Влияние режимов формирования контактной системы Pd/Ge/Au к *n*-GaAs на ее электрические характеристики

© А.В. Малевская, Ф.Ю. Солдатенков, Р.В. Левин, Н.С. Потапович

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: amalevskaya@mail.ioffe.ru

Поступило в Редакцию 31 октября 2022 г. В окончательной редакции 23 ноября 2022 г. Принято к публикации 24 ноября 2022 г.

Выполнены исследования влияния режимов формирования контактной системы Pd/Ge/Au на величину удельного переходного контактного сопротивления к слою GaAs *n*-типа проводимости. Исследовано влияние способа обработки поверхности образцов перед напылением слоев и режимов термического отжига в атмосфере H₂, N₂ и Ar на параметры контактной системы. Достигнуты значения удельного переходного контактного сопротивления (2-3) $\cdot 10^{-6} \Omega \cdot cm^2$ при пониженной до 190°C температуре вжигания.

Ключевые слова: Pd/Ge/Au, n-GaAs, обработка поверхности, термический отжиг.

DOI: 10.21883/PJTF.2023.03.54459.19409

Развитие технологии полупроводниковых приборов, в том числе фотоэлектрических преобразователей излучения высокой плотности, ведет к увеличению эффективности и мощности их работы, что обусловливает повышенные требования, предъявляемые к технологии формирования гетероструктур, омических контактов, защитных и просветляющих покрытий [1–4]. Разработка систем омических контактов обеспечивает снижение резистивных потерь путем уменьшения удельного переходного контактного сопротивления и увеличение электрической проводимости контактных систем, что в свою очередь приводит к уменьшению последовательного сопротивления полупроводниковых приборов [5,6].

Широко распространенной контактной системой к слоям GaAs *n*-типа проводимости является многослойный контакт Au(Ge)/Ni/Au, обеспечивающий переходное контактное сопротивление $\rho_c \approx 10^{-6} \,\Omega \cdot \mathrm{cm}^2$ [7]. Однако формирования омического процесс контакта Au(Ge)/Ni/Au включает высокотемпературный $(T > 370^{\circ} C)$ отжиг в течение нескольких минут, при этом происходит неравномерное вплавление компонентов контактной системы в материал полупроводника, что негативно сказывается на морфологии контакта и приводит к неоднородности распределения контактного сопротивления по площади образца. При изготовлении полупроводниковых приборов с неглубоким залеганием *p*-*n*-перехода использование подобных контактных систем может привести к существенному ухудшению электрических характеристик. Альтернативой многослойному контакту Au(Ge)/Ni/Au является контактная система Pd/Ge/Au к слоям GaAs n-типа проводимости, обеспечивающая формирование контактов с удельным переходным контактным сопротивлением $\rho_c \approx 10^{-6} \,\Omega \cdot \mathrm{cm}^2$ при температуре термического отжига ниже 200°С [8,9].

Цель настоящей работы состоит в исследовании и разработке технологии формирования омического кон-

такта Pd/Ge/Au к слоям GaAs *n*-типа проводимости при пониженных температурах термической обработки, исследовании влияния способа обработки поверхности образцов перед напылением слоев палладия, германия и золота, а также режимов термического отжига в атмосфере H₂, N₂ и Ar на электрические параметры контактной системы.

Исследование технологии формирования контактной системы Pd/Ge/Au осуществлялось на тестовых образцах, изготовленных на основе структуры, включающей слой n-GaAs толщиной 150 nm, легированный Si (с концентрацией свободных электронов $2 \cdot 10^{18} \, \mathrm{cm}^{-3}$), выращенный на подложке полуизолирующего GaAs. На тестовых образцах формировались прямоугольные контактные площадки, расположенные на разном расстоянии друг от друга. Для устранения эффектов, связанных с краевым поверхностным растеканием тока, проводилось обтравливание групп контактных площадок до полуизолирующей подложки GaAs. Измерения удельного переходного контактного сопротивления проводились с использованием методики TLM (transmission line model) с прямоугольной (линейной) геометрией контактных площадок LTLM (linear TLM) [9].

Полосковые контакты на тестовых образцах формировались с помощью метода "взрывной" фотолитографии с использованием LOR-резистов (lift-off photoresist). *T*-образный профиль боковых стенок резиста (рис. 1) позволяет создать разрывы между материалом, напыляемым на полупроводник и маску из фоторезиста, что облегчает его удаление и обеспечивает формирование ровных стенок полоскового контакта. Применение LOR-слоев обеспечивает высокую стабильность процесса "взрывной" литографии при напылении толстых металлических пленок, что дает возможность изготавливать приборные структуры без дополнительного электролитического утолщения контакта.

Рис. 1. Фотография скола гетероструктуры, выполненная на растровом электронном микроскопе. *1* — гетероструктура, *2* — маска фоторезиста, *3* — подслой LOR, *4* — напыленный материал Pd/Ge/Au.

Напыление слоев проводилось методом резистивного испарения Pd и Ge из вольфрамовых лодочек и Au из молибденовой лодочки в вакууме. Отжиг образцов проводился в атмосфере Н2, очищенного через палладиевый фильтр, N2 или Ar высокой чистоты. Вжигание в потоке N₂ и Ar проводилось на установке для процессов быстрой температурной обработки STE RTA100. На рис. 2 представлен один из режимов отжига образцов — при температуре 190°С в течение 60 min. Быстрый выход на режим температурной обработки и поддержание постоянной температуры задавались путем корректировки мощности нагревателя: на первом этапе мощность составляла порядка 20% от максимальной мощности нагревателя (~ 27 kW) и далее снижалась до 7-9%. Вжигание в потоке водорода проводилось в кварцевом реакторе трубчатого типа с аналогичным профилем нагрева (4-8 min), поддержания температуры и быстрым охлаждением.

Предварительная подготовка поверхности полупроводниковой гетероструктуры оказывает существенное влияние на морфологию и адгезию осаждаемых слоев, а также на электрические характеристики изготавливаемых приборов. Непосредственно перед напылением контактной системы поверхность тестовых образцов подвергалась обработке для удаления слоя естественных окислов GaAs с использованием ионно-лучевого травления ионами аргона или жидкостного химического травления в разбавленной соляной кислоте. Травление ионами аргона обеспечивает высокую степень очистки поверхности, что, как правило, способствует улучшению адгезии наносимых покрытий. Однако удаление материала при этом происходит в результате механического отрыва атомов поверхностных слоев GaAs под ударами тяжелых атомов Ar с образованием дефектного нарушенного слоя толщиной несколько нанометров. Наличие нарушенного слоя препятствует получению контакта Pd/Ge/Au к n-GaAs с низкими значениями удельного переходного контактного сопротивления при низких температурах отжига. При температурах вжигания от 185 до 210° С в атмосфере H₂ в течение 30-60 min величины удельного контактного сопротивления оставались на уровне $\rho_c \approx 10^{-3} \,\Omega \cdot \mathrm{cm}^2$. Это может быть обусловлено тем, что при низких температурах вжигания не происходит вплавления слоев контактных материалов в поверхность полупроводника; таким образом, наличие дефектного нарушенного слоя в приконтактной области негативно сказывается на проводимости контакта. При увеличении температуры вжигания до 400°C, что обеспечивает вплавление материалов контактной системы в поверхность n-GaAs и нивелирование влияния нарушенного слоя, наблюдалось уменьшение величин удельного переходного контактного сопротивления до значений $\rho_c \approx 10^{-5} \,\Omega \cdot \mathrm{cm}^2$.

Альтернативным вариантом обработки поверхности GaAs является метод жидкостного химического травления в разбавленной HCl, обеспечивающий эффективное удаление слоя естественного окисла GaAs, что позволяет формировать омический контакт с хорошей адгезией к поверхности гетероструктуры и низким переходным контактным сопротивлением $\rho_c \approx 10^{-6} \,\Omega \cdot \mathrm{cm}^2$.

Существенное влияние на параметры контактной системы Pd/Ge/Au оказывает толщина палладиевого слоя, граничащего с материалом полупроводниковой структуры n-GaAs. На рис. 3 представлены результаты выполненных методом LTLM измерений удельного переходного контактного сопротивления для различных вариантов контактной системы при термической обработке в атмосфере водорода в широком диапазоне температур ($T = 185 - 400^{\circ}$ C). Наибольшая воспроизводимость и наименьшие значения переходного контактного сопротивления достигаются при толщине слоя Pd в диапазоне 10-20 nm (толщины слоя Ge (30 nm) и Au (100-150 nm) заданы постоянными в соответствии с более ранними исследованиями [7]): $ho_c \approx 10^{-6} \, \Omega \cdot \mathrm{cm}^2$ при $T = 185, 210^{\circ}$ С и $\rho_c \approx 10^{-5} \,\Omega \cdot \text{cm}^2$ при $T = 290^{\circ}$ С (отжиг в течение 30-60 min в атмосфере водорода). При большей или меньшей толщине слоя Pd изменяется соотношение толщин Ge и Pd, что ведет к увеличению значения ρ_c более чем на порядок при низких температурах отжига. Это может быть связано с тем, что при отжиге контактной структуры с разным соотношением Ge и Pd в толще контакта преобладают новые образующиеся соединения (PdGe, Pd₂Ge, PdGa, Pd₂Ga, PdAs₂, GeAs, GeAs₂ и др.), которые могут иметь различную проводимость. При содержании Ge в слоях контакта, несколько большем, чем содержание Pd, происходит уменьшение значений ρ_c , что связано, как мы полагаем, с кристаллизацией эпитаксиального слоя узкозонного "избыточного" Ge на поверхности GaAs из образующегося при нагреве контакта твердого раствора PdGe [10]. Однако при снижении толщины слоя Pd до 3-4 nm не обеспечиваются условия формирования германида палладия с толщиной, необходимой для эпитаксии Ge

Рис. 2. Режим термического отжига в атмосфере N₂ или Ar в установке STE RTA100.

Рис. 3. Зависимость переходного контактного сопротивления омического контакта Pd/Ge/Au от температуры вжигания (в атмосфере водорода) при толщине Pd в диапазоне 3–30 nm.

на поверхности GaAs. При этом контактная система преимущественно формируется на основе следующих за палладием слоев аморфного Ge и Au, и для достижения низких значений контактного сопротивления требуется существенное увеличение температуры вжигания образцов (до 400°C). Увеличение толщины слоя Pd до 30 nm ослабляет диффузию Ge к поверхности GaAs, при этом не происходит формирования контактной системы требуемого состава, что сказывается на увеличении контактного сопротивления.

Увеличение температуры вжигания до 400° С нивелирует влияние толщины слоя Pd на электрические параметры контакта за счет вплавления Ge и Au в поверхность *n*-GaAs, и при высоких температурах отжига Влияние атмосферы вжигания (при $T = 190^{\circ}$ C, t = 60 min) на величину удельного переходного контактного сопротивления

Атмосфера	Контактное сопротивление, $\Omega \cdot cm^2$
H ₂ N ₂ Ar	$2 \cdot 10^{-6} \\ 3 \cdot 10^{-6} \\ 3 \cdot 10^{-5}$

величина контактного сопротивления почти не зависит от толщины палладиевого слоя.

Согласно проведенным исследованиям, оптимальным режимом вжигания исследуемого контакта является обработка при температуре 190°С в течение 60 min. С использованием полученных данных проведены исследования влияния газовой атмосферы (H₂, N₂ и Ar) при вжигании на параметры контактной системы. Минимальные значения удельного переходного контактного сопротивления $ho_c \approx (2-3) \cdot 10^{-6} \,\Omega \cdot \mathrm{cm}^2$ достигнуты при отжиге в атмосфере H₂ и N₂ (см. таблицу). При отжиге контакта Pd/Ge/Au в атмосфере водорода, как правило, получаются меньшие значения переходного контактного сопротивления [9] из-за того, что в потоке водорода пленка Pd насыщается водородом, при растворении молекулярный водород диссоциирует и находится в слое палладия в атомарном виде, соответственно он может восстанавливать Ga₂O₃ на поверхности GaAs, что способствует уменьшению переходного контактного сопротивления.

В результате проведенного исследования определены оптимальные режимы и параметры формирования контактной системы Pd/Ge/Au к *n*-GaAs: обработка поверхности образцов в разбавленной соляной кислоте перед напылением, толщина слоя Pd в диапазоне 10–20 nm при толщине слоя Ge 30 nm, режим вжигания контакта — при температуре 185–190°C в течение 60 min в атмосфере H₂ или N₂. Достигнуты значения удельного переходного контактного сопротивления Pd/Ge/Au к *n*-GaAs $\rho_c \approx (2-3) \cdot 10^{-6} \,\Omega \cdot \text{cm}^2$.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-19-00057 (https://rscf.ru/project/22-19-00057/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] H.J. Levinson, *Principles of lithography*, 3rd ed. (SPIE, Washington, 2010).
- [2] V.P. Khvostikov, A.N. Panchak, O.A. Khvostikova,
 P.V. Pokrovskiy, IEEE Electron Dev. Lett., 43 (10),
 1117 (2022). DOI: 10.1109/LED.2022.3202987
- [3] A.N. Panchak, V.P. Khvostikov, P.V. Pokrovskiy, Opt. Laser Technol., 136, 106735 (2021).
 POL 10.1016/j.artlanta 2020.106725
- DOI: 10.1016/j.optlastec.2020.106735
- [4] В.П. Хвостиков, П.В. Покровский, О.А. Хвостикова, А.Н. Паньчак, В.М. Андреев, Письма в ЖТФ, 44 (17), 42 (2018). DOI: 10.21883/PJTF.2018.17.46569.17400
 [V.P. Khvostikov, P.V. Pokrovskii, O.A. Khvostikova, A.N. Pan'chak, V.M. Andreev, Tech. Phys. Lett., 44 (9), 776 (2018). DOI: 10.1134/S1063785018090079].
- [5] A. Zekry, A.Y. Al-Mazroo, IEEE Trans. Electron Dev., 43 (5), 691 (1996). DOI: 10.1109/16.491244
- [6] А.В. Малевская, Ю.М. Задиранов, А.А. Блохин, В.М. Андреев, Письма в ЖТФ, 45 (20), 15 (2019). DOI: 10.21883/PJTF.2019.20.48386.17916 [A.V. Malevskaya, Yu.M. Zadiranov, A.A. Blokhin, V.M. Andreev, Tech. Phys. Lett., 45 (10), 1024 (2019).
 - DOI: 10.1134/S1063785019100262].
- [7] P.H. Hao, L.C. Wang, F. Deng, S.S. Lau, J.Y. Cheng, J. Appl. Phys., **79** (8), 4211 (1996). DOI: 10.1063/1.361788
- [8] L.C. Wang, P.H. Hao, J.Y. Cheng, F. Deng, S.S. Lau, J. Appl. Phys., **79** (8), 4216 (1996). DOI: 10.1063/1.361789
- [9] D.M. Mitin, F.Yu. Soldatenkov, A.M. Mozharov, A.A. Vasil'ev, V.V. Neplokh, I.S. Mukhin, Nanosyst. Phys. Chem. Math., 9 (6), 789 (2018). DOI: 10.17586/2220-8054-2018-9-6-789-792
- [10] E.D. Marshall, B. Zhang, L.C. Wang, P.F. Jiao, W.X. Chen, T. Sawada, S.S. Lau, K.L. Kavanagh, T.F. Kuech, J. Appl. Phys., 62 (3), 942 (1987). DOI: 10.1063/1.339705