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The statistical features of quasi-local vibrations of disordered systems are studied within the framework of the

model of correlated random matrices. It is shown that the statistics of matrix elements of the dynamical matrix

strongly affects the properties of such vibrations. The lowest frequency part of the density of states of quasilocal

vibrations is described by the expression ρqlv(ω) ∝ ωn, where the power n is the number of neighboring atoms.

However, if the distribution of matrix elements is strongly non-Gaussian, an additional dependence ρqlv(ω) ∝ ωγ

appears, where the power γ decreases as the degree of non-Gaussianity increases.
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1. Introduction

Low-frequency properties of amorphous materials and

nanocomposites on their basis differ significantly from the

properties of corresponding crystal counterparts, thanks to

which such materials, disordered throughout the volume,

are of the greatest interest. It is currently known that

the low-frequency part of vibrational states of amorphous

dielectrics is caused by different vibration types [1,2].
Phonons, as vibrations with a relatively large mean free

path, are accountable for the lowest-frequency properties of

disordered mechanical systems. As the frequency increases,

the phonon wavelength becomes comparable to their mean

free path, which leads to the replacement of phonons

by another type of vibrational excitations–diffusons, which

propagate through the system by diffusion energy transfer

The phonon to diffuson transition is known as the Ioffe–
Regel crossover [3].

The Ioffe–Regel crossover in amorphous materials oc-

cupies some frequency range. First of all, this is due to

the fact that phonons experience an additional scattering on

different vibration types. One of such types are vibrations of

anomalously soft regions of amorphous media called quasi-

local vibrations. These are vibrations of a group of atoms

weakly bounded to their environment [2]. Soft regions are

formed in amorphous materials during their glass transition

Therefore, quantity and properties of quasi-local vibrations

are considerably affected by glass cooling processes.

Quasi-local vibrations are a subject of intensive research.

It was shown in [4–6] that quasi-local vibrations determine

the main contribution to the scattering of acoustical phonons

at frequencies of about 1 THz. Studies of highly supercooled

model glasses show that the properties of quasi-local

vibrations do not depend on the parameters of spatial

scale [7,8], rate and protocols of structure cooling [9–11].
Thereat, density of quasi-local states is ρqlv(ω) ∝ ωγ , γ ≈ 4

for most of the studied systems [7,12,13].
That’s why it is difficult to distinguish the contribution

of quasi-local vibrations to density of states in conventional

amorphous systems from Rayleigh scattering of phonons on

disorder [7–14], which complicates their studies.

To date, the question of the relationship between quasi-

local vibrations and correlated disorder, which is an impor-

tant attribute of amorphous media, has not been studied

yet. As a result of cooling, certain regions of an amorphous

structure reach the metastable equilibrium position which

is near the stability loss. Due to microscopical disorder of

glass, this leads to a strong correlation of force constants

and internal frustration [15,16]. In this regard, the presence

of correlations between force constants should be taken into

account when studying quasi-local vibrations.

Small atomic vibrations near the stable equilibrium

position are described by the dynamic the matrix M, which

is nonnegative definite and can always be represented as

M̂ = ÂÂT . (1)

This representation allows for automatic consideration of

the mechanical stability requirement, since all eigenvalues

of M̂, which correspond to squared eigenfrequencies, are

nonnegative, and for using the Wishart ensemble to describe

the vibrational properties in terms of the random matrix

theory [17,18]. The matrix elements Ai j in such an ensemble

are random numbers with a certain distribution, with are

correlated with each other due to the sum rule, which has

the following form for the case of identical atomic masses

in the scalar model [19]:
∑

i

Ai j = 0. (2)
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This rule corresponds to the condition of translation symme-

try of a mechanical system
∑

i M i j = 0, which ensures the

presence of low-frequency vibrations as plane waves which

obey the Debye law [17]. This approach made it possible to

describe the phonon to diffuson transition and the nearby

boson peak [17–19]. However, there is the open question

of quasi-local vibrations in this model and their relation to

statistical peculiarities of elements of the matrix Â. The

present paper answers these questions.

2. Soft modes in the random matrix
model

Matrix Â in the considered model of random matrices (1)
describes the coupling between different degrees of freedom

in the system. Each row of the matrix Â corresponds to

a degree of freedom, while each column corresponds to

a bond between several degrees of freedom with quadratic

potential energy [19]. For simplicity, in the present paper we

consider a scalar model of atomic displacements, therefore

the number of degrees of freedom is equal to number of

atoms N. If the number of bonds is K ≥ N, then the

system has macroscopic stiffness. The main parameter

in the considered model is ̹ = (K − N)/N, which can

vary in wide range 0 ≤ ̹ < ∞. The case ̹ ≪ 1, which

corresponds to a system with a large fluctuation of force

constants, is of the greatest interest.

Matrix Â can be constructed on a regular lattice, if atoms

are arranged at its sites according to the following rules.

In the case of a quadratic the matrix Â, its the matrix

element Ai j is a non-zero random number, only if atoms

with indices i and j are the nearest neighbors. Such a

consideration corresponds to a local fluctuation of force

constants, which is observed in amorphous materials which

have only the short-range order in the atomic arrangement.

For simplicity, it will be considered that each atom has

an identical number of neighbors n. Diagonal element

Aii = −
∑

j 6=i A ji ensures the sum rule (2). Thus, each row

in a quadratic the matrix Â has n + 1 non-zero numbers: n
random independent numbers and 1 number equal to the

sum of other n independent random numbers.

In case of 0 < ̹ ≤ 1, a rectangular the matrix Â can be

obtained from two different realisations of a quadratic the

matrix: Â(0) and Â(1). In this case, the resultant rectangular

the matrix Â is constructed by adding ̹N randomly chosen

columns of the matrix Â(0) to the matrix Â(1) on the right.

When constructing the matrix Â, there is a probability

that all the numbers present in some of its rows have

small values. This corresponds to the fact that these atoms

are weakly bounded to their environment. Frequencies of

such quasi-local vibrations ωqlv will lie in the low-frequency

region of the spectrum and be described by a certain

distribution density ρqlv(ω), which is related to the statistics

of the matrix elements Ai j .

Let us find the density of states of quasi-local vibrations

ρqlv(ω) using the perturbation theory methods. Let us

assume that the row of the matrix Â with index l contains

small numbers. It will be also assumed that the matrix

elements Al j at j > N are zero. The probability of such

a case is equal to (1− ̹)n+1. Then the matrix Â can be

represented as follows:

Â = Â0 + V̂ . (3)

All row elements with index l in the matrix Â0 are

zero. On the contrary, the matrix V̂ contains non-

zero elements only in the row with index l : n non-

zero independent numbers v1, . . . , vn and one correlated

number vn+1 = Vll = −∑i 6=l(Â0)il .

The frequency of quasi-local vibration ωqlv in the second

order of the perturbation theory is determined by the

following expression:

ω2
qlv =

{

V̂ ĤV̂ T
}

ii
, (4)

where

Ĥ = Î − Â0
T
(

Â0Â0
T
)−1

Â0, (5)

and Î is a unity matrix of the size K × K [20]. It follows

from expression (4) that ω2
qlv is a sum of quadratic forms

of n + 1 numbers v1, . . . , vn+1, which correspond to non-

zero elements Vl j . Therefore, a symmetrical matrix can be

introduced for further convenience

Ĉ = P̂ĤP̂T , (6)

where (n + 1) × K matrix P̂× has non-zero the matrix

elements Pk j = 1 only for the indices at which Vl j = vk .

Then the quasi-local vibration frequency is determined by

the following expression:

ωqlv =
√

vĈvT , (7)

where row vector v = v1, . . . , vn+1 is composed of non-

zero elements Vl j .

Since each index l corresponds to its own set of the values

of v , quasi-local vibrations have a spread in frequency (7).
Thereat, the low-frequency part of spectrum ω ≪ 1 in

small-size systems is due to quasi-local vibrations. The

number of phonons in such systems is small because their

minimum vibration frequency is limited by the system sizes.

This makes it possible to distinguish the phononic density of

states from the distribution density of quasi-local vibrations.

3. Influence of statistics of matrix
elements

Frequency distribution (7) for a set of n + 1 random

values of v at ωqlv ≪ 1 is found in Appendix 1. Distribution

density of quasi-local vibrations ρqlv(ω) has the following

form:

ρqlv(ω) = (1− ̹)n+1pωn, (8)
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where the coefficient is

p =
〈

det (Ĉ)−1/2
〉 2π

n+1
2

Ŵ
(

n+1
2

)

n+1
∏

k=1

ρk(0). (9)

The angle brackets correspond to averaging over different

realisations of the matrix Â0, Ŵ is the gamma function, ρk(0)
corresponds to the distribution density of random value vk

near zero.

The coefficient p does not depend on the system

parameter ̹. With small ̹ ≪ 1, the elements of the matrix

Ĉ are proportional to ̹, therefore

〈

det (Ĉ)−1/2
〉

∝ ̹−
n+1
2 . (10)

Thus, at ̹ ≪ 1 the coefficient p ∝ ̹−
n+1
2 .

The coefficient p also depends on the statistics of the

matrix elements Ai j . For simplicity, we will assume that the

matrix elements Ai j , corresponding to an interaction with

the nearest neighbors, are distributed independently with an

equal dispersion σ 2 and zero mean.

3.1. Gaussian statistics

In the case of Gaussian statistics of the matrix elements

Ai j , numbers vk obey a multidimensional Gaussian distribu-

tion

ρ(v) =
1

√

(2π)n+1det 4̂

e−
1
2
v4̂−1vT

, (11)

where 4km = 〈vkvm〉 is a covariance matrix which in the

considered case of an independent distribution of random

numbers has a diagonal form: 4km = σ 2
k δkm. Then the

probability density function of random value vk near zero

has the following form:

ρk(0) =
1√
2πσk

. (12)

The standard deviation for k ≤ n is σk = σ . However, the

standard deviation for k = n + 1 is σn+1 =
√

nσ , since value
vn+1 is a sum of n independent Gaussian numbers. Taking

this into account, coefficient (9) has the following form:

p =
〈

det (Ĉ)−1/2
〉 2

1−n
2

Ŵ
(

n+1
2

)

σ n+1
√

n
. (13)

3.2. Non-Gaussian statistics

Values of amplitudes of force constants in different

regions of real amorphous materials can differ by several

orders [15]. To achieve such a spread, we will assume that

the independent non-zero elements of the matrix Â have a

non-Gaussian distribution which is assigned as

vk = cηk exp ζk , k ≤ n, (14)

where ηk is a random number which has a Gaussian

distribution with a zero mean and a unit dispersion, ζk

is a random number uniformly distributed from −b/2 to

b/2. Normalization constant c = σ
√

b/ sinh(b) determines

dispersion 〈v2
k〉 = σ 2 .

The probability density function of quantity (14) has the

following form:

ρ(vk) =
erf
(

eb/2
√
2c
vk

)

− erf
(

e−b/2
√
2c
vk

)

2bvk
. (15)

Parameter b determines the degree of non-Gaussianity of

the distribution of vk . The distribution of random value vk

at b ≪ 1 is close to a Gaussian one with a zero mean and

dispersion σ 2.

Element vn+1 is determined by the sum rule (2),
therefore it is a sum of n independent random numbers

constructed according to rule (14). Therefore, it follows

from formula (15) that

ρk(0) =

√

2

π

1

bc
sinh

b
2
, k ≤ n,

ρn+1(0) =
1√
2π c

〈(

n
∑

i=1

e2ζi

)−1/2〉

ζ

, (16)

where the angle brackets correspond to the averaging over

different random numbers ζi uniformly distributed from

−b/2 to b/2. The value of ρn+1(0) can be calculated

numerically for any value of the parameter b and number

of neighbors n. Taking into account expression (16),
coefficient (9) becomes as follows:

p =
〈

det (Ĉ)−1/2
〉 2

1−n
2

Ŵ
(

n+1
2

)

cn+1

×
(

2

b
sinh

b
2

)n
〈(

n
∑

i=1

e2ζi

)−1/2〉

ζ

. (17)

In Figures 1 and 2 the obtained analytical result for the

density of states of quasi-local vibrations (8) is compared

with the numerical calculation of density of states ρ(ω)
for the entire system. Density of states ρ(ω) was found

by the full diagonalization of dynamic matrix M̂ = ÂÂT

for the case of Gaussian statistics of the elements of

the matrix Â (Fig. 1) and for the case of their non-

Gaussian statistics (Fig. 2). To do so, the matrix Â was

constructed on a simple cubic lattice sized 14× 14× 14

with the lattice constant a0 = 1 and atomic masses mi = 1,

and a unity dispersion of the matrix elements σ 2 = 1 is

considered. The number of neighboring atoms in case of

a simple cubic lattice is n = 6. A numeric diagonaliza-

tion of 108 random matrices was performed to plot the

histograms.

The solid lines in Figures 1 and 2 show a good agreement

of the low-frequency density of quasi-local states (8) with

the numerical calculation result, both in the case of Gaussian

(Fig. 1) and non-Gaussian statistics (Fig. 2). Here the
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Figure 1. The vibrational density of states in the case of a

Gaussian distribution of elements of the matrix Â with dispersion

σ 2 = 1 for different parameters ̹. The lines show the low-

frequency contribution of quasi-local vibrations (8).
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ω
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Figure 2. The vibrational density of states in the case of a non-

Gaussian distribution of elements of the matrix Â with dispersion

σ 2 = 1 for different the parameters b. The parameter ̹ = 0.2. The

solid lines show the low-frequency dependence (8), the dashed

lines show the result for a strongly non-Gaussian distribution (23).

frequency range in which the power-law dependence ωn

is satisfied depends both on the parameter κ and on

the non-Gaussian the parameter b. The region where

dependence ωn is met for strongly non-Gaussian statistics

(b > 4) is outside the capabilities of numerical counting. It

should be noted that the coefficient preceding the power

dependence ωn was calculated using formula (8) and

was not a fitting parameter. Thus, the solid lines in

Fig. 2 are low-frequency asymptotics for any value of the

parameter b.
Thus, we can draw the conclusion that the lowest-

frequency part of density of states in this model of random

matrices is due to quasi-local vibrations and has power

dependence ρqlv(ω) ∝ ωn, where the power n is the number

of neighboring atoms.

4. Strongly non-Gaussian statistics

In case of b ≫ 1, the statistics of matrix elements

is strongly non-Gaussian and the distribution density of

quasi-local states has a non-trivial power dependence in

the intermediate frequency range (see the dashed lines in

Fig. 2). Values of vk in this case has an exponentially large

spread, therefore frequency (7) is determined by the largest

value of vk :

ωqlv ≈ max
k

|vk |. (18)

Such an approximation acts well in the frequency range

ω0 ≪ ω ≪ ω1, where ω0 = ce−b/2 and ω1 = ceb/2. The

previously obtained result (8) is applicable at lower frequen-
cies ω ≪ ω0.

In order to find the frequency distribution (18) in case of

b ≫ 1, we can omit the random Gaussian quantities ηk in

expression (14) and assume that |vk | ≈ c exp ζk . Then the

distribution of value vk has the form

ρ(|vk |) =
1

b|vk |
, ω0 < |vk | < ω1. (19)

The frequency distribution density (18) can be determined

as

ρqlv(ω) =
d

dω
P(|vk | < ω)2n, (20)

where P(|vk | < ω) is the probability to encounter element

vk , the modulus of which is smaller than ω. This probability

for distribution (19) has the form

P(|vk | < ω) =
1

b
ln

ω

ω0

. (21)

The obtained distribution can be written as a power-series

distribution of frequency logarithm 3 = ln(ω/ω0):

ρqlv(3) =
2n
b2n

32n−1. (22)

The corresponding frequency distribution can be approxi-

mately considered to be a power one in the region of ω ∼ c ,
which is of the greatest interest

ρqlv(ω) ∼ ω
4n−2

b −1. (23)

The obtained result (23) in Fig. 2 is compared with the

numerical calculation of density of states ρ(ω). It can be

seen that the number of quasi-local vibrations increases

with increasing non-Gaussian parameter b. Thereat, if

non-Gaussianity is strong b ≫ 1, an additional dependence

ρqlv(ω) ∝ ωγ arises with power γ ≈ (4n − 2)/b − 1. This

result agrees with the numerical calculation result and is

marked by a dashed line in Fig. 2. The coefficient at power

dependence (23) goes beyond the used approximation (18),
so the coefficient was fitted when plotting the dashed lines.
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5. Discussion

In the present paper we have analyzed the distribution

of quasi-local modes in the model of correlated random

matrices. The distribution density at low frequencies is

proportional to ωn both for the Gaussian and for non-

Gaussian distribution of the elements of the matrix Â.
At the same time, for a large value of non-Gaussian the

parameter b, a frequency range appears, at which the

distribution density is proportional to ωγ , where power γ

depends both on the number of neighbors and on non-

Gaussianity the parameter b. It can be considered that the

parameter b reduces the effective number of the nearest

neighbors to value γ . Indeed, many elements vk for a

strongly non-Gaussian distribution have a relatively small

value and only the largest of them make a contribution to

the quasi-local vibration frequency. The value of γ ≈ 4,

observed in many model glasses, can also be reproduced in

the given model (b = 4.4 at n = 6). However, the statistics

of the matrix elements is determined by many factors which

takes place under cooling of model systems and obtaining

of a stable atom configuration. A conclusion that γ ≈ 4

is the effective number of neighboring atoms from the

viewpoint of statistical properties of the matrix Â can be

made within the framework of the present paper, which

takes into account the fundamental statistical properties

(system stability and sum rule).

An important aspect is the spatial distribution of vibra-

tions. The studied system contains phonons, the minimum

frequency of which is determined by system elasticity

and size. For instance, the lowest-frequency phonon in

Fig. 1 at ̹ = 0.4 is shaped as a peak at the frequency of

ω ≈ 0.35. All lower-frequency vibrations are quasi-local are

concentrated near an atom with index l, which corresponds

to a soft mode.

In the present paper we have performed an analysis

in a scalar vibration model, where it is considered (for
simplicity) that the displacements of each atom from the

equilibrium position is described by a scalar quantity.

Consideration of the vector nature of vibrations complicates

the analysis of the obtained results. Thereat, the main

contribution to the spread in matrix elements is made

by fluctuations of interatomic distances, since the force

constants most significantly depend on the interatomic

distance, which serves as a manifestation of the non-

Gaussian statistics of matrix elements. Thus, the main

conclusions in the present paper are also applicable to the

vector model, in particular, for a strongly non-Gaussian

distribution of matrix elements.

6. Conclusion

In the present paper the vibration peculiarities of soft

regions in disordered systems are studied using the theory

of correlated random matrices. It has been shown that

the quantity and properties of such regions are considerably

affected by the statistics of distribution of non-zero elements

in the correlated the matrix Â. For this, we have found and

studied the density of distribution of quasi-local vibrations

ρqlv(ω), which corresponds to the low-frequency spectral

region in the case of small system sizes.

The result of the found expressions for ρqlv(ω) is that the
lowest-frequency region of vibrational states is described by

dependence ρqlv(ω) ∝ ωn, where power n is the number of

neighboring atoms. This result agrees with the results of the

numerical calculation of the density of states for the entire

system ρ(ω), for Gaussian and non-Gaussian statistics of

matrix elements.

When the non-Gaussian the parameter b increases, the

number of quasi-local vibrations also increases. An analysis

of the vibrational state density has shown that the inter-

mediate dependence ρqlv(ω) ∝ ωγ arises in this case. This

result makes it possible to describe the generally accepted

dependence ρqlv(ω) ∝ ω4, observed in many amorphous

systems [7,12,13]. This indicates that the model of random

correlated matrices can be used to describe vibrations of

soft regions of amorphous dielectrics.
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Appendix 1

The problem of finding the distribution of the following

quantity arises when studying the distribution of quasi-local

vibration frequency

ω =

√

ξĈξT , (24)

where ξ = (ξ1, . . . , ξn+1) is the row vector of random

numbers, and the matrix Ĉ is a positively defined symmetric

matrix. The value of ξk has a distribution ρk .

We will solve this problem by decomposing the matrix Ĉ
in eigenvalues

Ĉ = ÛD̂ÛT , (25)

where Û is an orthogonal matrix, while diagonal the

matrix D̂ is composed of eigenvalues of the matrix Ĉ :

λc = λ1, . . . , λn+1, λk > 0. Then

ω =

√

√

√

√

n+1
∑

k=1

λky2
k , (26)

where value y k =
∑n+1

m=1 Ukmξm .
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The probability that random value (26) is lower than a

certain preset small number W is determined by the volume

of a (n + 1)--dimensional ball

P(ω < W ) =
π

n+1
2 W n+1

Ŵ
(

n+1
2

+ 1
)

n+1
∏

k=1

λ
−1/2
k hk(0), (27)

where hk is distribution density y k .

We will use the fact that distribution density at the

origin of coordinates y = ξ = 0 does not change upon a

n-dimensional turn y = Ûξ . Moreover, the product of all

eigenvalues sets a matrix determinant:
∏n+1

k=1 λk = det Ĉ .

Therefore, distribution density ρ(ω), averaged over different

implementations of the matrix Ĉ , at small values ω ≪ 1 has

the following form:

ρ(ω) =
2π

n+1
2 ωn

Ŵ
(

n+1
2

)

〈

det (Ĉ)−1/2
〉

n+1
∏

k=1

ρk(0). (28)
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