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Grey solitons in the ultracold fermions at the full spin polarization
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A minimal coupling quantum hydrodynamic model of spin-1/2 fermions at the full spin polarization

corresponding to a nonlinear Schrödinger equation is considered. The nonlinearity is primarily caused by the

Fermi pressure. It provides an effective repulsion between fermions. However, there is the additional contribution

of the short-range interaction appearing in the third order by the interaction radius. It leads to the modification of

the pressure contribution. Solitons are considered for the infinite medium with no restriction on the amplitude of the

wave. The Fermi pressure leads to the soliton in form of the area of decreased concentration. However, the center

of solution corresponding to the area of minimal concentration has nonzero value of concentration. Therefore, the

grey soliton is found. Soliton exist if the speed of its propagation is below the Fermi velocity.
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1. Introduction

Solitons are fundamental nonlinear structures exist-

ing in various physical systems including the quantum

gases [1–10]. Vortexes, shock waves, and skyrmions

are among main nonlinear objects considered in atomic

quantum gases. Solitons and other nonlinear phenomena

are well studied in the bosonic atoms experimentally and

theoretically. The theoretical approach is mainly based on

the mean-field nonlinear Schrödinger equation called the

Gross-Pitaevskii equation which describes the bright and

dark solitons in the Bose-Einstein condensates (BECs),
where the nonlinearity is caused by the interparticle in-

teraction [11]. The form of solitons is related to the sign

of interaction, so the bright and dark solitons appears in

the attractive and repulsive BECs, correspondingly. For

instance, the experimental study of the dark solitons in

BECs is presented in Ref. [12]. Majority of study of

fermionic gases are focused on the superfluid phase or

BCS state (Bardeen-Cooper-Schrieffer state), where pairs

of fermionic atoms with opposite spins and momentum

form the Cooper pairs and demonstrate the boson-like

behavior [13]. The dark solitons in superfluid Fermi gases

are considered in Refs. [14–16], particularly, the Bogoliubov-
de Gennes equations are used in [14]. A heavy soliton in a

fermionic superfluid is experimentally observed in Ref. [17].
Solitons in the superfluid Fermi gases are considered in

terms of the nonlocal generalization of the Ginzburg-Landau

model [18], following Ref. [19]. Here, the basic and

fundamental solitons are considered in degenerate fermionic

atoms with the full spin polarization. The spin-1/2 atoms

are chosen, but the same analysis is correct for the fermions

with higher spins. The presented theoretical work is based

on the quantum hydrodynamics which is straightforwardly

derived from the microscopic many-particle Schrödinger

equation (from the full quantum theory). The minimal

coupling model of fermions is composed of two hydrody-

namic equations: the continuity and Euler equation. These

hydrodynamic equations allow to obtain the corresponding

nonlinear Schrödinger equation, where the nonlinearity is

mainly caused by the Fermi pressure. It is nonlinearity of

fractional degree 7/3. However, the interaction between

fermions gives the additional nonlinearity [20].

Unpolarized fermions are mostly discussed in literature

regime for fermions[21–23]. If we have system of spin-1/2

Fermi atoms with equal population of the spin-up state

and the spin-down state we can observe interesting phases

of matter. They are the Bose-Einstein condensate of

molecules, crossover superfluid, and the BCS state. The spin

orbit coupling can also be engineered in the unpolarized

fermions.

If we consider bosons being in the Bose-Einstein con-

densate state it can be described by the Gross-Pitaevskii

equation. The interaction appears in the first order by the

interaction radius in term of the hydrodynamic derivation

of the Gross-Pitaevskii equation. Or it can be interpreted

as the s-wave scattering in terms of the scattering theory.

For the polarized fermions, there is no contribution of

the interaction in the first order by the interaction radius

(FOIR), due to the antisymmetry of the wave function.

Hence, main selfaction of the fermion fluid comes from the

Fermi pressure. However, the additional contribution of the

interaction appearing in the third order by the interaction

radius (TOIR) can be derived [20]. This contribution can

be interpreted via the p-wave scattering in terms of the

scattering theory [24–26].

The spin polarized fermions is the system where all

fermions occupy the single spin state. This systems shows
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rather avaricious phase. Nevertheless, it also demonstrates

some interesting fundamental nonlinear phenomena. To

some extend the system of polarized degenerate fermions

can be describe by the effective macroscopic single particle

wave function 8(r, t). This possibility follows from the

quantum hydrodynamic equations restricted by the particle

density and the momentum density evolution. However,

complete description of polarized fermions requires the

momentum current evolution, which is the kinetic pressure

of polarized fermions. The pressure evolution equation

gives more accurate value of the speed of sound [20,23,27].
Nevertheless, the minimal coupling model based on the

particle density and the momentum density shows good

qualitative description of fermions.

This paper is organized as follows. In Sec. II the quantum

hydrodynamics is presented in two regimes: the mean-

field approximation and up to the TOIR approximation.

In Sec. III solution of the hydrodynamic equations in the

one-dimensional regime in the form of the grey soliton is

obtained by the Sagdeev potential method. In Sec. IV a

brief summary of obtained results is presented.

2. Quantum hydrodynamic equations

Here, we present two quantum hydrodynamic models for

the degenerate fermions being in the same spin state (the
regime of the full spin polarization). The first model is

obtained in the FOIR approximation, where the interaction

gives the zero contribution. The second model contains the

contribution of the interaction in the TOIR approximation.

2.1. First order by the interaction radius:
A minimal coupling hydrodynamic
model for the full spin polarization

Nonzero contribution of the interaction in the first order

by the interaction radius exists for nonpolarized or the

partially polarized systems of fermions. However, the fully

polarized fermions have zero contribution of interaction in

this case.

In all regimes we have same form of the continuity

equation:

∂tn + ∇ · (nv) = 0, (1)

In the FOIR approximation we also have the Euler

(momentum balance) equation

mn(∂t + v · ∇)v− ~
2

2m
n∇ △√

n√
n

+ ∇p = −n∇Vext, (2)

where p is the Fermi pressure

p =
(6π2)

2
3 ~

2n
5
3

5m2
. (3)

Minimal coupling assumes the application of the conti-

nuity and Euler equation with no account of the pressure

evolution, but application of the equation of state for the

reduction of the pressure evolution to the concentration

evolution.

Equations (1)−(3) correspond to the nonlinear

Schrödinger equation for fermions at the potential velocity

field [20]:

ı~∂t8 =

(

−~
2∇2

2m
+

(6π2n)
2
3 ~

2

2m
+ Vext

)

8, (4)

where n = |8|2. The effective macroscopic wave function 8

is defined via the hydrodynamic wave functions n(r, t) and

v(r, t):
8(r, t) =

√
neımφ/~, (5)

where v = ∇φ. The contribution of the Fermi pressure (3)
is presented by the second term on the right-hand side of

equation (4).
Equation similar to NLSE (4) are used in litera-

ture [28–35]. Different forms have different justifications.

Equation (4) is justified via the quantum hydrodynamics.

Moreover, the partial or full spin polarization is not included

there.

Equations (1) and (2) are applied below to consider

the possibility of solitons in the systems of neutral atomic

degenerate fermions. To complete the description of model

we present the hydrodynamics containing the contribution

of the interaction between fermions with the same spin

polarization. Absence of the interaction in equations (2)
and (4) shows that the equilibrium condition cannot be

reached in such systems. However, we have interaction

between fermions which is presented below. It provides the

additional transfer of the momentum and a mechanism of

reaching of the equilibrium state.

2.2. Hydrodynamic equations and nonlinear
Schrödinger equation for fermions
with the interaction included up
to the TOIR approximation

Derivation of the macroscopic equations by the many-

particle quantum hydrodynamics method [36–40] shows

that the hydrodynamic equations appear first. Next, in some

simplified regimes the nonlinear Schrödinger equation can

be found [20,36].
The nonlinear Schrödinger equation can be derived in the

chosen approximation [20]:

ı~∂t8=

(

−~
2∇2

2m
+

(6π2n)
2
3 ~

2

2m
+ Vext −

4

5
g2(6π

2)
2
3 n

5
3

)

8,

(6)

the additional term caused by the interaction is the last term

in equation (6). The additional term is obtained in the TOIR

approximation. It contains the interaction constant g2 which

is defined via the potential of interatomic interaction U :

g2 =

∫

r 2U(r )dr. (7)

The positive interaction constant decreases the pressure.

However, the model is obtained in the weak interaction
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limit. So, the contribution of interaction should be small in

compare with the Fermi pressure.

Let us present the corresponding hydrodynamic equa-

tions. The continuity equation has same form (1). The

Euler equation contains the additional term

mn(∂t + v · ∇)v− ~
2

2m
n∇ △√

n√
n

+ ∇p

= − n∇Vext +
5m2

2~2
g2∇(np), (8)

which is the last term in equation (8). The interaction term

appear via the kinetic pressure p [20]. The gradient of the

kinetic pressure itself also presented by the last term on

the left-hand side of equation (8). In this paper we use

the equation of state in form of the Fermi pressure (3).
Hence, the Euler equation (8) is truncated and its final form

corresponds to the nonlinear Schrödinger equation (6).

The model presented above is obtained for the fermions

with the full spin polarization. Hydrodynamic model of de-

generate spin-1/2 fermions with the partial spin polarization

in the mean-field approximation for the interaction between

fermions with different spin projections [41].

3. Large amplitude grey solitons

Let us present the analysis of equations for the solitons

obtained up to the TOIR approximation. Let us consider

solitons in uniform infinite medium. Hence, the symmetry

of the system allows to consider the nonlinear waves with

the plane wave front. The wave appears as the one

dimensional solution. We consider the wave propagation in

the arbitrary direction and choose the cartesian coordinates

with axis Ox in the direction of the wave propagation.

We seek the stationary solutions of the nonlinear equa-

tions. We consider the steady state in the comoving

frame. Hence, all hydrodynamic functions depend on

η = x − ut and u, where the parameter u is the constant

velocity of the nonlinear solution. The perturbations vanish

at η → ±∞.

3.1. One dimensional limit of hydrodynamic

equations

For the nonlinear plane waves we have the following

simplified continuity equation

−u∂ηn + ∂η(nv
x) = 0, (9)

where the time derivative ∂t is replaced by −u∂η in

accordance with the variable η introduced for the stationary

solution. Similar simplification is made for the Euler

equation

− umn∂ηv
x + mnvx∂ηv

x − ~
2

2m
n∂η

∂2η
√

n√
n

= − (6π2)2/3~2

2m2
n∂ηn

2/3 + g2

4(6π2)2/3

5
n∂ηn

5/3, (10)

where the terms placed on the right-hand side are rep-

resented via construction n∂ηna useful for the further

transformations, with a is the arbitrary degree.

The one dimensional continuity equation (9) can be

integrated

n(vx − u) = −un0, (11)

where the boundary conditions n(η → ±∞) = n0, and

vx(η → ±∞) = 0 are used. Equation (11) allows to express

the velocity field via the concentration

vx =
u(n− n0)

n
. (12)

All terms in the Euler equation (10) are proportional to the

concentration, so we can drop it. Next, the Euler equation

can be integrated. As the result we find

m

(

1

2
v2

x − uvx

)

− ~
2

2m

∂2η
√

n√
n

+
(6π2)2/3~2

2m2
n2/3

− g2

4(6π2)2/3

5
n5/3=

(6π2)2/3~2

2m2
n2/30 − g2

4(6π2)2/3

5
n5/30 ,

(13)

where all terms existing in equation (10) are placed on the

left-hand side while the right-hand side contains the result

of application of the boundary conditions.

We substitute the velocity field (12) in the integrated

Euler equation (13). Moreover, we see that equation (13)
contains the second derivative on

√
n. It shows that we

should find solution relatively
√

n. Equation (13) can be

integrated to obtain the
”
energy integral“ in the following

manner
1

2
(∂η

√
n)2 + Ṽe f f(

√
n) = 0, (14)

where the first term can be considered as the effective

kinetic energy of soliton, while Ṽe f f(
√

n) is the effective

potential energy called the Sagdeev potential [42–47]. The

Sagdeev potential Ṽe f f(
√

n) appears in the following form

Ṽe f f(
√

n) =
1

2
(6π2)2/3

(

1 +
8mg2
5~2

n0

)

(n− n0)

+
m2u2

2~2

(

n +
n20
n

− 2n0

)

− 3

10
(6π2)

2
3

(

n
5
3 +

mg2
~2

n
8
3

)

− 3

10
(6π2)2/3

(

n5/30 +
mg2
~2

n8/30

)

. (15)

Equations can be solved for parameter
√

n, but the

traditional form of the presentation of the results including

the zero value of the effective potential and its first derivative
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on parameter
√

n requires to consider dependence on√
n−√

n0. Let us to choose the dimensionless form of

the chosen parameter 1 ≡ (
√

n−√
n0)/

√
n0 for the further

analysis. Moreover, the coordinate in the comoving frame

η can be presented in the dimensionless form as well

ξ = ηn1/30 .

3.2. Grey soliton in the mean-field approximation

The mean-field approximation corresponds to the FOIR

limit of the hydrodynamic equations. Formally, it can be

obtained from equations (14) and (15) at g2 = 0. we

discuss the Sagdeev potential in the dimensionless form.

The dimensionless form of the Sagdeev potential

V(1) ≡ Ṽe f f(
√

n)n−5/3
0 presented in the mean-field approx-

imation has the following form

V(1) =
1

2
α2

[

(1 + 1)2 +
1

(1 + 1)2

]

+
1

2
(1 + 1)2 − 3

10
(1 + 1)10/3 −

[

α2 +
1

5

]

, (16)

where α ≡ u/vFe. The dimensionless Sagdeev poten-

tial (16) is a part of the following dimensionless equation

(1/2)(∂ξ1)2 + V(1) = 0.

Fig. 1 shows the single illustration of the Sagdeev

potential in the mean-field regime (16). Value 10 6= 0

corresponding to V(10) = 0 shows the amplitude of the

soliton. First, we see that 10 is negative. Hence, there

is the decrease of concentration in the soliton n < n0.
However, 10 does not reach value −1. Consequently, the

concentration of particles in the soliton is always nonzero

n > 0. The soliton appears as the area of decreased

concentration, which is above the zero value at the center

of soliton. Such solitons are called the gray soliton. While

the dark soliton is the limiting case of the grey soliton with

the zero concentration in its center.

Fig. 2 shows that the increase of the speed of the

soliton propagation up to the Fermi velocity decreases the

amplitude of the soliton down to the zero value at α ≈ 0.6.

Moreover, no solution exists at α > 0.6. Obtained behavior

shows similarity to the dark soliuton in the BECs, where

the speed of soliton propagation is limited by the Landau

critical velocity [48].

Dimensionless velocity α is the single parameter in the

mean-field approximation. This dependence is discussed.

Further analysis of the properties of soliton can be made in

the TOIR approximation.

Presented here soliton solution for the spin polarized

fermions. The spin-0 BECs demonstrate two fundamental

solitons in the mean-field regime. Moreover, the spin-0 BEC

show the beyond mean-field bright soliton in the repulsive

BEC regime. The boson-boson and boson-fermion mixtures

show some additional soliton related effects. Particularly, the

boson-fermion mixture of the spin-0 BEC and spin-polarized

spin-1/2 fermions is considered in Ref. [49], where focus is
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Λ = 0

–0.6 –0.4 –0.2–0.8

Figure 1. The Sagdeev potential V = V(1) (16) is demonstrated

for the noninteracting limit for three different values of the

dimensionless speed of the soliton α = 0.2 (the upper red dotted

line), α = 0.1 (the middle black continuous line), α = 0.05 (the
lower green dashed line).

∆

0 0.40.2

–0.10

0.05

0

–0.25

–0.20

–0.15

–0.05

V

–0.6 –0.4 –0.2–0.8

α = 0.03

–1.0

Figure 2. The Sagdeev potential V = V(1) (17) is demonstrated

at the account of the interaction up to TOIR approximation. The

Sagdeev potential V = V(1) is demonstrated for the fixed speed

of perturbation α = 0.03 for different values of the dimensionless

interaction constant 3 = 0 (the upper red dotted line), 3 = 0.01

(the second from above black continuous line), 3 = 0.1 (the third

from above green dashed line), 3 = 0.3 (the lower blue dashed

line).

made on the modification of properties of the beyond mean-

field bright soliton existing in the repulsive BECs under

influence of the fermions. Hence, there is no direct relation

between the grey soliton given here and the fermion part of

the relation demonstrated in Ref. [49].

3.3. Generalization of the grey soliton solution up

to the TOIR

Complete expression of the dimensionless form of the

Sagdeev potential V(1) ≡ Ṽe f f (
√

n)n−5/3
0 obtained from the

expression (15) derived up to the TOIR approximation can
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Figure 3. A part of the Sagdeev potential V = V(1) (17) is

demonstrated. It is a part of Fig. 2 which corresponds to the point

of crossing of the Sagdeev potential of the line of zero potential.

∆

0 0.2

–0.10
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–0.20
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V

α = 0.1

–0.6 –0.4 –0.2–0.8

0.05

Figure 4. This figure is similar to Fig. 2, but this figure is

obtained for the larger speed of the soliton. The Sagdeev potential

V = V(1) (17) is demonstrated at the account of the interaction

up to TOIR approximation. The Sagdeev potential V = V(1)
is demonstrated for the fixed speed of perturbation α = 0.1 for

different values of the dimensionless interaction constant 3 = 0

(the upper red dotted line), 3 = 0.01 (the second from above

black continuous line), 3 = 0.1 (the third from above green

dashed line), 3 = 0.3 (the lower blue dashed line).

be written in the following form

V(1) =
1

2
α2

[

(1 + 1)2 +
1

(1 + 1)2

]

+
1

2
(1 + 1)2(1 + 3)

− 3

10
(1 + 1)10/3 − 3

16
3(1 + 1)16/3

−
[

α2 +
1

2
(1 + 3) − 3

10
− 3

16
3

]

. (17)

Additional terms in compare with the FOIR approxima-

tion (16) are proportional to 3.

Contribution of the short-range interaction obtained in

the TOIR approximation in the Sagdeev potential is demon-

strated in Figs. 2, 3, and 4. Figs. 2 and 3 are obtained for the

relatively small speed of soliton α = 0.03. In this case, there

is small modification of the amplitude of soliton under the

change of the interaction constant. So, this modification is

demonstrated in Fig. 3. Fig. 4 presents the Sagdeev potential

for the same values of the interaction constant, but it is

obtained for the larger velocity α = 0.1. The contribution

of interaction is larger in this velocity regime. Further

increase of the velocity α → 1 gives large modification of

the amplitude under influence of the interaction. This limit

is not presented in figures since it is beyond the area of

applicability of the model, which corresponds to the weak

interaction regime.

4. Conclusion

Grey soliton has been found in the system of weakly

interacting fermions being in quantum states with the same

spin projection. It has been found from the quantum

hydrodynamic equations corresponding to the nonlinear

Schrödinger equation. The soliton has been found and

studied within the Sagdeev potential method. The form

of the Sagdeev potential allows to find the amplitude and

width of the soliton. Particularly, it has been found that the

concentration is decreased, but it does not reach the zero

value. Thus, the soliton is classified as the grey soliton. The

change of the grey soliton parameters at the modification

of the speed of the soliton and the interaction constant

has been analyzed. We have concluded that the polarized

fermions demonstrate the existence of one kind of soliton,

i.e. the soliton of the partial rarification called the grey

soliton. It is in contrast with the Bose-Einstein condensate,

where two kinds of solitons are possible for the uniform

medium. The forms of solitons for the bosons depend on

the sign of the interaction between the Bose atoms. The

dark (bright) soliton corresponds to the repulsive (attractive)
interaction. The degenerate fermions are mainly affected by

the Fermi pressure which provides the effective repulsion.

So the dark/grey solitons is the possible structure.
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