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The phase transitions and thermodynamic properties of the two-dimensional antiferromagnetic Potts model with

the number of spin states q = 4 on the kagome lattice are studied by the Monte Carlo method, taking into account

the exchange interactions of the first J1 and second J2 nearest neighbors. The studies were carried out for the value

of the interaction of the second nearest neighbors in the interval −1.0 ≤ J2 ≤ 0.0. An analysis of the character of

phase transitions has been carried out. It is shown that in the interval −1.0 ≤ J2 ≤ −0.1, a second-order phase

transition is observed, while at J2 = 0.0, frustrations disturb the order in the system and lead to the disappearance

of the phase transition
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1. Introduction

Currently, of great scientific interest are studies of phase

transitions (PT), critical, magnetic and thermodynamic

properties of magnets described by two-dimensional lattice

Ising models and Potts [1–3]. These models describe

a large class of real physical systems: layered magnets,

liquid helium films, superconducting films, adsorbed films,

etc. [1,4,5]. Unlike the Ising model, there are very few

reliably established facts for the two-dimensional Potts

model with a different number of spin q states. Most

available results were obtained for a two-dimensional Potts

model with the number of spin states q = 2 and q = 3 [6–8].

Depending on the number of spin states q and the spatial

dimension, the Potts model demonstrates the first or second

kind of PT. The two-dimensional Potts model with the

number of spin states q = 4 is almost unique and still little

studied. A Potts model can be used to describe the behavior

of certain classes of adsorbed gases on graphite [9]. This

model is also interesting because the value of q = 4 is the

boundary value of the interval 2 ≤ q ≤ 4, where the second

kind of PT is observed, and the range of values q > 4, in

which the PT occurs as a transition of the first kind [4].

The results of studies of the two-dimensional ferromag-

netic Potts model with competing exchange interactions on

triangular [10] and hexagonal [11,12] lattices and on the

Kagome lattice [13] by the Monte Carlo (MC) method show

that the nature of the PT and the thermodynamic behavior

of this model depend on type of lattice. This is due to the

fact that the degree of degeneration of the ground state of

the system and the point of frustration depend on the type

of lattice.

The study of the two-dimensional antiferromagnetic Potts

model with the number of spin states q = 4 on the Kagome

lattice, taking into account the exchange interactions of the

first and second nearest neighbors, is practically not found

in the literature. This model, even without taking into

account the interactions of the second nearest neighbors, is

frustrated due to the special geometry. Taking into account

the antiferromagnetic interactions of the second nearest

neighbors in this model can lead to a change in the degree

of degeneracy of the ground state and the appearance of

various phases and PT, as well as affect the description of

its thermodynamic and magnetic properties.

In the study [14], unique electronic and quantum

properties were discovered in the study of compounds

having a Kagome lattice. The authors associate this

behavior with a feature of the structure of the Kagome

lattice. For example, layered vanadium antimonides AV3Sb5
(A = K,Rb, Cs), which are a family of topological metals

with a Kagome lattice, exhibit a number of strongly

correlated electronic phases, including charge order and

superconductivity. A schematic representation of such a

lattice is presented in Fig. 1.

In this regard, in this paper we have attempted, based

on the MC method, to study of PT and thermodynamic

properties of the two-dimensional antiferromagnetic Potts

model with the number of spin states q = 4 on the Kagome

lattice with the interaction of the first (J1) and the second

nearest (J2) neighbors. Since the behavior of the Potts

model depends on the magnitude of J2, it is of particular

interest to study the nature of the PT for this model at

different ratios of the magnitude of the antiferromagnetic

interaction of the second nearest neighbors. From the data

obtained to date, it is impossible to unambiguously deter-
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Figure 1. Schematic representation of the kagome lattice.

mine the nature of the PT and the patterns of changes in

the thermodynamic behavior of the frustrated Potts model

on the Kagome lattice with the number of spin states

q = 4, and these questions still remain open. The study

is performed on the basis of modern methods and ideas

that allows answering a number of questions related to the

character and nature of PT of frustrated spin systems.

2. Model and method of study

The Hamiltonian of the Potts model, considering the

interactions of the first and second nearest neighbors, can

be represented in the following form,

H = −J1

∑

〈i, j〉,i 6= j

Si S j − J2

∑

〈i,k〉,i 6=k

Si Sk

= −J1

∑

〈i, j〉,i 6= j

cos θi, j − J2

∑

〈i,k〉,i 6=k

cos θi,k , (1)

where J1 and J2 — parameters of exchange antiferromag-

netic interactions (J1 < 0, J2 < 0), respectively, for the

first and second nearest neighbors, θi, j , θi,k — the angles

between the interacting spins Si−S j and Si−Sk . The

magnitude of the interaction of the second nearest neighbors

varied in the range −1.0 ≤ J2 ≤ 0.0.

The directions of the vectors are set in such a way that

the equality holds

θi, j =

{

0, if Si = S j

109.47◦, if Si 6= S j

,

cos θi, j =

{

1, if Si = S j

−1/3, if Si 6= S j

. (2)

Such systems based on microscopic Hamiltonians are suc-

cessfully studied on the basis of the MC [15–21]. In recent

years, many new variants of algorithms of the MC method

have been developed. The Wang–Landau algorithm is one

of the most efficient for studying such systems [22,23],
particularly in the low-temperature area. Therefore, we used

this algorithm in this study. The Wang−Landau algorithm

is an implementation of the entropy modeling method and

allows you to calculate the density function of the states of

the system. The Wang−Landau algorithm was used by us

in the following form:

− an arbitrary initial configuration of spins is given, the

starting values of the density of states g(E) = 1, histograms

of energy distributions H(E) = 0, the starting modification

factor f = f 0 = e1 ≈ 2.71828;

− we repeatedly perform steps in phase space until we

get a relatively flat histogram H(E) (i.e. until all possible
energy states of the system are visited approximately the

same number of times). In this case, the probability of

transition from a state with energy E1 to a state with

energy E2 is determined by the formula p = g(E1)/g(E2).
If the transition to a state with energy E2 has taken

place, then the value of the density of states g(E2) with

energy E2 is multiplied by the factor f and the histogram

with this energy H(E2) increases by 1 (g(E2): = f g(E2),
H(E2): = H(E2) + 1). Otherwise, all this is done for

energy E1 (g(E1): = f g(E1), H(E1): = H(E1) + 1);

− if the histogram has become
”
flat“, then we reset

the histogram (H(E): = 0), reduce the modification factor

( f : =
√

f ) and continue again, while f ≥ f min. In our case

f min = 1.0000000001;

− having determined the density of the states of the sys-

tem, it is possible to calculate the values of thermodynamic

parameters at any temperature — in particular, the internal

energy U , free energy F , specific heat C and entropy S can

be calculated using the following expressions:

U(T ) =

∑

E
Eg(E)e−E/kBT

∑

E
g(E)e−E/kBT

∼= 〈E〉T , (3)

F(T ) = −kBT ln

(

∑

E

g(E)e−E/kBT

)

, (4)

C =
(|J1|kBT )2

N
(〈U2〉 − 〈U〉2), (5)

S(T ) =
U(T ) − F(T )

T
, (6)

where N — number of particles, kB — Boltzmann constant,

T — temperature (hereafter the temperature is given in

units of |J1|/kB).

Calculations were performed for systems with periodic

boundary conditions and linear dimensions L × L = N,

L = 12−96 (L is measured in unit cell sizes) in the range

−1.0 ≤ J2 ≤ 0.0.
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3. Simulation results

Fig. 2 shows the temperature dependences of the ener-

gy E for different values of the exchange interaction J2.

The figure shows that in the low-temperature area E = 0

for all values of J2. This is due to the lack of order in the

system in the ground state. With an increase in temperature,

we observe that the nature of the change in the energy of the

system depends on the magnitude of J2. With an increase in

temperature for systems with a large value of J2, the energy

growth occurs faster (a sharper jump is observed).

Fig. 3 shows the temperature dependences of entropy

S/N for different values of exchange interaction J2. As

the temperature increases, the entropy for all values of J2

tends to the theoretically predicted value of ln 4. At low

temperatures, the entropy for all values of J2 tends to a
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Figure 2. Temperature dependences of energy E for different

values J2.
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Figure 3. Temperature dependences of entropy S/N for different

values J2.
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Figure 4. Temperature dependences of heat capacity C for

different values J2 .
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Figure 5. Temperature dependences of heat capacity C for

different values J2 .

nonzero value of S0. This behavior of entropy indicates the

degeneration of the ground state. It should be noted that

for the value J2 = 0.0, the entropy in the low-temperature

area takes the largest value S0 = 0.73, which is due to

the strong degeneracy of the ground state. With a value

of J2 = 0.0, the system is highly frustrated. Taking into

account the interactions of the second nearest neighbors

leads to a decrease in the value of S0, which also indicates

a decrease in the degeneracy of the ground state. Our

data shows that in the entire range −1.0 ≤ J2 ≤ 0.1 value

S0 = 0.33.

Figures 4 and 5 show the temperature dependences of

the heat capacity C for different values of the exchange

interaction J2. The figure shows that for the value J2 = 0.0,

the effects of frustration are most pronounced: there is no

sharp peak, a smoothed maximum is observed. With the
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Figure 6. Histograms of the energy distribution for the value

J2 = −0.5.

value J2 = 0.0, the system is completely frustrated, and

there is no order in the system. When J2 = −0.1 splitting

of the heat capacity is observed, which is a characteristic

feature of frustrated systems (near the points of frustration

there is an acute peak and a domed maximum) [24]. In

the range −1.0 ≤ J2 ≤ −0.2 the heat capacity has an acute

peak, the position of which corresponds to a temperature

of PT. As can be seen in the figure, this peak increases

with an increase in the value of J2 and shifts towards higher

temperatures. To analyze the PT kind, we used a histogram

analysis of the data of the MC method [22,23]. Histogram

analysis — is one of the most accurate methods to establish

the PT kind.

Fig. 6 shows the histograms of the energy distribution

for the value J2 = −0.5 for systems with different linear

dimensions. The graphs are plotted at a temperature

close to critical (T = 0.4687(1)). The figure shows that

depending on the probability of W on the energy of E/N,

one maximum is observed. The presence of one peak on

the histograms of the energy distribution is a characteristic

feature of the second kind of PT. As can be seen in the

figure, as the linear dimensions of the system increase, the

histogram narrows, and the peak grows. This behavior is

characteristic of the second kind of PT. We note that similar

behavior on energy distribution histograms is observed in

the range −1.0 ≤ J2 ≤ −0.1. It can be assumed that in

the considered range of values of J2, there is a second

kind of PT, except for the value of J2 = 0.0, where

frustrations disrupt the order in the system and lead to the

disappearance of the PT.

4. Conclusion

The study of phase transitions and thermodynamic

properties of the two-dimensional antiferromagnetic Potts

model with the number of spin states q = 4 on the

Kagome lattice, taking into account the interactions of

the first and second nearest neighbors, was performed

using the Wang−Landau algorithm of the Monte Carlo

method. The nature of phase transitions is analyzed using

the histogram method. It is established that in the interval

−1.0 ≤ J2 ≤ −0.1 a phase transition of the second kind is

observed. It is shown that for the value J2 = 0.0, strong

frustrations are observed in the system, which lead to the

disappearance of the phase transition.
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