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Nonlinear stability of the isothermal three-dimensional flows of viscous incompressible fluid in the rotational

spherical layer with the noise presence was studied numerically. Transition between stable non-stationary flow and

unstable flow in the form of travelling azimuthal waves is under consideration. Small-amplitude noise inserted to the

flow by random broadband disturbances of the inner sphere rotational rate about constant at time averaged value,

outer sphere is fixed. An approach is proposed to simplify finding the critical Reynolds number, corresponding

to the stability limit in the presence of noise. The results obtained by the proposed and well known methods are

compared.
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Introduction

The large-scale atmospheric flows are exposed to external

effects, which are different in a spectrum type and have

a wide range of time scales — from modulation of

solar radiation coming to the atmosphere [1] to the wide-

band millisecond changes of the day duration [2]. These

effects are regarded as a noise external to the flow,

whose background forms coherent structures as a result

of instability development. The critical Reynolds number

Rec corresponding to a stability limit can change both

under common influence of the noise and the periodic

modulation [3] and by impact of the external noise only [4].
Possibly, it is correlated to generation of middle flows [4–
6]. The noise increases increments of rise of the linear

modes and the interaction time of the modes and can

also affect selection of a wave number of the azimuth

mode [7]. The noise can result in changing the frequency

and diffusion of the oscillation phase [8,9] as well as to flow

chaotization [10,11]. In rotational flows, the stability loss

and chaotization can depend not only on the noise level,

but on its time characteristics [12].
For the rotational spherical flows being investigated in

the present study, it has been numerically demonstrated

by axis-symmetrical formulation in [4] that under the noise

impact the kinetic energy of the flows increases, while the

stability limit decreases in proportion to the increase in

the noise level. These results have been obtained in the

simplified formulation which regarded the linear stability of

the velocity field averaged across the large time interval,

wherein the instantaneous velocity fields were calculated at

random wide-band fluctuations of the rotational rate of the

inner sphere. However, it is unclear whether solutions of

these problems with various types of the external effects

including with the noise presence are unique or not [13].

In this regard, it is more and more important to analyze

the flow stability using the full three-dimensional Navier–
Stokes equations. The critical Reynolds number Rec0 corre-

sponding to the stability limit without the noise is assumed

to be determined by approximation of the dependence of the

oscillation amplitude on supercriticality A ∼ (Re − Rec0)
1/2

at (Re− Rec0) → 0, here A —a calculated amplitude of the

velocity oscillations after the flow losses the stability and

travelling azimuth waves are formed [14]. However, the

results of flow calculation with the two-dimensional con-

vection [3] have shown that the above-said approximation

can not be applied in the presence of noise. In this regard,

it is necessary to perform the calculations within the area

(Re− Rec) → 0. But, as it will be shown, the substantial

increase in the time of transients within this area does not

allow reliably calculating small values A. That is why it

is desirable to find the approximation of the dependence

of A on Re in this case, too. The purpose of this study

is, when there are the random fluctuations of the rotational

rate, to numerically determine the value Rec by finding the

dependence of A on Re based on solving the full three-

dimensional system of the Navier–Stokes equations, as well
as to show advantages of the new approach determining Rec

with less calculation efforts.

1. Calculation method and study region

It investigates isothermal flows of the viscous incompress-

ible unstratified fluid in the rotational spherical layer, which

are described in the inertial system of coordinates by the

Navier–Stokes and continuity equations:

∂U
∂t

= U × rotU − grad

(

p
ρ

+
U2

2

)

− νrotrotU, divU = 0.
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Here U, p — the field of the flow velocity and pressure,

respectively; ρ, ν — the density and kinematic viscosity

of the fluid. The boundary conditions include adhesion

and non-permeability, which in the spherical system of

coordinates with the radial (r), polar (θ) and azimuth (ϕ)
directions can be presented as follows:

uϕ(r = rk) = �k(t)rk sin θ, ur(r = rk) = 0,

uθ(r = rk) = 0, k = 1, 2.

Here uϕ, ur , uθ — the azimuth, radial and polar com-

ponents of the velocity U , the indices 1 and 2 relate to

the internal (k = 1) and external (k = 2) solid spherical

boundaries; �k , rk — the angular rotational rate and the

radius of the corresponding sphere. As noted above, the

present study has a fixed external sphere, �2 = 0, and

in this regard the subscript in �1 and Re1 is omitted.

Additional noise is contributed to the flows, in the same

way as in [4,7], by the random wide-band fluctuations of

the rotational speed of the inner sphere:

�(t) = �0 + Nrn( j).

Here �0 — the averaged part of the rotational rate, which

is constant in time, rn( j) — the pseudo-random number

from the sequence with the standard normal distribution

and averaged zero value, which is changed in each step in

time, N — the noise amplitude. As in [4,7], the fluctuation

spectrum of the rotational rate has the same amplitude

within the wide frequency range and is the
”
white noise“.

The noise amplitude is determined by the expression

N =
1

�0

√

√

√

√

1

K − 1

K
∑

i=1

(

�(ti ) −�0

)2
,

where K — the length of the time sampling. All the

calculations are performed at N = 0.04 to compare with

the results of the study [4], which has analyzed the linear

stability in the axis-symmetrical simplified formulation (see
above) for the same value N. As in [4,15], the same

sequence of the random numbers has been used in all the

calculations.

The numerical solution has included the algorithm [16]
and the programs [16,17] based thereon, with a conservative

finite-difference scheme of discretization of the Navier–
Stokes equations (NSE) across the space and with a semi-

implicit Runge–Kutta scheme of the third accuracy order

for time integration. In contrast to [4], the calculated non-

stationary flows have no condition of symmetry relative to

the equator plant and rotation axis. The space discretization

has been performed by decreasing a mesh size near the

spheres (along r) and the equator plane (along θ). The

ratio of the maximum mesh size to the minimum one was

two, while the total number of nodes was 5.76 · 105 . The

dependence of the calculation results on a configuration

of the computational grid has been investigated in detail

in many studies (for example, in [18]). The calculations

have been performed at size parameters, which correspond

to conditions of the experiments and calculations in [4]:
ν = 5 · 10−5 m2/s, r1 = 0.075m, r2 = 0.15m, and with the

constant time step of dt = 0.025 s. The calculations have

been performed with recording the flow velocities in time

in points within the meridional flow plane at rays with

angular declinations from the rotational axis θ = 17.84◦

(near the rotation axis), 45.63◦ (in the middle latitudes) and
θ = 89.67◦ (near the equator plane) and relative distances

to the inner sphere R = 0.177, 0.284, 0.381, 0.487, 0.60,

0.67 and 0.76, where R = (r − r1)/(r2 − r1). The point

with the coordinates R = 0.67 and θ = 45.63◦ has been

selected to present the results as being the closest to a

position of the point of measuring the azimuth component

of the velocity in the experiment [4]. The calculation results

are given below in dependence on the Reynolds number

Re = �r21/ν , the calculation have been performed within

the range of changing Re from 488 to 500.

2. Results

Let us recall that the present study investigates noise

impact on changing the position of the flow stability limit in

the rotational spherical layer. Without noise, the flow prior

to the stability loss is stationary and symmetrical relative to

the rotation axis and the equator plane [19]. When adding

the random fluctuations to a rotational rate signal, the above-

said symmetries are preserved, but the flow velocity field

becomes random and non-stationary [4]. Let us consider

how the random fluctuations of the rotational speed of

the inner sphere propagate within the flow prior to their

stability loss. This process can be illustrated by mean-square

deviations of the azimuth component of the speed rms uϕ

(Fig. 1):

rms uϕ(r, θ) =

√

√

√

√

1

Kt

Kt
∑

k=1

(

uϕ(tk , r, θ) − uϕaν(r, θ)
)2
.

Here, the left summand is an instantaneous azimuth

velocity at the moment of time t, while the right summand is

an azimuth flow velocity averaged in time. If in the equator

plane the values rms uϕ (the curve 2 of Fig. 1, a) expo-

nentially decay radially with increased distance from the

internal spherical boundary, in the middle latitudes the local

maximum is evident near R = 0.5 (the curve 4 of Fig. 1, a).
For comparison, Fig. 1, a also shows the values rms uϕ (the
curves 1, 3) at the periodic fluctuations of the rotational

rate of the inner sphere: �(t) = �0(1 + A sin(2πgt + ϕ)),
A, g — the amplitude and the frequency of the modulation,

�0 — the averaged rotational rate of the inner sphere.

The case of Fig. 1 with g = 0.3Hz has evident satisfactory

qualitative compliance of propagation of the random and

periodic oscillations. In case of changing the value g the

qualitative compliance is kept in the equatorial plane only.

Figure 1, b shows the values rms uϕ, which are normalized
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Figure 1. Dependence of rms uϕ , [m/s] (a) and rms uϕ/uϕaν (b)
on R at Re = 488. a — 1, 3 — the periodic oscillations of the

rotational rate with g = 0.3Hz, A = 0.046; 2, 4 — the random

fluctuations of the rotational rate N = 0.04, 1, 2 — θ = 89.67◦,

3, 4 — θ = 45.63◦. b — the random fluctuations of the rotational

rate, θ: 1 — 89.67◦, 2 — 17.84◦, 3 — 45.63◦ .

per a value of the average azimuth component of the

flow velocity uϕaν . If in the equator plane rms uϕ/uϕaν

decrease with increased distance from the internal sphere

(the curve 1), then in the middle latitudes and near the

rotation axis (the curves 2 and 3) there is evident increase

in rms uϕ/uϕaν with increase in R, which is correlated to

decrease in uϕaν when approaching the external boundary.

In the studied spherical layer with the relative thickness

δ = (r2 − r1)/r1 = 1, at the stationary boundary conditions

the flow losses the stability at Re > Rec0 softly, without hys-

teresis [19,20]. At the same time, it forms travelling azimuth

waves [19] (propagating along the rotation direction of the

inner sphere) with the wave numbers m = 3 and/or m = 4.

All the velocity components change in time periodically

within the whole layer [19,20]. Both without noise [19,20],
as well as with its presence [4], a dominant mode is m = 4,

as both the cases comply with the relationship λ4 > λ3,

where λ4 and λ3 — the rise increments of the linear modes

with the wave numbers m = 4 and 3, respectively. It is the

mode m = 4 that is taken to perform all further calculations.

In the presence of noise, the flows have been calculated

before and after stability loss. The Fig. 2 shows time

dependences uϕ at the middle latitudes (θ = 45.63◦). It is
clear that the nature of random fluctuations of the velocity

changes in the non-stationary flow prior to the stability loss

(the curves 3 and 4 of Fig. 2) with increase in R, i.e.

with increased distance from the noise source. As it gets

closer to the internal sphere (the curve 3), there are evident

low-amplitude high-frequency fluctuations, whereas a low-

frequency signal of the high amplitude prevails near the

external sphere (the curve 4). It is correlated to sharper

decay of the high-frequency components in comparison

with the low-frequency one and fully corresponds to the

previously obtained spectra of the fluctuations of the

rotation rate of the inner sphere and the spectra of the

azimuth components of the rate at the distance thereto

(Fig. 1 in [4]). The flow velocity signal after the stability

loss (the curves 1, 2 of Fig. 2) is dominated by the periodic

time dependence with the average value and the amplitude

fluctuating in time.

The calculations in the axis-symmetrical formulation of

the flows prior to the stability loss [4] have shown that

adding the noise as the fluctuations of the rotational rate

of the internal sphere can result in changing an average

velocity profile. The generation of the middle flows is

well known and for other types of non-stationary boundary

conditions and it is caused by available non-linearity and

viscosity in UCN [6]. Figure 3 shows noise-caused change

of the relative increments of the azimuth component of the

velocity Vϕ in the flows before and after the stability loss,

and also compares it with the case of periodic oscillations

of the rotational rate (Vϕ = (uϕaν − uϕ0)/uϕ0, uϕ0 — the

azimuth component of the rate at the stationary boundary

conditions). In the flows both before and after the stability

loss, Vϕ > 0, which is indicative of the generation of the

middle flow along the azimuth direction. Near the rotation

axis and at the middle latitudes, Vϕ increases radially,

and the same dependence R is typical for the periodic

oscillations of the rotational rate. Reduction of Vϕ with

increased distance from the inner sphere is observed only in

the equatorial plane. The biggest relative increments of the

azimuth component of the rate are observed in a flow area

near the rotation axis and the external sphere. The same

result has been previously obtained for the axis-symmetrical

flows prior to the stability loss [4]. The values of Vϕ usually

are higher in the case of the flow prior to the stability loss

(the solid lines of Fig. 3), with the exclusion of the area at

the middle latitudes near the external sphere.
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0.0445

Figure 2. Dependence on the time t for the azimuth component

of the speed uϕ [m/s] at Re = 492.77 (1, 2) and 491 (3, 4); 1, 3 —
R = 0.177, 2, 4 — R = 0.76. The dependences 2−4 are shifted

upwards along the ordinate axis for clarity.
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Figure 3. Dependence Vϕ on the relative distance between

the spherical boundaries R for the stable flows at Re = 488,

g = 0.3Hz, A = 0.046 (1, 2, the solid lines, the close symbols),
Re = 488, the random fluctuations of the rotational rate (3, 4,
the solid lines, the open symbols) and the unstable flows at

Re = 492.9 (5−7, the discontinuous lines, the open symbols). θ:
1, 3, 5 — 17.84◦, 2, 4, 6 — 45.63◦, 7 — 89.67◦ .

When determining the value of Rec , the initial con-

ditions can be taken to be beyond-critical Re values

(Re > Rec) [16]; after that the calculations are performed

by reducing Re and in the traditional approach only at its

beyond-critical values [16,18]. The present study investigates
this approach by step-by-step reduction of Re from the

selected initial value and by determining the amplitude of

the oscillations A f of the azimuth component of the velocity

after the end of the transient and getting A f to a time-

constant value (let us recall that it is related to the case

when Re > Rec). At Re < Rec , there is evident gradual

decay of A f without getting to the constant value.

The values of A f , as in [7], were calculated using

the Hilbert transform (HT). First of all, uϕ(t) was fil-

tered to have a signal u4(t) within the frequency range

f 4 ± 1 f , which corresponded to the azimuth mode m = 4:

f 4 = 0.43Hz, 1 f = 0.005Hz. After that the value A f was

determined as a magnitude of the analytical signal:

A f =
∣

∣u4(t) + iHT
(

u4(t)
)
∣

∣.

In this method of determination of A f it is possible

to obtain the time dependence of the amplitude for the

entire time sampling. It also included determination of

the amplitudes of the azimuth modes in the experiments

at Re < Rec [4].
Figure 4 shows the dependence of the value A f on the

Re number in the above-said flow point, in other flow

regions the dependences are qualitatively the same. It is

clear that when Re < 493 the values A f in the presence of

noise exceed similar values corresponding to the stationary

boundary conditions. And the stability limit determined

by the equation A f = 0 is shifted to lesser Re numbers in

comparison with the case N = 0. This conclusion complies

with results of the linear stability analysis for the time-

averaged axis-symmetrical flows [4]. The shift of the stability
limit due to noise can be determined by the Re-number

dependence of not only A f , but of other flow parameters,

for example, rms uϕ (by the moment of getting the constant

value, Fig. 5, a) or the normalized average value of the

azimuth velocity W = uϕaν/�0r (by the kink point of the

dependence on the Re number, Fig. 5, b).

Nevertheless, the very fact of shift of the stability limit

position due to noise does not eliminate a problem of the

value of this shift and accuracy of its determination. Without

493 494 495

A
f

0.001

Re

0.002

0

Figure 4. Amplitude of oscillations of the azimuth velocity

A f [m/s] in dependence on the Re number at R= 0.67 and

θ = 52.9◦. Open symbols (red) — N = 0, close symbols (blue) —
N = 0.04. The solid (red) line — the parabolic approximation of

the dependence of A f on the Re number at N = 0. The zero

values of A f correspond to the calculations, which had evident

time-continuous decrease in the value A f in more than 1000 times

in comparison with the initial value.
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Figure 5. Dependence of the mean-square deviations of the

azimuth component of the flow velocity (a) and the normalized

averaged flow velocity (b) on the Re number. Open symbols

(red) — N = 0, close symbols (blue) — N = 0.04.
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Comparison of the results of determination of the stability limit position as calculated by the different methods

Kind of solution Rec0 (N = 0) Rec (N = 0.04) (Rec0 − Rec)/Rec0

Analysis the linear stability (from [4]) 489.284 489.246 7.7665 · 10−5

Non-linear solution, the known method 492.822 492.761± 0.011 1.2378 · 10−4

Non-linear solution, the proposed method 492.822 492.765± 0.001 1.1566 · 10−4
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Figure 6. Dependence of A f [m/s] on the time t (the solid lines)
and the exponential approximation of this dependence (the dashed
lines) without noise (a) and with noise (b). a — Re = 492.4 (1),
492.6 (2), 492.68 (3), 492.75 (4); b — Re = 491.5 (1), 492.2 (2),
492.4 (3), 492.6 (4), 492.68 (5), 492.75 (6).

noise, as mentioned above, the stability limit position is

assumed to be determined by zero tending of the parabolic

approximation A f ∼ (Re− Rec)
1/2 . With the final noise

amplitude, these approximations are unknown, and in this

case the accuracy of determination of the stability limit can

be increased by refining the dependence of A f on the Re

number at (Re − Rec) → 0. However, when approaching

the stability limit, the transient time between the initial

and final values A f can be significantly increased. Thus,

at Re = 492.77 the required calculation time is increased

to 4.8 · 104 s, which is more than 3.3 · 104 revolutions of the

inner sphere, which in 1.5 times more than for Re = 492.9.

At the same time, it is unknown in advance whether it

is possible to get the time-independent averaged value A f ,

because, as noted above, when Re < Rec A f is constantly

decreasing. In this regard, it is interesting to consider other

approaches to determining the dependence of A f on the Re

number.

In the presence of noise, one of these approaches is

based on the properties of the amplitudes of the azimuth

modes of the flow. When Re < Rec , the amplitudes of

the azimuth modes exponentially decay in time, including

in the presence of noise [4]. Let us consider how the

values A f change, when Re < Rec (Fig. 6). It is clear that

both at the stationary boundary conditions (Fig. 6, a) and at

random fluctuations of the rotational rate (Fig. 6, b), after
fast decrease of the initial interval there is the exponential

dependence of A f on t : A f ∼ exp(−Bt), where B — the

decay decrement. With increase in the Re number, the

decay decrement B is decreasing and the dependence A f

on t is tending to the horizontal line, as the condition

B = 0 is also satisfied when Re = Rec . Figure 7 shows

the dependence of the decay decrements on the Re number,

which allows determining the values Rec both without noise

and in the presence of noise from the condition B = 0. It

is clear that near the stability limit the dependence of B on

the R number is close to the linear one, while the value

Rec in the presence of noise is less than the similar value

at the stationary boundary conditions, which corresponds to

the results obtained with the traditional approach (Fig. 4).
Rec obtained by the different methods are compared in the

table to be indicative of good compliance of the results.

The results shown on Figs. 7 and 6 demonstrate the ad-

vantages of the proposed approach to determine the critical

number Rec both without noise and in the presence of noise.

First of all, the near-linear kind of the dependence B(Re)
when Re < Rec allows reducing the required number of the

calculations at the various Re numbers, thereby naturally

resulting in reduction of a calculation scope. Secondly,

the exponential time dependence A f allows reducing the

492.5 493.0

B

0.0002

0

Re

0.0004

1
2

Figure 7. Dependence of the decay decrements B on the Re

number. 1 — (the red symbols) — N = 0, 2 — (the blue

symbols) — N = 0.04. The dashed lines — data approximation

for 1 and 2, the horizontal line — B = 0.
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duration of the time sampling at each value Re, thereby

resulting in reduction of the calculation efforts.

Conclusion

The present study has numerically investigated the impact

of the random fluctuations added to the constant averaged

rotational rate of the inner sphere on the flow stability of the

viscous incompressible fluid in the rotational spherical layer.

It has shown an analogy between the noise impact and the

impact of the periodic oscillations on the distribution of the

rate fluctuations in the flow prior to the stability loss. As in

the periodic modulation of the rotational rate of the internal

sphere, the averaged flow rates grow under noise impact.

It is found that the increase in the averaged flow velocities

by the impact of noise is higher in the flows prior to the

stability loss in comparison with the flows after the stability

loss.

It has been demonstrated that in comparison with the

stationary boundary conditions, adding the noise reduces the

critical value of the Reynolds number Rec corresponding to

the flow stability limit. This result has been obtained by

the traditional method from the analysis of the dependence

of the amplitude of the flow velocity oscillations on the

Reynolds numbers when Re > Rec . It has proposed the

new method of determining the value Rec based on the

analysis of the amplitude behavior of the flow velocity

oscillations at the Reynolds numbers less than Rec , i.e.

the exponential decay of the oscillation amplitude in time

and the near-linear dependence of the decay decrement

on the Re number. The results obtained by the different

methods have shown good compliance. It has demonstrated

the reducibility of the calculation scope when applying the

proposed approach. It is still unclear whether it is possible

to apply this approach not only when adding the noise to

the constant rotational rate, but at another behavior of the

time dependence of the boundary conditions, for example,

in the periodic oscillations of the rotational rate, which will

be investigated in the future studies.
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