemer is smaller than in the free dimer. In the

limit |εF | ≪ |ω±| we have nm
± ≈ nm

±(εF = 0) − 2ρm
±(ω±)εF ,

where ρm
±(ω±)εF ∼ ŴmεF/R̄2, i.e. it is a quantity of

the second order infinitesimal. In the same limit, the

charge transfer between the dimer and the substrate is

m̄m
dim = 2− n̄m

dim ≈ 2Ŵm/R̄, or a quantity of the first order

infinitesimal. At the same time ∂m̄m
dim/∂λ = (Ŵm1̄/R̄3)m̄m

dim,

so that the electron-phonon interaction increases the value

of |m̄m
dim| at 1̄ > 0 and decreases it at 1̄ < 0.

Above, we considered the case of a weak bond between

the dimer and the substrate. It is easy to show (e.g. see [8])
that in the strong bond regime in the zeroth order in t2/Ŵ2

m

the problem of epidimer is reduced to the problem of

adsorption of two isolated atoms a and s . If, as in the

article [8], we take into account the Coulomb repulsion G
of electrons of atoms a and s , then expression (4)
will be valid after replacing wa(s) = εa(s) − λna(s) with

w ′
a(s) = εa(s) + Gn′

s ,a − λn′
a(s).

In this article, we considered adsorption on a metal

with a constant state density (Anderson model), which is

applicable to the description of simple (non-transitional)
metals with a wide sp-band. For d- and f -metals, it

is more correct to use the Friedel state density model

of
”
pedestal“ type [9], shift function 3(ω) for which is

given in [10]. Note that the Friedel model is also suitable

for describing two-dimensional metals [11]. In case of

adsorption on semiconductor and dielectric substrates, it

is convenient to use the Haldane–Anderson state density

model [5,12]. Adsorption on graphene-like compounds is

considered in [13].
Unfortunately, it should be noted that the question of

the role of the electron-phonon interaction in adsorption has

not been practically studied (e.g. see [4,14]), although, on
the other hand, there is growing interest in electron-phonon

effects in epitaxial [15,16] and free [17–19] two-dimensional

layers and topological insulators [20,21]. Therefore, in the

adsorption problem, due to the lack of information, we used

the simplest model of electron-phonon interaction, similar to

the widely used one-phonon Holstein model [22,23].
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